FORTIN, Louis-André

LAIDAICKER, Aleissia

ROUSSEAU, Jean-Sébastien

EV eGarden

Submitted to: Prof. Sha Xin Wei

Comp471: Computer Graphics

Fall 2006

I. Table of Content

I. Table of Content

1. Introduction

1

1.1 The Concept

1

1.2 Why Using Generative Algorithms?

3

2. The beginstroke Method of the sketch Object
5

2.1 Graphic Primitives
5

2.1.1 Line Width Generation
5

2.1.2 Line Width: Rectangle Representation and Brush Pattern
6

2.2 Color Blending
7

2.2.1 Logical Operators
8

2.2.2 The Porter-Duff blend mode “Source Over Destination”
9

3. Programmability
10

3.1 EV eVegetation
10

3.1.1 EV eTree
10

3.1.2 EV eGrass
13

3.2 EV eRoots4. Computer Graphics Mathematics and Theory
14

4.1 L-Systems
15

4.1.1 Theory
16

4.1.2 Examples
16

5. Matrix Calculations in OpenGL
16

5.1 Theory
17

5.2 Examples

18

5.2.1 Rotation of a Matrix About an Arbitraty Axis
19

5.2.2 Translation of a Matrix
20

5.2.3 Scaling of a Matrix
21

6. EVE package
22

6.1 eve.bgsub
23

6.2 eve.vision
24

6.3 eve.blobber
25

6.4 eve.blobbim
26

6.5 eve.blur
28

6.6 eve.seeds
28
1. Introduction

by Louis-André Fortin

1.1 The Concept

EV eGarden is a responsive video installation using two projections of generative vegetation, set on two different floors, to create playful interaction in between spectators, and also between spectators and the built environment. It is located in the small atriums of the 5th and 6th floor.

[image: image1.jpg]
The locations on the 5th and 6th floor were choosed because they were underneath each other. Which was necessary for part of the concept. On the 6th are projected images of evolving images of grass and trees, and on the 5th roots. Since the trees and grass stems are computer generated ones, they don’t have real roots, but mathematical roots. Hence, the projection on the 5th floor is a visual representation of those mathematical roots.

[image: image2.jpg]
The installation allows for three types of interactions. On an immediate level, as the spectator walks by, his movement makes the grass sway in the direction of his movement. If the spectator decides to stand still, a tree will grow in front of his current position.

On a third level, the projected roots on the 5th, althought not offering any direct interaction, stimulates the spectator to question was is the meaning and the origin of these roots. It is only through a long term exposure to the installation that he will finally understand that the roots shapes are determined by the growths on the 6th floor. It will bring the spectator to ask himself question the articulation of the building and how he relates to it.

[image: image3.jpg]
1.2 Why using generative algorithms?

Why using generative algorithms to create the vegetation instead of, for example, a video file showing a tree growing? There are several reasons. First, several member of the team had an interest in generative art and general and welcomed the opportunity to explore that field in the context of an installation.

Second, using a video file would have lead to the same tree always being displayed over and over again. Using a tree drawn algorithmically, the experience of the spectator is always different which helps maintain the interest in the installation.

Third, since a program generates the tree, it is possible to use all the parameters of the tree (like individual position of the branches) and make them responsive the spectator actions. An example of this is in how the surface tree (on the 6th floor) and the roots (on the 5th) and rendered differently using the same control points.

[image: image4.jpg]
The responsivness of the different proprieties of the vegetation was maybe not fully explored in the present installation, but the possibility exists to expand on this idea in future project using the patches created.

2. The beginstroke Method of the sketch Object

by Louis-André Fortin

The reason why I decided to investigate this specific object is because it is used throughout our generative vegetation tool. Some OpenGL method, for example glBegin(), have direct equivalent (in this case, sketch.glbegin()) in the Jitters implementation of OpenGL in Javascript, but it is not the case with sketch.beginstroke. Which means that it is probably a "High Level Method" extension built upon lower level OpenGL calls.
Parameters of the method like order, give the impression that the beginstroke method is actually a spline drawing tool. Other parameters that can be activated, like type, slice and scaling (determining the width and not an actual scaling of the stroke) hint that filled polygons are build around the path of the spline to create its ribbon effect.

I will investigate drawing primitive and how they are razterized, because they are most probably involved to draw basic lines with beginstroke. Also because, in order to be able to composite an OpenGL view with a video matrix from Jitter, the OpenGl objects must first be rasterized to be stored in a matrix. In that aspect it is interesting to know how it is carried out.

