MATRIXED

www.sandktechnicalsolutions.com/matrixed
[image: image1.jpg]
Concordia University

Software Engineering and Computer Science

Maher Taha
Documentation, Math, Video, Java Programming, Jitter Programming

Islam El Kady
Documentation, Math, Java Programming, Jitter Programming

Sandra Friesen
Team Leader, Video Editing, Documentation, Jitter, Additional Graphics, Web Site

Spiro Govas
Original Web Site, Jitter Programming

Marika Kapogeorgakis
Jitter Programming

1.0
Purpose:

This document is written to satisfy the real time Video (Comp 471) final documentation requirement. This part of the report shows General Matrixed’s development Cycle, the relevant information regarding the motion detection part, Project Management, break down of the patchers and the math involved in each one of them. Also, it includes the Website and self assessment for each member (Sandy, Maher, and Islam).

2.0
Overview

A chromakey function is used to merge video into the windshield area of a still photo of a dashboard of a car.

A camera is feeding a live video into a second chromakey function. This video is being displayed in a mirror object on the screen, giving the effect of "seeing" yourself in the mirror.

A second camera is used to capture another live video feed from behind the driver. This video is monitoring the angle of the steering wheel. A java script is used to calculate the angle of the steering wheel, and when the user turns left or right the video changes to simulate a left or right turn respectively.

Some of the special effects in the simulation include a shimmy and a blur if the user tends to speed. Additionally if the user tends to speed more - he/she may roll the "vehicle". There are buttons that turn the simulation on/off, speed up and slow down, turn into a night scene - and a few other surprise effects!

2.1 Installation diagram

This is the overall installation view of our project. The user is sitting on a chair and two cameras, one placed in front of him, reflecting his image on a mirror object on the screen, the other camera behind him, is pointed at the steering wheel.

[image: image2.png]
3.0
Matrixed’s Development Cycle

Phase one:

Analyzing the problem Definition

Phase Two:

Design and Implementation

Phase Three:

Testing and Evaluation

[image: image3.png]
3.1 Tasks included in the development Cycle

3.1.1
Phase one:

· Gain agreement on the problem definition.

· Analyze the project idea and the implementation process.

· Set the project goals and tasks divisions.

· Document the first analysis document and define the patchers that should be implemented.

3.1.2 Phase Two:

· Shoot the real video using a video digital camera.

· Edit the video using Final Pro Cut.

· Implement the patchers that have been defined in the first phase.

· Define the Motion Detection patcher and start on its implementation.

· Integrate all the patchers together.

3.1.3
Phase Three:

· Test the whole system as a one unit.

· Test each function and go back to phase 2 if required.

4.0 Member’s Work Contribution

4.1 Maher’s Work Contribution

This part shows the main tasks that Maher Taha worked on in the project and the work contribution and how did affect the final deliverable of the system.

	Task’ Name
	Quality /degree of contribution
	Influence on the System

	-Analyzing the problem with team

members and improving the Idea

to make the car go through different

scenes and environment.

-Improving the idea to meet the course requirement by adding a real live video processing that includes a wheel and some one turning the wheel where the car turn as well.

-Writing the first document with sandy to show the analysis of the problem the project definition and features.

-Shooting the video with Sandy using a digital camera and a car.

-Editing The video Using Final

Cut Pro.

-Meeting with sandy’s to work on the color features and the make the

chromakey patcher.

-Start working on the motion detection with islam which this includes the main idea of human live interaction. This part of work wasn’t easy to do due to the lack of experience in the field.Me and Islam had to spent time reading

and searching about how to track

objects. Also we had to figure out themath that goes beyond the application and we can implement Math functions using Java Script and embedded them into Jitter objects.(Math.js).Me and Islam

wrote all the algorithms that are need to determine the turns directions based on functions to calculate the angle and getting the right turn.

 -Writing the Java Script Program.

- Working on the Jitter Programming to create the Motion Detection patcher and figure out the objects that we need to

use. The we set the object that needed to track which are features to track and track.

-Documentation the Report with Sandy and Islam.

-Final Setting and Installation
	-As the team said that was great idea

to show nice features and make

use of what we have learned in

the course.[35%]

- The idea get agreement by most of

 the team members because it was

a good improvement while keeping

the main idea.[100%].

-The report was written in as a

professional document to reflect our

ideas. Although it lack the main

requirement of the project which

is creating Real live interaction with

the camera, but we did revise the

document to reflects the recent

changes.[50%].

-Trying to get the best scenes that fit

 the project requirement.[50%].

-We got a long video with scenes

that are not relevant to the project

so me and sandy had to edit the

video and to do so we had to learn

how to use Final Pro Cut to get a

nice clear cut video.[50%]

-The patcher worked perfectly the

way we expected.[25%]

-Math tha has been beyond the determination of the car direction was\

Simple Math which make the application easy to maintain.[40%]

-The program was written in with a

 high performance efficiency that has

0 bugs after many function testing. Also It is documented to explain the function and the loops used.[50%]

- The patcher went through many

Implementation stages until it reached

The last version that worked and track a spot on the wheel.[40%]

- Writing a full documentation for the

Project that meet the description

Providing all the necessary details and

work contribution.[40%]

-Get the needed equipment for the

Presentation and make sure all the

Features ready for the demonstration[30%]

	-Make the car go through many scenes like night/day.

-Make the car turn left, right or go straight based on the end user movement of the wheel by tracking

one point on the wheel.

- Document the main features and keep it as reference for the next stages development and keep it updated as the changes taking place in the project, make it easy for the programmers to know what exactly the features of the system.

-That make the whole systems works with the adjustment that has been

made on the video.

- The whole video that has been in the video was this one and the only related scenes to the project definition are the one kept and used such as right

turn , left turn and straight.

- The patcher has affected the system to make it work

Smoothly.

-Math function helped to determine the Car direction besides other math function

in jitter.

- The program calculate the turning angle that specify the right movement of direction.

-It is the main and the only patcher that makes the motion detection detects the

spot on the wheel to make the car turn to the left, right or go straight.

-Documentation for the report to keep it as reference for its implementation. This is help for later maintenance and modification.

-Demonstrate the work in front of the

Professor,tutors,and class mates

 4.2 Islam’s Work Contribution

This part shows the main tasks that Islam El Kady worked on in the project and the work contribution and how did affect the final deliverable of the system.

1-Meetings: Islam has attended approximately 95% of meetings; there were three assigned meetings per week. I have helped Sandy in some of her video processing patchers.

2-Motion Detection: Islam worked on and produced about 60% of the motion detection patch with a very good quality; it works very well, but a couple of more improvements could have been done. The motion patcher includes a motion analysis part, for which assessment will be elaborated next.

3-Motion Analysis Script: Islam has produced approximately 56% of the Motion Analysis script in Java. This contribution includes coding and testing. The quality is approximately excellent; the script produced at the end works perfectly with no bugs.

