
 1

Final Project Report

COMP 471

Real-time Video Processing

I- Sight- Painting

Concordia University

Monday, December 11, 2006

 2

Final Project Report

COMP471

Group Members

 Sami Al-Khudri ID- 5231256

 Aliaa Shubbar ID- 4628977

Project Name & URL

 I-Sight-Painting

 Project URL- http://sami.alkhudri.com

Project Description

The inspiration behind our project was based on the I/O brush created by

Ryokai, K., Marti, S., Ishii, at the MIT Media Lab.

“I/O Brush is a new drawing tool to explore colors, textures, and

movements found in everyday materials by "picking up" and

drawing with them. I/O Brush looks like a regular physical

paintbrush but has a small video camera with lights and touch

sensors embedded inside. Outside of the drawing canvas, the

brush can pick up color, texture, and movement of a brushed

surface. On the canvas, artists can draw with the special ‘ink’ they

just picked up from their immediate environment. “

[web.media.mit.edu]

 3

 Figure 1 I/O Brush Figure 2. I/O Brush in action

Our Goal was to create a new type of interaction that eliminates the

used of the MIT I/O brush and requires a touch screen canvas. Our

project allows the user to create his or her masterpiece using only

live video input and movement detection. This enables the user to

“draw” using live video as well as images as their “ink” to and to

interact with the canvas by movement.

How I- Sigh Painting works

Two cameras are used in this project. One is used to record a live video

image from the immediate environment. This image translates onto the

canvas and will act as paint (a picture can be also used). The other is

used to track the hand gestures of the user. This is done by wearing a

glove that has a color different from the user’s clothes. The patch tracks

the glove based on its RGB value. For example a red glove would yield a

RGB value close to 1. 0. 0.

As the person moves his or her hand, the recorded image will move

accordingly across the screen. We can also use pre-recorded videos and

images as the palette used to project onto the path drawn by the person.

Using jitter we create a path by tracking the users movement in front of the

 4

camera, once the path is created we will fill the path with multiple

instances of the video ink. This gives texture, color and movement to the

drawing.

 Using jitter we will create a path by tracking the users movement in front of

the camera by using the jit.findbounds we are able to track the x y

coordinates of the user’s movements. Once the path is created we will fill

the path with multiple instances of the video ink. This gives texture, color

and movement to the drawing.

Figure 3. Path created by tracking user’s movement, and path with Eye

Ink (video of an eye) applied

 5

Technical Aspect

Our entire project was created using Jitter. To get a better understanding

of the patch used refer to the figure 4.

Figure 4. Flow Chart of I-Sight-Painting Patch

 6

Mathematics & techniques used in the project:

1) Color Tracking: We used the “suckah” object on the live video screen. We

put "suckah" onto the live video tracker to get the RGB color beneath, or feed in

any screen coordinates to get the RGB values of that pixel. The suckah object

reports the RGB values of any pixel on the screen (the video window) that the

suckah object overlays. Then when the user clicks onto the desired color to be

tracked the RGB will be sent to a sub patch called "bounds" that increases the

range of the color by adding 0.05 to the maximum value and subtracting 0.05

from the minimum value. With this technique we can guaranteed to track the

colour desired despite lighting conditions.

Figure 5. Sub patch that finds the RGB

 7

Using colour encoding we can define an image is an enormous two-dimensional

array of color values, pixels, representing the three primary colors. This allows

the image to contain a total of 256x256x256 = 16.8 million different colors. The

resulting image is coded in a two dimensional spatial domain. We use vector

representation of colour.

Figure 6. Vector representation of colour

We can quantify the 'difference' between two colors by computing the geometric

distance between the vectors representing those two colors. Lets consider two

colors C1 = (R1,G1,B1) and C2 = (R2,B2,G2), the distance between the two

colors is given by the formula :

 8

(R1)

In our case we wanted to compare each pixel with a given colour, namely C1.

2) Finding the bounds: We find the bounds of the tracked object by using

"jit.findbounds". The jit.findbounds object scans a matrix for values in the range

[min, max] and sends out the minimum and maximum points that contain values

in the range [min, max]. The minimum point is sent as a list out the leftmost

outlet, and the maximum point is sent as a list out the second outlet. The object

jit.findbounds takes a minimum and a maximum value as attributes and looks

through the entire matrix (the video) for values that fall within the range you

specify. It then sends out the cell indices that describe the region where it found

the designated RGB values. In effect, it sends out the indices of the bounding

region within which the values appear.