2.1 Graphic Primitives

by Louis-André Fortin

2.1.1 Line Width Generation

A standard line-width is generated with single pixels at each sample position, as in the Bresenham algorithm. Thicker liens are represented as positive integer multiples of the standard line by plotting additional pixels along adjacent parallel line paths. In the same fashion, a thick line with slope less than or equal to 1.0 can be displayed using vertical pixel spans.

(see next page for a mathematical description of the Bresenham Line Algorithm)

[image: image5.jpg]
The displayed width of a line (measured perpendicular to the line path) is dependent on its slope. A 45º line will be displayed thinner by a factor of 1/√2 compared to a horizontal or vertical line plotted with the same-length pixel spans.

[image: image6.jpg]
Other methods for producing thick lines include displaying the line as a filled rectangle or generating the line with a selected brush pattern (using a pixel mask).

2.1.2 Line Width: Rectangle Representation and Brush Pattern

A way used to represent the thickness of lines is to draw vertices that are placed at a distance of one-half the desired line width, along perpendiculars to the line path. Those vertices are used to define a rectangle that is then filled with color. This is most probably the method used by the beginstroke method.

Line width can also be displayed using a pixel mask. This method is also good to make custom pattern along a path. The shape of the brush pattern is stored in a pixel mask that identifies the array of pixel positions that are to be set along the line path.

[image: image7.jpg]
2.2 Color Blending

by Louis-André Fortin

2.2.1 Logical Operators

For binary systems (i.e. black and white), it is possible to use simple binary operators to determine the blending of two objects.

[image: image8.jpg]
2.2.2 The Porter-Duff blend mode “Source Over Destination”

When color systems are concerned, a way of calculating alpha transparencies is the Porter-Duff method. For example, it is used by Quartz, the graphic system of the Mac OS X.

The Porter-Duff blending can be described mathematically as

D’ = S • (s + D • (1- (s)

where D’ is the new destination color, S is the source color, (s is the alpha value of the source, and the D is the original destination color.
3. Programmability

Author: Aleissia Laidacker

3.1 EV eVegetation

The EV eVegetation is comprised of two separate components. The interactive tree and the animated grass are the two major sections that will be covered in detail below in terms of programmability and functionality.
3.1.1 EV eTree

The eTree is the component that is the main basis for our project. The functional aspect for this was to have a tree that would grow and interact with its audience. The life span of the tree would depend on the amount of interaction and interest that the audience would show. If a person passes by and does not sit to spend time in the EV eGarden then the tree would fade away and would not have a chance to grow back. But if a person takes the time to interact with the EV eGarden and show an interest in its purpose then the tree would grow in the position of where the audience member would be.

For the programming aspect of this, Jean Sebastien’s Jitter patches would work with the programmed JavaScript and OpenGL script which Louis and I worked on. For the tree patch, it would take in the x coordinate as input from Jean Sebastien’s patch. The x coordinate would be used as the starting point for the tree that is passed into a function in the JavaScript. That is the only parameter that is needed in order to start the tree animation.

In terms of how the tree is generated in layman’s terms, the starting point is used as a reference for the initial control point for the tree’s trunk. The tree is animated in using OpenGL and programming and the shape of the tree is based on mathematical equations and the idea of using an L-System type of grammar.

OpenGL is the main programming part used for the animation, modelling and rendering for the eTree. We use the sketch object in OpenGL that is solely available in Jitter. This component is extremely useful for animation and is what helped us achieve a beautifully animated brushstroke for all of the eVegetation. The basic concept of pushing, popping, rotating, translating and scaling are still required for matrix operations in the OpenGL but the sketch object is the main part of how all the animation is performed. A texture is loaded in where we drew a brush stroke and saved its alpha channel so that we could control the color used on the actual brush stroke. Stroke points are added to the stroke to control where and how the stroke would be animated in. The stroke point coordinates used for each branch were populated into a dynamic array and a separate array was used to store the target coordinates. A function called Draw was used each time a bang took place, (callback function) to update the current coordinates for each stroke point so that it would eventually reach the target point.

[image: image9.png]
cx,cy,cz: current coordinates
 mx,my,mz: target coordinates
 vslew: scalar value

The following demonstrates an example of how the current coordinates arrays get updated so they slowly update to get closer and closer to where the target coordinates are.
The direction that each stroke point takes depends on the branch side that it currently lies on and a mathematical equation which will be described below in the Mathematics section. Basically, the idea used behind this was to explore the way L-Systems are used by using recursion and the Pythagorean Theorem. A bit of randomness was set as well so that the shape of the tree would still have a lifelike look and feel without having to be too symmetrical.