4-Final Report: Islam has contributed 35% in the final report; further more, the produced quality is excellent; the format of the required document was followed and the report is well written.

5-Deployment: Islam has deployed 10% of the final system. I have also improved 10% of the final system. The quality of the work was excellent and efficient.

6-Equipment: Islam brought 50% of the final equipment needed, namely the steering wheel marked and ready for testing and for presentation.

7-Final testing: Islam has performed 80% of the final system testing before final presentation. The quality of this testing was very good.

8-Final Setting and installation: Islam performed 65% of the final presentation set-up. My work produced was very good.

4.3 Sandy’s Work Contribution

 I implemented the framework for the project, and wrote 3 special effects, make_night, shimmy, speed_kills and helped with the filming and did the video editing, website, documentation, brochure, project management & coordination, which included continuous email to the entire group on our progress.
5.0 Technical Aspects
5.1 Shooting Video

Concept : Sandy Friesen, Maher Taha

Implemented by : Sandy Friesen, Maher Taha

Written by: Sandy Friesen, Maher Taha

It was decided that instead of finding canned film footage on the web, that real live video would be shot for the driving scene videos.

A Panasonic camera was loaned by Sandy Friesen through a friend at UQAM. After figuring out how the camera worked, Sandy drove her car, while Maher Taha shot the windshield scene.

5.2 Video Editing

Concept : Sandy Friesen, Maher Taha

Implemented by : Sandy Friesen, Maher Taha

Written by: Sandy Friesen

One of the challenging things in the project was the editing of the video shot by Sandy and Maher. Since no one in the group had any video editing experience the first task was to learn how to use Final Cut. Conveniently, the CDA department offers online video training and in class tutorials. Having missed the first session of the live tutorials the online training would have to suffice. The after watching and listening to the three tutorials, it was simple to digitize the film in one of the CDA editing labs.

We shot video on 2 separate occasions, because our first pass through the video was too shaky. Also note that, since we had absolutely no prior filming experience, therefore taking video from a moving vehicle was a difficult task, which did not result in the steadiest of footage.

The first pass, at one point, we had turned the Video Camera off. This created a break in the tape and when we returned to filming the tape started its timer at 0:00 again. After the CDA Tutorial 1, it was learned that in order to ensure that the timer did not start at zero after turning off the camera we needed to black and code the tape prior to filming. This could be done in the CDA editing lab or simply by putting the lens cap and hitting the record button. In order to reuse the tape, all of the video from first tape was stored in the CDA account. At this point it was also learned that 5 minutes of video amounted to approximately 1 Gb of data.

The tape is inserted into the mini DVC reader, Final Cut Pro was launched and the first thing that you need to do is create a project, all of the default settings were accepted. Similar to any other tape reading device we could fast forward, rewind, play, pause, stop, as well as advance frame by frame and reverse frame by frame. By selecting the Capture and Log option from the File menu, the software begins the process of digitizing the film.

Using the play, fast forward, and rewind buttons to move to the sections where we wanted to start the clip, inserting a marker at the beginning and then allowing the tape to play to the section and then inserting an end marker. By doing this throughout the entire tape we created all of our movie clips. This was fine for a starting point.

A second and final editing was needed to create a sub clip. The longest clip of driving straight was used (traffic.mov) and was edited to cut off the bits at the beginning and at the end. This was done for the left and right turns as well.

To make the sub clip, simply edit the clip and set another start marker and end marker, Final Cut allows you to move through it frame by frame to get the exact starting and ending points. After you have the new markers you need to select the clip from the window on the left hand side of the screen and choose Modify > Make sub clip. With the sub clips made, they needed to be saved as QuickTime movies. The sub clips were opened in QuickTime and then Saved As QuickTime movies.

5.3 Patch Descriptions

This section presents a description of the patches that have been used in the Matrixed project. Each patch is identified by who conceptualized it, who implemented it, who wrote this section up for the report, and what mathematical complexity it has. Mathematical complexity is an image processing effect. The first time that an image processing effect is encountered, it is explained with any of its math presented. For patches that are considered control patches (just implementing switches or MUXes etc.) their place in the flow of the project is explained along with their functionality.

5.3.1
Matrixed

Concept: Maher Taha

Implemented by: Sandy Friesen, Maher Taha, Islam El Kady

Written by: Sandy Friesen, Maher Taha

Mathematical Complexity: none

This is the top-level patch for the project. It performs 3 tasks; it loads all of the sub patches

[image: image4.png]
It generates the metronome clock for the videos and sends the playback rates to the videos.

[image: image5.png]
The value of the metro dictates how often the running quicktime movies output is sampled and inserted into a jitter matrix for processing by the other patches. A value is chosen that is faster than the frame rate of the movie to ensure that every frame is seen. If the value is too high, then the same frame is processed over and over again, and if it too low then the playing movie will be jumpy due to the missed frames.

The start and stop signals are also set and sent to the movies to stop them playing when the project is turned off.

The patch also sets the rate value at which the movies will be played back.

[image: image6.png]
A frame rate of 1 plays the QuickTime movie at its native rate. Higher numbers act as play faster, and slower numbers slow it down. Going along with our idea that the different visual effects correspond to driving at different speeds, it was natural that the playback speed would be part of the effect. Effect4 which is the crash scene does not increase the playback speed, as trying to go faster has caused the car to crash.

5.3.2
Load_Movies

Concept: Sandy Friesen, Maher Taha, Islam El Kady

Implemented by: Sandy Friesen, Maher Taha, Islam El Kady

Written by: Sandy Friesen

Mathematical Complexity: none

This patch opens up the 3 videos that are used during the car driving sequences.

[image: image7.png]
The jit.qt.movie commands receive their control signals from the top level Matrixed patch.

5.3.3
Load_JPEGS

Concept: Sandy Friesen, Maher Taha, Islam El Kady

Implemented by: Sandy Friesen, Maher Taha, Islam El Kady

Written by: Sandy Friesen

Mathematical Complexity: none

This patch loads the still images that are used in the project.

[image: image8.png]
The control signals, like those for Load Movies come from the Matrixed Patch

5.3.4
Load_Live_Vid

Concept: Sandy Friesen, Maher Taha, Islam El Kady

Implemented by: Sandy Friesen, Maher Taha, Islam El Kady

Written by: Sandy Friesen

Mathematical Complexity: none

This patch is adapted from the Jitter tutorials and opens up the connection to the live motion camera.

[image: image9.png]
In the case of this project, the live motion camera is chromakeyed onto a rear view mirror in the display.

5.3.5 Control_Panel

Concept: Sandy Friesen, Maher Taha, Islam El Kady

Implemented by: Sandy Friesen, Maher Taha, Islam El Kady

Written by: Sandy Friesen

Mathematical Complexity: none

The control panel patch creates the bang buttons that are set off by the user interface.