Algorithm 1: Edge Detection

• For every pixel (i , j) on the source bitmap

o Extract the (R,G ,B) components of this pixel, its right

neighbour (R1,G1,B1), and its bottom neighbour (R2,G2,B2)

o Compute D(C,C1) and D(C,C2) using (R1)

o If D(C,C1) OR D(C,C2) superior to a parameter K, then we
have an edge pixel !

Algorithm 2: Color extraction

• For every pixel (i , j) on the source bitmap

o Extract the C = (R,G ,B) components of this pixel.

o Compute D(C,C0) using (R1)

o If D(C,C0) inferior to a parameter K, we found a pixel

which colour's matches the colour we are looking for. We

mark it in white. Otherwise we leave it in black on the

output bitmap.

 9

3) Displaying onto the screen: We display the tracked object onto the screen

by using "jit.matrix".

The image matrix can be denoted as follows:

I = [I (i,j); 0 ≤ i ≤ N-1, 0 ≤ j ≤ M-1]

Where (i.j) = (row, column)

I (i,j) = image valule at (i,j)

 (Class Slides)

• dim int list[32] The dimensions of matrix data (default = 1 1)

• dstdimend int list[32] The destination dimension end position (default = all

dim values minus 1)

• dstdimstart int list[32] The source dimension start position (default = all 0)

• srcdimend int list[32] The source dimension end position (default = all dim

values minus 1)

• srcdimstart int list[32] The source dimension start position (default = all 0)

• usedstdim int Destdim use flag (default = 0) When the flag is set, the

destination dimension's attributes are used when copying an input matrix

to an internal matrix.

• usesrcdim int Srcdim use flag (default = 0) When the flag is set, the source

dimension's attributes are used when copying an input matrix to an

internal matrix.

 10

Figure7. Sub patch to send minimum & maximum coordinates of the tracked

object

4) Continuous & smoothing Path: We have used "jit.op" in order to use its

operators especially the MAX operator. The reason for using MAX is to avoid

overriding the new frame onto the old frame otherwise the path will be

discontinuous at the middle of the screen. By using this technique, the MAX

operator compares the new frame with the old frame and retains the cells with

the brightest value. Refer to figure 8 and 9.

 11

Figure 8. Before implementation of jit.op max

Figure 9. After implementation of jit.op max

 12

Figure 10. Example drawing

Setup

 13

Equipment needed

1. Laptop with Max MSP / Jitter

2. Projector

3. I-sight (2)

4. Black Screen

Final Patch

 14

Challenges

One of the biggest challenges of the project is the creation of the path by tracking

the users’ movement. A second challenge is to properly insert the recorded

movies along the path so it will give the impression that the path was painted with

the movie. The third and final challenge is to do the overlying at the same time

the path is created.

Limitations

Due to time constraints, and the type of interaction with the “canvas” using

movement, it will be difficult to integrate pressure detection. Also due to the time

constraint for this project some “bugs” might be present in the system, but this

will be a good start to improve this technology. I should also mention that we

were 4 people at first, but one person has been difficult to reach due to medical

purposes. Therefore, we were not able to implement all the technical aspects we

aspired to.

People and Roles

Names Research Jitter Programming Documentation Website Set Up Testing

Ahmad Mansur X

Aliaa Shubbar
Layering

Colour Tracking
Layering X X X

Sami Al-Khudri
Colour Tracking

Layering
Layering/Integration X X X X

 15

Conclusion

The concept behind this installation is an aesthetic one, as well as a practical

one. This installation can be used much like the I/O brush, especially for

children’s purposes. The interaction is a conscious one where the user is aware

of his or her presence in the installation.

REFERENCES

MIT IO Brush

http://web.media.mit.edu/~kimiko/iobrush/

http://web.media.mit.edu/~kimiko/iobrush/images/s_iobrush_aec_02.jpg

Jitter library

http://www.cycling74.com/products/jitter

Video example

http://web.media.mit.edu/~kimiko/iobrush/iobrush_quicktime_small.mov