Randomness was one of the key points that were stressed throughout all of the programming. The conceptual side of the project dealt with how the position of the tree could be anything and its randomness was solely based on the audience. So, we decided that although we would use programming and mathematics to program and animate the tree, we wanted the look of it to be different each time. So using the Math.random() function in JavaScript was something that was used all throughout the code. The color of the branches are different every time and the current and target values also work with the colors so that a branch may start off looking like one random color but its target color is something completely different. This randomness is used greatly in determining the target coordinate values. We of course use ranges that a specific target point should reach but we still leave it so that no values in the system are ever fixed to be at specific values. Also, in terms of any constants we use in the program, the code interacts with the patch so that these constant values could be changed if need be. An example where this is seen is with the speed rate of the growth of the tree. A constant is currently set but I’ve set up many functions that are called directly from the eVegetation patch that update the constant values. So to ensure that we have complete control over the animation and flow of the garden. In many situations, sometimes code could be great to facilitate certain tasks but at the same time coding and programming can limit certain systems and what we strived to do for this project was to have all programming functionality still be available in the actual MAX patch so that no matter who uses the patch, they would not have to fiddle with any type of code to achieve the desired output.

[image: image10.png]
Here we see how just for the tree, there are 5 different functions that could be called from within the MAX patch.

Update the angle being used for mathematical calculations to determine how the branches are separate and to calculate target points.

Set the starting x-coordinate for the tree which will intern trigger the redowithfadeout function. This updates an alpha value that gradually fades out the tree and redraws at the specific x-value coordinate.

SpeedUp sets the speed constant that determines how fast the tree will grow.

SetBranches updates the maximum number of branches that can be drawn for the tree. This would be interesting to be used so that a smaller tree grows depending on some type of parameter detected from the Blob detection and larger for other parameters.

SetBrushStroke updates the image being used for the brush stroke. 3 images are currently available but any number of images could be added and all that would be required is updating the patch, no code updates.

The way that a branch is triggered to start growing is done by a form of collision detection. A test is done each time the Step function is entered to determine if a point has become close enough to its target point in the x,y,z coordinate system. Once the stroke point is within the appropriate range then the new branch is created with the appropriate angles and coordinates to use. Additional arrays are used to keep track that a branch can only be branched off once.

[image: image11.png]
The following demonstrates the way that the x,y,z coordinate collision detection is performed. Once the ‘dead’ value is set to true then that branch has reached it’s target position and can now be branched off.
3.1.2 EV eGrass

The EV eGrass is currently being utilized in a more static way. The movement of the grass does not particularly depend on any of the inputs from the audience but the eGrass program was programmed in a way so that it could be fully customized and controlled through the MAX patch. And so, it would be interesting for the eGrass to use this in other installations or projects so as to fully be able to control the input parameters that could be modified to completely control the movements, size and parameters related to the eGrass.

The following screenshot displays the input parameters that can be used through the MAX patch to directly update settings in the JavaScript OpenGL code.

[image: image12.png]
Direction: Controls the flow of the direction of the grass. Right / Left can be used so that the grass could sway in a specific direction. Would be interesting to have it follow the direction of the user.

NumGrass: Controls the number of grass strands that are generated.

Speed: Controls the speed for animating the growth of the grass

Width: Controls the maximum width that can be used on the x-axis. The smaller the width, the grass will have a smaller threshold for swaying. The larger the width, the grass will have a larger amount of space to sway between stroke points. Limits are set for the width because if the width is too long then it will look more like a scribbled line rather than the movement of a grass.

Velocity: Controls the speed of the movement between the stroke points on the x-axis. This functionality ties in with the ‘width’ parameter.

ControlPoints: Determines the number of control points to use for the grass.

Flowers: Determines the number of flowers that will be generated in the EV eGarden.

To have the eGrass generated and look like real vegetation specific uses in the programming were used so to control which control points would move and in what direction. Basically, the stroke points at the top of a grass stroke utilize the space that it can move in more than stroke points at the bottom of the grass. This gives the grass a more realistic look to it. The control points are modified one after the other whereas all even control points will more along the x-axis in one direction and all odd control points will be animated in the opposite direction. This is what gives the grass the look of swaying with the wind.