[image: image10.wmf]
There are 6 inputs to the driving simulator. Pushing the buttons (either manually with a mouse or via connections to the external User Interface patches (not shown in the above diagram) causes the appropriate effect to take place.

5.3.6
Motion detection / Java Script

Concept: Islam / Maher

Implemented by: Islam / Maher

Written by: Maher Taha, Islam El Kady

Mathematical Complexity:

5.3.6.1 Description

The main aspect of the motion detection in Matrixed was to track a point placed on a steering wheel which is being turned in a certain direction by end user. The camera that is placed facing the wheel tracks the motion of the wheel and signals the control panel to change the video to give the appearance of making the car turning right, left, or going straight.

Moreover, the four lights placed on the dash allow the user to choose the scene he/she prefers to see just by moving his/her hand over the respective button.(ON/OFF, Speed up, Slow down, Make night).

[image: image11.wmf]
5.3.6.2 Math Aspects

The system is going to detect the motion of the steering wheel itself by means of tracking a spot on it. The system is going to store the initial values of the steering wheel in a variable. Furthermore, there exist three cases in this motion analysis:

Case 1:

Init(x0, y0) is going through a constant rate, falling in a small range, this would indicate that the car is and should be moving straight forward.

 Case 2:

Initially, y-coordinate is in its maximum value, therefore, either going left or right will result in y decreasing. Consequently, the y-coordinate won’t be useful in detecting the direction of movement.

On the other hand, based on the x-coordinator, we will be able to determine the right direction from the left direction. This is done by comparing x0 and xN,xNew.

Case 2.1:

If xN < x0, then the direction is to the left,

Case 2.2:

If xN > x0, then the direction is to the right.

 In addition, due to the fact that the steering wheel is turning to a certain direction gradually, we had to take in consideration this situation. In other words, the system determines the angle of the car’s path at different points. To determine the car’s position at each point, we first determine the angle from Cos theta =Opposite / Adjacent, where Adjacent = Radius of the circle.

Opposite = distance between points (x0,y0) and (xN,yN).

5.3.6.3 Java Script

The program is set up to calculate the exact angle of the steering wheel at all times. This can be demonstrated with a print statement in the motion detection patch. At 3 different points on each turn (6 points total) the script is designed to "bang" different events. Due to time constraints at all of these points it sends a bang to either turnLeft_1 or turnRight_1. This is the next logical step for further upgrades. Here is the program’s description, which includes comments to explain each function.

//Global Variables:

var centre_y = 0;

//x coordinate of centre

var centre_x = 0;

//y coordinate of centre

var init_x = 0;

//x coordinate of the initail position of the mark

var init_y = 0;

//y coordinate of the intial position of the mark

var current_x = 0;

//x coordinate of the current location of mark

var current_y = 0;

//x coordinate of the current location of mark

var lock=1;

//a lock used in function calculateTest() a locking mechanism.

/*

*PrintsInfo: prints values of all variables

*This function is mainly for testing purposes

*/

function printInfo()

{

post("This is new data________________");

post();

post(centre_x);

post();

post(centre_y);

post();

post("This is initial data________________");

post();

post("init values");

post();

post(init_x);

post();

post(init_y);

post();

post("This is the current data");

post();

post(current_x);

post();

post(current_y);

post();

}

/*

*setCentre_x: sets the value of the x coordinate of the centre.

*/

function setCentre_x(centre_xInput)

{

centre_x = centre_xInput;

}

/*

*setCentre_y: sets the value of the y coordinate of the centre.

*/

function setCentre_y(centre_yInput)

{

centre_y = centre_yInput;

post("Thisi s the value of y ", centre_y);

}

/*

*setInit_x: sets the value of the x coordinate of the initial position of mark.

*/

function setInit_x(xInput)

{

//All coming point computations are relative to centre_x and centre_y

init_x = xInput - centre_x;

}

/*

*setInit_y: sets the value of the y coordinate of the initial position of the mark.

*/

function setInit_y(yInput)

{

init_y = centre_y - yInput;

radius = init_y - centre_y;

}

/*

*setCurrent_x: sets the value of the x coordinate of the current position of the mark.

*/

function setCurrent_x(xInput)

{

current_x = xInput - centre_x;

}

/*

*setCurrent_y: sets the value of the y coordinate of the current position of the mark.

*/

function setCurrent_y(yInput)

{

current_y = centre_y - yInput;

}

/*

 *
calculateTurn: Calculates the turn of the steering wheel from the coordinates of *
the current postion of the mark.

 *
This function needs a metro to execute every second or less

 *
to keep calculating or updating the position of the mark.

 */

function calculateTurn()

{

/*for angle calculations purposes, we could perform calculations on only the right half of the circle, since if a point is on the left half, its symmetric point on
the right will form the same angle with the y-axis, which is the desired angle.

*/

if(current_y == '0')

{

//post("The current y is 0 ");

var angle_degrees = 90;

}

if(current_y < '0')

{

//post("The current y is less than 0 ");

var angle_radians = Math.atan(Math.abs(current_y)/ Math.abs(current_x));

var angle_degrees = angle_radians * (180 / Math.PI);

angle_degrees = angle_degrees+90;

}

if(current_y > '0')

{

var angle_radians = Math.atan(Math.abs(current_y) / Math.abs(current_x));

var angle_degrees = angle_radians * (180 / Math.PI);

angle_degrees = 90 - angle_degrees;

//post("The current y is greater than 0 ");

}

post("Angle is ", angle_degrees);

post();

if (current_x < '0' && angle_degrees >= '25')

//The point is on the left side of the y-axis and the angle of turn is more than 10 degrees.

{

if (angle_degrees < '45')

{

if(lock){

lock =0;

messnamed("turnLeft_1", "bang");

post("Left turn 1");

post();}

} else if (angle_degrees >= '45' && angle_degrees < '90')

{

if(lock){

lock=0;

messnamed("turnLeft_1", "bang");

post("Left turn 2");

post();}

} else if (angle_degrees >= '90')

{

if(lock){

lock=0;

messnamed("turnLeft_1", "bang");

post("Left turn 3");

post();}

}

}

else if (current_x > '0' && angle_degrees >= '25') //The point is on the right side of the y-axis and the angle of turn is more than10degrees.

{

if (angle_degrees < '45')

{

if(lock){

lock=0;

messnamed("turnRight_1", "bang");

post("Right turn 1");

post();}

} else if (angle_degrees >= '45' && angle_degrees < '90')

{

if(lock){

lock=0;

messnamed("turnRight_1", "bang");

post("Right turn 2");

post();}

} else if (angle_degrees >= '90')

{

if(lock){

lock=0;

messnamed("turnRight_1", "bang");

post("Right turn 3");

post();}

}

}else

{

//going straight

lock = 1;

//messnamed("goStraight", "bang");

post("Go Straight");

post();

}

}

5.3.6.4 Math Technical Description for Jitter Tracking Objects

The main two objects that used in the project with no trivial aspects were the track feature object and the track object. This section provides a full Math description behind these two objects.