For all other programmability please refer to the included javascript file “TreeBrush.js”

3.2 EV eRoots

To create the eRoots we basically needed to duplicate the JavaScript/OpenGL code and make a few adjustments. We no longer needed to use a texturemap for the stroke points. A basic line was used as the shape to draw between stroke points and an OpenGL built in shape, circle, was draw in the place where each stroke point lies.

An interesting feature which took no time at to implement but we had anticipated to take longer was displaying the x,y-coordinate values as text. To implement this a function called text exists which is displayed at the current position for the circles.

The following code snippet shows how this was done in JavaScript and OpenGL:

[image: image13.png]
And in order to display the roots so that it reflected what the tree looked like but growing from top down, two basic OpenGL matrix operation was needed.

1. Matrix Rotation 180 degrees about the z-axis

2. Matrix Rotation 180 degrees about the y-axis

The math behind to perform the following matrix operations are described in the Mathematics section below.

4. Computer Graphics Mathematics and Theory
Author: Aleissia Laidacker
4.1 L-Systems

4.1.1 Theory
An L-system or Lindenmayer system is a formal grammar (a set of rules and symbols) most famously used to model the growth processes of plant development, though able to model the morphology of a variety of organisms. L-systems can also be used to generate self-similar fractals such as iterated function systems. L-systems were introduced and developed in 1968 by the Hungarian theoretical biologist and botanist from the University of Utrecht, Aristid Lindenmayer (1925–1989).

From Wikipedia, the free encyclopedia

For the eTree, we did not use any code that uses a grammar or any code that was based off of an L-System model. We created all the code from scratch and did it all the old fashion way. By using this method it really gave me a good understand of how L-Systems work and I would feel more comfortable now using a version that utilizes the L-System method with grammars and such.

The following screenshots represent the symmetrical way that the eTree was drawn:

[image: image14.png][image: image15.png][image: image16.png]

Levels = 2

Levels = 3

Levels = 4

[image: image17.png]

Levels = 7

The way that target coordinates were calculate to create this was by using the Pythagorean Algorithm.

[image: image18]
This is the basis used for calculating the target coordinates but certain rules but be met and the calculations are modified based on these rules. For example, if the current positioning is on the left or right side and whether the branch being spawned off will be place in the right or left direction. This modifies the angle that should be generated. For example, when we branch off for the first level, we must calculate the target coordinate for the left and right side. The target y value is the same in both cases but the x-coordinates are a mirror of each other.

[image: image19.png]
The following is a snippet from the code that demonstrates how we implemented this:

[image: image20.png]
For additional resources on how to create an L-System program please refer to the links provided in the Resources section.
4.1.2 Examples
The following examples show the rules that were used for the L-System and what the ruleset produces. Here is a representation of what the rule lettering system represents:

F
Move forward a step of length d. The state

of the turtle changes to (x',y',a), where

x'= x + d cos(a) and y'= y + d sin(a). A li-

ne segment between points (x,y) and (x',y')

is drawn.

f
Move forward a step of length d without

drawing a line. The state of the turtle

changes as above.

+
Turn left by angle b. The next state of

the turtle is (x,y,a+b).

-
Turn left by angle b. The next state of

the turtle is (x, y,a-b).
Example 1: Algae

variables : A B

constants : none

start : A

rules : (A → AB), (B → A)

produces:

n = 0 : A

n = 1 : AB

n = 2 : ABA

n = 3 : ABAAB

n = 4 : ABAABABA

Example 2: Fibonacci Numbers

variables : A B

constants : none

start : A

rules : (A → B), (B → AB)

produces:

n = 0 : A

n = 1 : B

n = 2 : AB

n = 3 : BAB

n = 4 : ABBAB

n = 5 : BABABBAB

n = 6 : ABBABBABABBAB

n = 7 : BABABBABABBABBABABBAB

Example 3: Koch curve

variables : F

constants : + −

start : F

rules : (F → F+F−F−F+F)

produces:

n = 0:

F

n = 1:

F+F-F-F+F

n = 2:

F+F-F-F+F+F+F-F-F+F-F+F-F-F+F-F+F-F-F+F+F+F-F-F+F

n = 3:

F+F-F-F+F+F+F-F-F+F-F+F-F-F+F-F+F-F-F+F+F+F-F-F+F+ F+F-F-F+F+F+F-F-F+F-F+F-F-F+F-F+F-F-F+F+F+F-F-F+F-F+F-F-F+F+F+F-F-F+F-F+F-F-F+F-F+F-F-F+F+F+F-F-F+F- F+F-F-F+F+F+F-F-F+F-F+F-F-F+F-F+F-F-F+F+F+F-F-F+F+ F+F-F-F+F+F+F-F-F+F-F+F-F-F+F-F+F-F-F+F+F+F-F-F+F

5. Matrix Calculations in OpenGL

5.1 Theory
In the OpenGL programming, rotation, translation and scaling functionalities are used to modify the placement of the x,y,z coordinates for the eGrass and eTree polygons. Each polygon is pushed into its own appropriate matrix and matrix mathematics are used on each polygon appropriately to control the shape, placement and animation.