A)
cv.jit.track. MATH:

The cv.jit.track object uses Lucas-Kanade algorithm, which is used to guess the optical flow of an image, to track a number of pixels over time. The optical flow of an image is defined by the displacement of all pixels in that image, relative to the x and y-axis, from the previous frame; consequently, this displacement can’t be calculated. Therefore, the optical flow of an image is rather guessed instead. Lucas-Kanade algorithm guesses the optical flow of an image, assuming only small displacements. Hence, this algorithm performs better in small image resolutions or small matrices. The cv.jit.track object improves the algorithm by a process of induction; the object performs the algorithm on a copy that is 1/8 the original size of the image. Next, the object uses the guessed displacement to guess the displacement of a larger copy. This process is repeated until the displacement of the original image is guessed. In other words, the object uses Lucas-Kanade algorithm’s guessed optical flow of pixels to track a specific pixel in an image or sequence of images.

Furthermore, Lucas-Kanade as previously explained, try to calculate the motion between two image frames. Let’s assume that these frames are taken at times t and t+ δt at every pixel position. As a pixel at location (x,y,z,t) with intensity I(x,y,z,t) will have moved by δx, δy, δz and δt between the two frames, one constraint equation can be achieved,

I(x,y,z,t) = I(x + δx,y + δy,z + δz,t + δt)

Let’s assume that the movement is small, then another equation of the image constraint at I(x,y,z,t) can be found as follows:

[image: image12.png]
where H.O.T. means Higher Order Terms, which are small enough to be ignored. From these equations we get,

[image: image13.png]
or

[image: image14.png]
which results in

[image: image15.png]
where Vx,Vy,Vz are the x,y and z velocity or optical flow components of I(x,y,z,t) respectively. Replacing all derivates in the above equation by corresponding Ix, Iy, and Iz, we get,

IxVx + IyVy + IzVz = − It
or

[image: image16.png]
This is an equation in three unknowns and cannot be solved as such. To find the optical flow we need another set of equations which is given by some additional constraint. The solution as given by Lucas-Kanade algorithm is a non-iterative method which assumes a locally constant flow.

In other words, let’s assume that the flow (Vx,Vy,Vz) is constant in a small window of size [image: image17.png]with m > 1, number the pixels as 1...n, we get he following set of equations:

[image: image18.png]
[image: image19.png]
[image: image20.png]
[image: image21.png]
With this we get more than three equations for the three unknowns and thus an over-determined system. The solution is illustrated below:

[image: image22.png]
then,

[image: image23.png]
using the least squares method:

[image: image24.png]
or

[image: image25.png]
[image: image26.png]
with the sums running from i=1 to n.

Thus, the optical flow can be found by calculating the derivatives of the image in all four dimensions.

B)
Cv.jit.features2track Math:

This object provides the features, which are high contrast parts of the image, for the cv.jit.track to decide on the pixels to track. The object uses one of many features detection algorithms, where the later detects edges of objects in an image. Most edge detection methods work on the assumption that an edge occurs where there is a discontinuity in the intensity function or a very steep intensity gradient in an image. Using this assumption, the points where maximum derivative of the intensity values across the image are found will indicate the edges. In a discrete image of pixels we can calculate the gradient by simply taking the difference of grey values between adjacent pixels. This is equivalent to convolving the image with the mask [-1, 1]. By using a mask that spans an odd number of pixels we end up with a middle pixel to which we can assign the convolution result. The gradient of the image function I is given by the vector

[image: image27.png]
The magnitude of this gradient is given by

[image: image28.png]
and its direction by

[image: image29.png].

The simplest gradient operator is the Robert's Cross operator and it uses the masks

[image: image30.png]
A 3x3 approximation to [image: image31.png]is given by the convolution mask

	-1
	0
	1

	-1
	0
	1

	-1
	0
	1

This defines [image: image32.png]for the Prewitt operator, and it detects vertical edges. The Sobel operator is a variation on this theme giving more emphasis to the centre cell. The Sobel approximation to [image: image33.png]is given by

	-1
	0
	1

	-2
	0
	2

	-1
	0
	1

Similar masks are constructed to approximate [image: image34.png],thus detecting the horizontal component of any edges. Both the Prewitt and Sobel edge detection algorithms convolve with masks to detect both the horizontal and vertical edge components; the resulting outputs are simply added to give a gradient map. The magnitude of the gradient map is calculated and then input to a routine that suppresses (to zero) all but the local maxima. This is known as non-maxima suppression. The resulting map of local maxima is threshold to produce the final edge map.

5.3.7
Effect_Bangs

Concept: Sandy Friesen, Maher Taha, Islam El Kady

Implemented by: Sandy Friesen

Written by: Sandy Friesen

Mathematical Complexity: none

This patch reacts to the slow_down and speed_up buttons in the control panel to iterate through the different effect.

[image: image35.png]
As can be seen in the diagram, any time the speed_up button is pressed the count is incremented. Any time the slow_down button is pressed, the counter is decremented. The counter rolls over if too many speed up or slow downs are pressed.

The select function bangs the appropriate effect line, so that that effect will be displayed.

5.3.8 Drive_Level_0

Concept: Maher Taha

Implemented by: Sandy Friesen

Written by: Sandy Friesen

Mathematical Complexity: none

This is the patch that implements the video routing for the left and right turns

[image: image36.png]
The line function is acting as a delay counter in this case, The left or right turn buttons bang the MUX to route either the left (leftTurn_1) or right turn (rightTurn_1) video to the output. When the line function reaches its count limit, then it bangs the straight video (straight) to the output of the MUX. The overall visual effect is to see a right or left turn happen when the steering wheel is turned in that direction.

The only complexity in this patch was the timing of the line so that the left and right transitions were running for the correct time (also making the left and right turn videos the same length during the video editing process). Although this time is supposed to be absolute, it was noted that the actual time could vary from machine to machine. (On my PC at home the timing displayed worked well, on the Macs in the lab it was too long so the values needed to be tweaked)

5.3.9 Video_Gate

Concept: Sandy Friesen

Implemented by: Sandy Friesen

Written by: Sandy Friesen

Mathematical Complexity: none

This patch routes the moving video from Drive_Level_0 to only the effect that is currently selected.

[image: image37.png]
This patch became necessary as more effects were added to the project. As more effects were being added, it was noted that the program was running slower and slower. It was finally noted, that all of the effects were processing the plain_video whether that effect was selected or not. This decoder sends the moving plain_video to only the effect that is currently selected. This solved the performance problem.