How are matrices related to the coordinate system? There is a simple relationship between the values of a matrix and the resulting coordinate system. The first 3 columns of the matrix represent the x, y, z vectors.

| A B C D |

 M = | E F G H |

| I J K L |

| M N O P |

Therefore the direction that the matrix is going in is represented by:

 X-axis = [A E I]

 Y-axis = [B F J]

 Z-axis = [C G K]

As we have seen before, most of the animation for the EV eGarden is done by controlling each stroke point coordinate but in order to control the shape and movement of a whole shape at a time we use basic OpenGL matrix operations.

5.2 Examples

The following examples show how the actual matrix operations are done. This is also how the same matrix operations would be done on a jit.matrix, but of course the dimensions of the matrix would be much larger.

5.2.1 Rotation of a Matrix About an Arbitraty Axis
x-axis

y-axis

z-axis

	[image: image25.png]
	[image: image26.png]
	[image: image27.png]

5.2.2 Translation of a Matrix

	x' = x + dx
	y' = y + dy
	z' = z + dz

	[image: image28.png]

5.2.3 Scaling of a Matrix

	x' = x * n
	y' = y * n
	z' = z * n

	[image: image29.png]

6. EVE package

Author: Jean-Sébastien Rousseau

Largely based on the computer vision package built by Jean-Marc Pelletier at the IAMAS, the EVE package intends to recreate/create inter relations between natural and artificial elements present in a particular environment. In this case, the environment has been staged, and is reminiscent of a vegetative garden.

In order to create a green world that is both evolutive and generative (both terms referring to growth as a system ability and as a natural process) the components of the package act on different levels and can be used either as a whole, or solely, depending on the desired output. Which also means that new components can easily be added to any future work based on EVE.

 The first use of this package has been promising, but still asked for considerable amount of work. What we envision is a complete system that would be able to function without the constant presence of a programmer (or gardener). This means the system should act and adjust itself over time , taking in consideration different exteriors factors as the ambient lighting, the outside weather, the time of the day, the people presence and others. In the near future, if this is achieved, EVE could be easily used to drive permanent installations that would require a minimum of management. The idea here is to be able to rephrase our notion of environments as natural ones, in a context where city spaces often lack greenery. The 2006 edition of the EV eGarden acted as a proof of concept, and encouraged some of us to keep working in the same direction.

But before to go any further, we needed to clarify some of the EVE components. It is necessary to understand and explain how they act and interact between each other. That is why the following pages present the underlying computational processes of each major component. The goal here is to be able to grasp the mathematical activity occurring in the processing and creation of the garden, but it is also meant for all of us to think about different possible approaches or methods to create such an extension to our real world, which could lead to more effective implementation in future works.

[image: image30.png]
6.1 eve.bgsub

The most interesting calculations of this patch occur in the cv.jit.stddev abstraction, where the standard deviation is calculated from the incoming matrix. The standard deviation being the square root of the variance, the same result can be obtained with cv.jit.variance coupled to a jit.op object, but even if the cv.jit.stddev abstraction is available to all gardeners, let’s understand what it does exactly.

The standard deviation represents how much the incoming values vary from the mean values, and hence is able to show how wide the distribution is on either side of the mean. In a normal distribution, approximately 68% of the sample values are within 1 standard deviation of the mean. If you double that standard deviation value, you are able to get about 95% of the values from the distribution. And 99.7% within 3 standard deviations. This is useful in a background subtraction case, because it is necessary to set a bound or a threshold to decide which pixels are going to compose the mask that will later multiply the original input. For example, if over the period of time that you calculated the mean and the standard deviation of a particular pixel you get a values of 60 for the mean and 15 for the deviation, then when a pixel valued at 90 would be considered as part of the foreground and not background (because 90 is over 60+15).

This method works well when environmental conditions, as lightning, have slight variations. It is also possible to use a simple image subtraction method when lighting and contrast are optimized.

[image: image31.png]

The second part of the patch get rid of any noise by smoothing the matrix (using jit.fastblur, another blur method is described further in the text), labeling blobs (cv.jit.label), and applying a bound on these to get rid of the smaller ones. An additional method for this cleaning session would be to use erode and dilate operations to get morphological operations such as open and close. The successive use of erode and dilate “opens” the image, and make small gaps larger. The inverse operation, the use of dilate and erode, would “close” the image, hence would fill small gaps in the image. Notice that once the image has been “opened” it is impossible to go back to the previous state by simply doing a “close” operation, because no information has been stored about it. But this is also what allows the image to be smoothed, as the undesired noise particles disappear.

Finally the binary image that is obtained is used as a mask and is multiplied with the original input.
6.2 eve.vision

This patch’s role is to isolate, identify and label blobs to ease the subsequent process of shape analysis. The task is done using the cv.jit.label external, and here is some details on what really happens inside that parcel of code.

First , the algorithm scans a binary image looking for connected components, and every components gets an individual ID. Depending on the selected mode, the blobs are numbered differently, either by size or position. In both mode, it is possible to filter out blobs that have an area smaller that the desired one. This way of filtering noise out has been used in our eve.bgsub patch and is surprisingly cheap in terms of computational process as it requires only one pass to know the blobs size and to number them (and hence be able to discard some of them), where in the case of an open/close technique successive scans of a matrix are required.
[image: image32.png]
6.3 eve.blobber

Simply dispatches the 5 bigger blobs to the right tool for shape analysis, in this case eve.blobbim. Then take the results from the analysis and pack everything in a matrix that can be easily sent to any other patch that would need the information about the elements present in the garden. The matrix can easily be send over the network, and can feed a remote installation with data (like in the case of our installation where we had roots growing on a lower floor in the building, using the same x coordinates as in thee garden)

[image: image33.png]
6.4 eve.blobbim

In this patch, we used different shape analysis externals. But in the end, the elements we were really interested in were the centroid, or center of mass, of each blobs, so we could map its x-coordinate to the starting position of a vegetative element. When having a single object in a scene, this is an effective technique for motion tracking. But as you can see in the adjacent screenshot, a lot of simultaneous blobs may mean a lots of moments to calculates, that is the reason why the step proceeding the shape analysis is the shape isolation, simply to minimize the number of calculations done at this step, and also to have better control over which blob gets processed.

[image: image34.png]
6.5 eve.blur

Here is really a really interesting patch in the sense that it always gives beautiful and unexpected results, but also because the matrix operations in it are reusable for other situation requiring sampling over adjacent cells. In this case, the blur effect is obtained by looking at one cell’s first four neighbor pixels (north, south, east ,west) and averaging the values, the result is then fed to the jit.xfade object which fade between the original input and the averaged matrix, the output of this operation is then used to compute the next averaging step, and is the reason why you get the feedback feel.

[image: image35.png]
6.6 eve.seeds

Composed of two main parts: eTrees & eGrass. The documentation has been written by Aleissia & Louis, as they were the programmers for both.
7. Resources

Author: Aleissia Laidacker, Jean-Sebastien Rousseau, Louis-Andre Fortin
L-System

http://www.zib.de/javaview/vgp/tutor/lsystem/PaLSystem.html
http://www.sfu.ca/~cjenning/toybox/lsystems/index.html
http://en.wikipedia.org/wiki/L-system
Computer Graphics Mathematics

http://chortle.ccsu.edu/VectorLessons/vectorIndex.html
http://www.gamedev.net/reference/list.asp?categoryid=28#262
GELPHMAN and LADEN, Programming with Quartz, Elsevier, 2006.
Gardens

Nerve Garden: a Public Terrarium in Cyberspace, http://www.biota.org/papers/ngalife.htm
Jitter

cv.jit documentation:

http://www.iamas.ac.jp/~jovan02/cv/jit_cv_doc.pdf

Processing

Blob detection library for processing:

 http://www.v3ga.net/processing/BlobDetection/
Flash

Generative art in flash: http://www.fladdict.net/#1

b

a

c

					

b = sinB * c

a = cosB * c

* Therefore, target coordinate =

	m[x] = c[x] + a;

	m[y] = c[y] + b;

m[x] = a;

m[y] = b;

m[x] = - a;

m[y] = b;

� GELPHMAN and LADEN, Programming with Quartz, Elsevier, 2006, p.167.

I

29