Note: It was realized after implementing this patch that logic should be implemented that would send individual start/stop signals to each of the 3 moving videos (rightTurn_1, leftTurn_1, traffic) so only the video actually being viewed is running. Time did not allow for this to be written, but factors like this that affect computing performance will be closely watched in future projects using this software.

5.3.10 Spiro_Cartoon

Concept: Spiro Govas

Implemented by: Spiro Govas

Written by: Spiro Govas

Mathematical Complexity:

[image: image38.png]
Overview

The cartoonify patch takes input video from an inlet, applies an effect to it to make it look like a cartoon, and outputs the resulting video through an outlet.

Purpose

The purpose of this patcher is to make the real world as a cartoon, as portrayed in the Toyota Matrix commercial that played prior to a sequel of the Matrix. This patch is to be used in the project as a special effect on the video.

The Patch

This patch has three parts, the outline generator, the color mapper and the color map generator.

[image: image39.png]
Figure 2: Entire Cartoonify Patcher Implementation

Outline Generation

[image: image40.png]
Figure 3: Outline Generation

The outlines are generated with cv.jit.canny. The image is adjusted using jit.brcosa to adjust the brightness and contrast, which will have an effect on the lines being generated. Then, it is converted to black and white (as required by canny) and fed to cv.jit.canny. Then, the image is alpha blended to the resulting picture.

Color Mapper

[image: image41.png]
Figure 4 : Color map

The color mapper takes the picture and chages the colors according to a color map (a matrix of 1 row, 256 columns). This has the effect to re-assign the color values, for example, if the value at 100 is 200 in the color map matrix, then all pixels of color 100 will change to 200. I implemented it for all channels, because there's not practical justification for having separate channels in what I am trying to achieve.

Color Map Generator

[image: image42.png]
Figure 5 : Color Map Generator

This is the part that generates the color map. On load, a list is generated to fill the lookup table with a floor function, which effectively reduces the number of colors used, and gives it a cartoon effect.

Mathematics

In this section, the mathematical concepts of the most salient video processing components of this patcher will be explained.

The Outlining Effect

· Smoothing of the image using a Gaussian mask, so as to elimitate noise.

· Find the edge strength using the gradient of the image intensity. This is done with the Sorbel operator.
The Sorbel operator uses two 3x3 kernels that are convolved with the original image.

The kernels are as following:
[image: image43.png]
The Gradients are then computed by: [image: image44.png]
Then once we know the x and y gradients, Gx and Gy respectively, the edge strength is approximated using |G| = |Gx| + |Gy|

· Find the edge direction: theta = invtan (Gy / Gx)

· Determine which of the 4 neighboring pixel. directions to fit the edge direction. This is done by establishing ranges for theta, so, for example, if theta is 80 degrees, the direction will be towards the pixel about it.

· Suppress pixels that are not considered to be edges. These are most likely noise.

· Use hysterisis to eliminate streaking, and make the lines smooth.

Running Average

In order to stabilize the output of the canny effect, I used a running average function. This computes and displays the average pixel values over a length of time. This is to try and remove snow effect on the videos, which is caused by the CCD.

Color Mapper

The color mapper simply looks up every pixel on the input matrix, and replaces it with the value of the corresponding pixel in the lookup matrix.

Color Map Generator

The color map generator component of the matrix generates a color map based on a expr function. It was used to generate a color map as a floor function, in order to apply a posterization to the image.

5.3.11 M_Effect_Green

Concept: Marika Kapogeorgakis

Implemented by: Marika Kapogeorgakis

Written by: Marika Kapogeorgakis

Mathematical Complexity: calls jit.brcosa, jit.hue and jit.lumakey
[image: image45.png]
The work I did in this project was altering the color and texture of certain parts of the picture as the video played. In the Matrix commercial, the scenery behaved this way. Our project is a little based on this commercial except, the user is the driver and he/she has complete control over everything whether it should look real or unreal. In other words, as you drive, the scenery changes depending on the driver’s speed or where he/she turns. My part involves changing the scenery when the driver’s speed increases or decreases. I made four patches altogether and the first three were only trial runs to get an idea of what to use for the final version. They are described as follows.

For the first patch, I used a test video for input and I changed it in three different ways resulting in three different outputs by adjusting the contrast, brightness, saturation and hue levels. The purpose was to get an idea of what kind of changes we would want in the picture later. Mathematically, a picture is composed of various little pixels and the color, adjustment operators either add or subtract values from them to change the look of the picture overall. For instance, the first output intensely causes certain colors to merge and other to disappear if they contain the same RGB values due to contrast and hue has allowed us to increase the amount of red and blue, and decrease the amount the green to make the video look more purple. In the case of saturation, it causes the picture to become a little blurred by partially merging two different colors with one another at the meeting point like the logical AND operator. Finally, brightness can either make a picture appear more bright by converting more pixels to 1 causing them to become white or converting them to 0 which makes them black. The objects used here are the color adjustment objects that were mentioned before and chromakey, which overlaps two pictures. The chromakey is used to take the same video and overlap it using two different outlets so that the resulting video will only show bits and pieces of the video being changed rather than the whole image. In other words, I used the same objects as those used in the jitter tutorials 7 and 10. Everything becomes activated when the user clicks on the checkbox. The patch helped us decide on which kind of scenes we wanted for the speed change patch and they resulted in being nighttime, fire and forest.

The second patch works the exact same way as the first one and it contains the same objects and they perform the same mathematical operations, but this time, I used the videos, which we created for the project as input, and that Sandy and I digitized so they may be playable on the computer. Everything functions the way it should, but we discovered that because the colors in the videos were different, the RGB values are different and the resulting pictures will not come out as expected if they undergo the same mathematical changes as before. The purpose was to incorporate the new videos into my part and to discover if there was still any need for improvement. In order to fix that problem, I had to increase the contrast in certain videos, and decrease it in other places. Moreover, changing the hue or colors themselves was not always necessary. In the end, the colors changed accordingly, but we were still not happy with the output, because after undergoing chromakey, the combined video looked very messy. By experimenting with this patch, I chose the three best videos to work with for my part and I learned that although the color adjustment objects are still good, perhaps chromakey is not useful for this part.

The third patch is the same as the second one except chromakey has now been replaced with lumakey, which works mathematically by adding, subtracting or OR-ing certain parts of a picture. The purpose of this patch was to find a better way of overlapping the unaltered version of the video on top of the altered version so that the resulting video focuses on changing the scenery only and not random parts. Lumakey works by allowing the programmer to set the lum, tol and fade values so that they not only overlap the two pictures, but also combine certain parts of them. In the case of the forest video, I subtracted most of the car away form the altered picture so that the unaltered car would only show and I combined the green in both pictures to give the resulting video a complete forest look. In the end, the look of the output became clean and constant. I also managed to add various timer objects into the patch as well which I named after their time limit being 200, 100 and so on. The timer works using the gate and metro objects so that a signal is sent and received by the saturation, contrast or hue object every second so the color is gradually altered. In other words, the amount of R, G or B gets incremented every second and the color changes right before our eyes automatically. This patcher helped me find a better way of producing output and it allowed me to find a way to gradually change the color in each video so that as the user is speeding up or slowing down it actually feels like he or she is entering a new world.

The fourth and final patch is exactly the same as the third patch except it only contains one video rather than three because we all decided that only one change of scenery was necessary and that the others were just taking up space in the program. The purpose for this patch is to make the video patch run without any user input whatsoever and to make the color get adjusted instantaneously. In order to do that, I removed the checkbox and replaced it with a load bang object, which automatically sends a signal to all parts of the program to start running and does not need user input. Moreover, I removed the timer object because as said before, it gradually changes the picture rather than instantaneously so it now became obsolete. The final patch resulted in causing less clutter for the entire project as a whole and it provided it with a final clean version of my part.

5.3.12 Shimmy

Concept: Sandy Friesen

Implemented by: Sandy Friesen

Written by: Sandy Friesen

Mathematical Complexity: calls jit.rota, jit.fastblur
The concept for this patch in the project is to simulate the effect that can happen when you start to drive to fast. Your car will start to shake (shimmy) and your eyes may not be able to react as fast so the object may become blurry.

[image: image46.png]
5.3.13 The rotation of an image

The rotation of an image (in its simplest form) is a mathematical translation of the x-y axes to new set of axes (x’,y’).

[image: image47.png]
If we wish to rotate an image by an angle α, then let us investigate what happens to point P which sits at an angle of θ with respect to the new axis (x’,y’) and at angle (α + θ) with respect to the original axes (x,y)

The point P can be expressed in either (x,y) coordinates or in the coordinate space (x’,y’), where the x’ y’ axes are rotated through an angle α from the (x y) axes.

[image: image48.wmf])

sin(

*

'

)

cos(

*

'

)

sin(

*

)

cos(

*

q

q

q

a

q

a

OP

y

OP

x

OP

y

OP

x

=

=

+

=

+

=

Remembering basic trigonometry (angle sum relationships)

[image: image49.wmf])

sin(

)

cos(

)

cos(

)

sin(

)

sin(

)

cos(

)

sin(

)

cos(

)

sin(

)

cos(

a

q

a

q

a

q

a

q

a

q

a

q

+

=

+

-

=

+

Using these relationships, we get the following equations.

[image: image50.wmf])

cos(

'

)

sin(

'

)

sin(

'

)

cos(

'

a

a

a

a

y

x

y

y

x

x

+

=

-

=

Or describing this in matrix form, we get

[image: image51.wmf]ú

û

ù

ê

ë

é

ú

û

ù

ê

ë

é

-

=

ú

û

ù

ê

ë

é

'

'

)

cos(

)

sin(

)

sin(

)

cos(

y

x

x

x

a

a

a

a

Note that these equations derive the original location (x,y) of a pixel located at (x’,y’) in the rotated image. This is referred to as reverse rotation. In forward rotation, each pixel (x,y) is processed through the reverse of the above equations, and its new location (x’,y’) is calculated. However, this leads to holes in the rotated image. There will be pixel locations, say (a,b), that will not be assigned any value during the rotation. This is due to the fact that the floating-point values calculated with the sin and cos functions must be truncated to integer values to pick a pixel in the image. Reverse rotation combats this by figuring out which original pixel maps to each new location. This leads to slight distortions at times because of the numerical precision and truncation. This is particularly visible on rotated straight lines and sharp edges.

Now, for example, if we are rotating the values through an angle of pi/4 (45 degrees) then the pixel which will be located at (100, 50) in the rotated image,

[image: image52.wmf]ú

û

ù

ê

ë

é

=

ú

û

ù

ê

ë

é

=

ú

û

ù

ê

ë

é

ú

û

ù

ê

ë

é

-

=

ú

û

ù

ê

ë

é

ú

û

ù

ê

ë

é

-

=

ú

û

ù

ê

ë

é

71

35

711

.

70

353

.

35

50

100

70711

.

0

70711

.

0

70711

.

70711

.

0

50

100

)

4

/

cos(

)

4

/

sin(

)

4

/

sin(

)

4

/

cos(

p

p

p

p

x

x

will be from location (35,71) in the original image (measuring the origin of the image in the lower right hand corner as depicted in the diagram above).

These equations are for rotations about the (0, 0) point. If we wish to rotate the image through any arbitrary point (xcenter , y center) then we must go through the following steps.

1. origin is translated to (xcenter , y center)

2. the rotation described above is performed

3. the rotated points are translated back to compensate for the original translation of the origin.

[image: image53.wmf]ú

û

ù

ê

ë

é

-

-

ú

û

ù

ê

ë

é

-

+

ú

û

ù

ê

ë

é

=

ú

û

ù

ê

ë

é

center

center

center

center

y

y

x

x

y

x

x

x

'

'

)

cos(

)

sin(

)

sin(

)

cos(

a

a

a

a

It should be noted that the above rotation is the basic way in which an image can be rotated. There are many improvements that can be made to cut down distortion in the rotated image. For example the center of the pixel (x+0.5, y+0.5) can be considered in the above equations. These extra 0.5s alter the values sent to the rounding functions. Other techniques iteratively rotate the image, and still others use filtering techniques on the final rotated image in order to cut down on sharp edges (See the discussion of blur below). This is called antialiasing. All of these enhancements that present a better visual image, have a price however, and that is computation time. It is one thing for Photoshop to take time to rotate an image, or even an offline video effects software, However, since Max/Jitter is a real-time system for real-time video, they must watch how commutatively complex the algorithms are.

5.3.14 The Blur Effect

Concept: Sandy Friesen, Maher Taha, Islam El Kady

Implemented by: Sandy Friesen, Maher Taha, Islam El Kady

Written by: Sandy Friese, Maher Taha

Blurring of image comes under the class of image manipulation called convolution. The basic idea is that a window of some finite size and shape is scanned across the image. The output pixel value is the weighted sum of the input pixels within the window where the weights are the values of the filter assigned to every pixel of the window itself. Convolution is a filtering effect.

Blurring recalculates every pixel of the new image, by looking the color value of its surrounding pixels and putting the calculated average value into the destination pixel.

For this we use a convolution matrix, that is, an NxN matrix containing coefficients (N is most often an odd number due to the fact that we want a center location for the pixel to be calculated). The center of this NxN matrix is put on the pixel to update, then we read the value of each pixel surrounding the updated one, and for each pixel we multiply the value read by the coefficient of the appropriate cell of the matrix. The new pixel value is the sum of all the values multiplied by their factors, and divided the total by the coefficient total of the convolution matrix

Mathematically if we represent the convolution matrix by C, then let us define

[image: image54.wmf]å

å

=

=

=

N

j

N

i

ij

total

C

C

1

This is the total summation of all the coefficients. This is the scaling factor of the convolution matrix. The new value for a pixel color (note that this operation is performed for each of the ARGB planes). It is given by the following mathematical formula.

[image: image55.wmf]å

å

=

=

=

N

i

N

j

ij

total

new

j

i

P

C

C

y

x

P

1

1

)

'

,

'

(

*

1

)

,

(

Where (i’,j’) represents the actual pixel location in the image that lies under Cij. For example, for the averaging of pixel location (10,5) with a 3x3 convolution matrix then the pixel lying under C11 is P(9,6) (one to the left and one up). For edge pixels where part of the matrix lies outside the image, those pixels outside the image are ignored.

The most basic (and frequently used) convolution matrix is the Uniform Matrix (a matrix where all the values are one, and thus each of the surrounding pixels has an equal weight). For example the 3x3 Uniform matrix is given by

[image: image56.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

1

1

1

1

1

1

1

1

1

The previous equation then becomes

[image: image57.wmf]å

å

=

=

=

N

i

N

j

new

j

i

P

N

y

x

P

1

1

)

'

,

'

(

1

)

,

(

This method is often used as it minimizes the number of multiplications that must be used.

There are several factors that can be altered to achieve the desired blurring effect. These include the size of the averaging matrix, the numerical contents of the matrix, the number of iterations that the blurring goes through, and making the convolution matrix shape non square.

Size of Convolution Matrix

The size of the convolution matrix affects how close a pixel must be to affect the color. The larger the matrix, the more blurred the image will appear because each of the pixels is much more averaged. In the extreme, the entire image would become the average color of the image. This could be considered very blurry.

Shape of the Matrix

The idea of what pixel is next to another pixel leads to non-rectangular shapes for the Convolution Matrix. For example A Cross is sometimes used which ignores pixels on the diagonal.

Iterative Techniques

Another method that is used to further blur an image aside from increasing the size of the convolution matrix is to run the blur algorithm multiple times with a smaller Matrix. For example run 2 passes of the 3x3 matrix instead of a 7x7 matrix. This means that more local pixels are affecting the target pixel, however in the second pass, these pixels themselves are averages.

Gaussian Blurring

A noted issue that the Uniform matrix has in blurring an image is that pixels that are very far away from the target pixel are given the same weight as pixels right next to the target pixel. It would seem natural to assume that adjacent pixels would more greatly affect the target pixel (with its own value being the biggest influence). To do this, a Gaussian Matrix is used, where the values reduce moving away from the target pixel governed by the 2 dimensional Gaussian distribution

[image: image58.wmf]
Where
[image: image59.wmf] is the radial distance from the target pixel.

The size of the matrix N is usually governed by the value of the standard deviation.

[image: image60.wmf]1

6

+

=

s

N

This number is chosen as numbers that fall outside of the range (
[image: image61.wmf]s

3

) in the Gaussian distribution are essentially 0.

An example of the 7x7 Gaussian matrix (from wikipedia.com) is given by.

[image: image62.png]
By virtue of the sum of the Gaussian distribution being 1, No scaling factor is needed in the convolution equation (ie Ctotal = 1).

Because of the reducing of weights as we move away from the target pixel, edges and boundaries are preserved much better than in the Uniform matrix case.

The cost, however of using this method is in computational complexity. In addition to the N2 additions that must be done in the Uniform matrix method, N2 floating-point multiplications must also be performed. Thus the complexity of this algorithm is
[image: image63.wmf]2

2

)

1

6

(

+

=

s

N

 MADDS (multiply and adds – the measure of numerical calculation complexity usually used in image processing)

Gaussian blurring is often used in down sampled images (images whose size is reduced) to reduce high frequency content (sharp transitions in color). From Digital Signal Processing theory, the Gaussian distribution used in this manner represents a low pass filter.

5.3.15 Effect_Speed_Kill

Concept: Sandy Friesen, Maher Taha, Islam El Kady

Implemented by: Sandy Friesen, Maher Taha, Islam El Kady

Written by: Sandy Friesen, Maher Taha, Islam El Kady

Mathematical Complexity: calls jit.rota, jit.hue, jit.xfade
The difference between a game and a simulation is in the reflection of real life. If you drive a car too fast, you will crash it.

[image: image64.png]
The third parameter in the line function is the duration of this effect.

5.3.15.1 Hue

If we imagine the three primary colors red, green and blue placed equally apart on a color wheel, all the other colors of the spectrum can be created by mixes between any two of the primary colors. For example, the printer's colors known as Magenta, Yellow, and Cyan are mid-way between Red and Blue, Red and Green and Blue and Green respectively.

[image: image65.png]
This diagram is called the color wheel, and any particular spot on the wheel from 0 to 360 degrees is referred to as a hue, which specifies the specific tone of color. "Hue" differs slightly from "color" because a color can have saturation or brightness as well as a hue.

The jit.hue function applies a rotation of the colors in the image through the specified angle on the wheel, so reds become green and so on.

5.3.15.2 Fading

The jit.xfade function uses the transparency layer to overlay two images. If the transparency of one image is one, and the other is 0, then the first image is shown as normal, and the second image is not shown at all. At 0.5 and 0.5 you see both of the images with equal intensity and so on.

[image: image66.jpg]
The above image shows the effect.

5.3.18 Effect_Mux

Concept: Sandy Friesen, Maher Taha, Islam El Kady

Implemented by: Sandy Friesen

Written by: Sandy Friesen

Mathematical Complexity: none

This patch implements a multiplexer which takes the outputs of all of the driving effects and forwards the currently selected effect to the next stage.

[image: image67.png]
5.3.19 Make_night

Concept: Team Matrixed

Implemented by: Sandy Friesen, Maher Taha

Written by: Sandy Friesen, Maher Taha

Mathematical Complexity: calls jit.scalebias
The concept of this patch in the project is to darken the displayed image to simulate driving at night. Mathematically we are converting a color image to a grayscale image to emulate the way night seems to remove color.

[image: image68.png]

Functionally this patch is a MUX controlled by the night drive button in the control panel patch which sends either the input video, or the input video translated with the jit.scalebias function to the output.

The jit.scalebias does a mathematical transformation of the image matrix

[image: image69.wmf]
Where A is the input and B is the output. A scale factor of less than 1 reduces the color value, remembering that in RGB (0,0,0) is black, we are darkening each color in the image more toward its blackness. The bias value is used to make sure that there is content in all the RGB fields as this enhances the grayness of the image. Both the scale and bias values affect all the planes of the input image.

For example if we use the original image seen below

[image: image70.png]
By applying the values of 0.4 and 0.1 as set in the program,

[image: image71.png]
We see that the image has been dimmed and the color is somewhat drained out of it. The selections of the scale and bias values were tweaked during development to give the desired effect with the video that was being used in the project.

5.3.20 Chroma

Concept: Sandy Friesen, Maher Taha, Islam El Kady

Implemented by: Sandy Friesen, Maher Taha, Islam El Kady

Written by: Sandy Friesen, Maher Taha

Mathematical Complexity: calls jit.chroma
[image: image72.png]
This patch implements a chromakey in order to display the car windshield onto the image. A chromakeying effect is achieved by overlaying one video layer over another and making a specific color (the key color) transparent so that the other video is displayed at those locations. In other words, anyplace in the image where the key color is,, the corresponding pixel in the overlay image is put there. The image is not scaled to fit into that frame, the corresponding parts are displayed..

[image: image73.jpg]
In this application, we did not run into the one main issue that can occur when chromakey is applied to live video, the color consistency of the key background. Since the above image was constructed using Photoshop, the blue screen where the windshield video is going to be displayed is a consistent uniform color. Also it could be ensured that the key color does not appear elsewhere in the image. Everybody has seen the 6 O’clock news where the weatherman has the wrong color shirt on and the image is showing on them as well.

In keeping with live video standards, bluescreen and greenscreen (primary colors) were used. In video mixing the primary colors are easiest to detect, and replace.

5.3.21 Chroma_Mirror

Concept: Marika Kapogeorgakis

Implemented by : Sandy Friesen

Written by: Sandy Friesen

Mathematical Complexity: calls jit.chroma
[image: image74.png]
A second chromakey effect was added to the project. The rearview mirror (key color green) is replaced with a live motion camera pointed at the drivers face. Thus the driver sees themselves in the rear view mirror.

5.3.22 Video Mixer

Concept: Sandy Friesen, Maher Taha, Islam El Kady

Implemented by: Sandy Friesen, Maher Taha, Islam El Kady

Written by: Sandy Friesen, Maher Taha

Mathematical Complexity: overlays two videos

Unlike the chroma patches which replace a color in one image with the corresponding pixels in another image, the video mixer overlays two videos on top of each other.

[image: image75.png]
The video overlay was done in this project to overlay a button menu over the video. The menu is overlaid as opposed to just being put in the static dashboard image to allow for dynamic menus for a future expansion. Thus pushing a button would bring up a submenu.

The complexity in this patch is not in the mathematics of some image transformation, it was in getting it to work.

The key to the video overlay is to put two images into the same jit matrix structure. This essentially makes it an 8 deep matrix (2 sets of ARGB). Then the two images are displayed. The order in which the two images are updated controls which of the images is on top of the other.

The section at the bottom left controls this. Depending which selection button (1 or 2) is pressed a sequence of bangs are sent out via m1, m2 and output. For m1 and m2, which are connected to the two images, the last one banged is on top.

The second image, which is the menu overlay, is scaled and inserted at the appropriate location in the screen (bottom left hand corner).

The jit.qball object seen in the control part of the patch, controls the priority (order) with which the output is sent to the scheduler (hence when the gate object gets banged) . In other words if the jit.qball is set to be used, then the gate will get its bangs at the end of the computation sequence. This may be important in some instances to make sure that the video frames to be overlaid have been processed before being copied into the composite jit matrix. In our case, since this was the last patch in the sequence of events, it ended up not mattering, as only one of the images was of motion video.

5.3.23 Main

Concept: Maher Taha, Islam El Kady, Sandy Friesen

Implemented by:Islam El Kady

Written by: Islam El Kady, Maher Taha

Mathematical Complexity: None

This patcher is used as the user interface and initial point of the system.

[image: image76.wmf]
6.0 Website

Concept: Course Requirement

Implemented by: Sandy Friesen

Written by: Sandy Friesen, Maher Taha

Mathematical Complexity: None

The Website has been implemented by Sandy Friesen to reflect the project development progress. It includes all the main and technical aspects for our project. The site is divided into sections organized in vertical order, each section has its description and it includes the related patcher. To view the patcher just click on the section name and another window displays the patcher.

For more information and technical details:

http://www.sandktechnicalsolutions.com/matrixed/

7.0 References

· Cycling 74 website

· Max tutorials

· Jitter tutorials

· CDA virtual tutorials

· UQAM AV department

· http://en.wikipedia.org/wiki/Lucas_Kanade_method.

· http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OWENS/LECT6/node2.html.

8.0 Technology Aspects

· MAX/JITTER

· FINAL CUT PRO

· JAVA SCRIPT

· ADOBE/MACROMEDIA DREAMWEAVER

· ADOBE PHOTOSHOP CS2

· MIRCROSOFT WORD

7.0 Conclusion

 In the domain of the Software Engineering and Computer science program, we are responsible, as a team, to develop from start to end a system application using appropriate technology. This project revealed itself to be a true challenge as it was the first time we implemented such as a live video processing system using Jitter programming technology. Moreover, it is through this project that we learned not only the true meaning of team work but also the how to follow a discipline by supporting development of video processing and real live human interaction with camera that meet user requirement on time and to budget.

The most important challenge we had to face that never changing requirements and constraints that exist in the development project. Also, we had to update the project documentation and to keep in the track in order to reflect the actual recent changes of the system. However, through strong problem solving and project management, we were able to alleviate those issues. For instance, we were often faced with obstacles that were due to time constraints and learning curves. Many times, we were confronted with problems during the implementation phase because of premature knowledge of the technology and due to the fact that Jitter programming and working with cameras and motion analysis was a new technology for all the team.

As a team, we decided to work on this project during bi-weekly meetings. Throughout these work sessions, the attendant team members continually worked on their part individually or by two and communicate with other members if any issue occurred. In respect to team spirit, being a team formed by five friends, we not only worked on this project but we have also tried to bring our team spirit to a whole new level to ensure the success of the project which is was really hard for some members to communicate with each other.

In conclusion, we have learnt that having the ability to adapt top new circumstances and to be able to handle any changes in the user requirement are two important aspects that should be developed further through more experience. As a team, the most important issue we have learned through this project not only how to use Jitter technology to develop live human interaction video but also to learn the critical aspects of growing a system application that meet course requirements using our technical skills and strong communication abilities.

This project has been an extremely valuable experience that surely helped us develop our skills further as Software Engineers of the new period. We have developed through the semester, skills that prepared us for the real world enabling us to easily map our academic knowledge to hands on experiences.

_1227194852.unknown

_1227198276.unknown

_1227204362.unknown

_1227204404.unknown

_1227242798.unknown

_1227198310.unknown

_1227195181.unknown

_1227197256.unknown

_1227197872.unknown

_1227195213.unknown

_1227194903.unknown

_1227194682.unknown

_1227194810.unknown

_1227193627.unknown

_1227194585.unknown

_1227098008.unknown

