Georges Duverger (6129609) COMP 471
Lilian Pedrali (6130615)
Loris Blanchon (6127401)

Final Project Report

Screen crime

Introduction

The « Screen Crime » project is an academic prd@ctcourse « Computer Graphics »
(COMPA471). It is a team-based project which alleglents to approach some picture and
video processing techniques that had been revielwgdg lectures and labs.

Our team is made up of 3 students:

Georges Duverger, who comes from an engineeringos@h Grenoble (France), and who
studies « Computer Networks and Multimedia Commaitions ». Before this school, he
got qualified in « Multimedia Communication ». S him, multimedia was not a
discovery, and this project was a good opportuinityut into practice some techniques he
studied before, and to go further into this subject

Lilian Pedrali, who studies « Computer Science kyion (France), in a engineering
school. He has always been interested in graphazepsing, and especially in
mathematics used for it. So for him , this prop@as the opportunity to do some research
about algorithms, their efficiency, their complgxiand so on...

Loris Blanchon, who studies « Computer Science Polouse (France), in a engineering
school too. His favorite domain is video, so headly did some video editing, with
artistic research or purely technical one. For too this project has been an opportunity
to learn new techniques and to use already knows.on

Concept presentation

Our final team project is a video responsive systeamedScreen Crime The obvious
reference is these well known crime scenes fromernovies. In such scenes, we see a white
line drawn on the floor all over a dead body, assitated in Figure 1. It is mainly what we
tried to do but interactively.

Figure 1: Crime scene from crime movie

The main scenario of our project is the followilagpasser-by staying in front of the camera
(i.e., looking at the previous victims) for too tpwill be killed, in his turn, by the system.
The interaction is therefore quite simple. By dosm we thought it would be easier to
comprehend and more understandable by passers-by.

Figure 2: Main scenario

Our ambition was to recreate thien noir mood. We thought it would be attractive to install
this scene in a public area with a lot of unawassprs-by. To reinforce this atmosphere, we
also play a gun shot sound. It add surprise anith kindsight, comprehension of the process.
We also planned to scotch-tape@not crosgibbon to make explicit the space of the crime
scene (and therefore of our system).

We understand that our project could sound a httéd but that is one of the reasons why it
IS interesting. In a more symbolic point of viewe Wked the idea that by looking at the
previous victims and while trying to understande hasser-by will become one of them.
Thus, he will fully understand the installation whie will be shoot (i.e., too late to be
saved).

Development

Our project is divided in 3 big steps. It was tlasiest way to perform our project and share
the work.

1. Motion capture and detection of inactivity

The objective of the beginning of the patch is Ibbatn position of the passer-by. To do it, we
use a basic technique of edge detection.

Detecting pixel changes

For each color channel of each pixel, we do thdraation between the value of the live

input, and the one from a picture of the backgro{fodmore explanation on how is obtained

this background picture, see below). Next, for epofel, we take only the maximal value

between the 3 color channels and we thresholdethdtrwith an arbitrarily defined value.

For example, consider these two situations:

- Pixel from live input and same pixel from backgrdymcture are highly different : the
algorithm will detect there is something (or soneijan front of the camera.

Picture from Iive input

Figure 3

Pixel from live input and same pixel from backgrdupicture are just a bit different: the
algorithm will consider that it's just noise, agghore it.

Backmund ic:ture Picture from Iive input

Figure 4

But a problem can occur if passer-by color and gemlknd one are nearby. In this case,

program won't be able to distinguish him from tlaekground.

To reduce this problem, we decided to make thestiwle value as small as possible. But a
new problem occurs, in this case. Working with mega, pictures are not totally clean: there

is some noise (even if there is no change on teres@ successive frames aren't exactly the
same).

With a small threshold value, obtained matrix iallsenoisy, so we decided to combine this

technique with another one, convolution.

Reducing noise

Principle is to calculate, for each pixel, a vailat is function of the values of its neighbors.
The « kernel » is the given name of the matrix Whitdicates what this function is. In our
case, we use a n-by-n matrix filled with value Bo.the value of each pixel is the mean of its

n2 neighbors.

Thresholding the obtained value by a high valuegi@mple (n2-1) if input matrix is a binary

one, we can remove most noise pixels.
Look at these examples (assuming a binary matrix):

- if the considered pixel and most of its neighbaeswhite

iy

s

o

0.1...

0.1...

1 i A

255 | [255 o1
255 | | 255 | | 255 0.1...
255 | | 255 | | 255 da...

/—P/\\——\

227

Figure 5

- in the opposite case :

255

255

255

Updating background

We tried to imagine our project running for a laimge, and thought that ambient light may
change slowly with day. So we try to get some meidma that updates continuously the
background picture. The patch « background » tidesideo in input.

The first frame is considered as background (sonwloel turn on the patch, make sure there
is nobody in front of the camera).

255

0.1..

0.1..

0.1..

0.1..

0.1..

4 B

0.1...

0.1...

0.1...

283

28.3

28.3

283

Figure 6

For the next ones, it makes these operations:

- It computes the difference between the last backgiicture and the received frame.

- It thresholds the result with a value not too spialk not too big (12 for example).

- Pixels which have small difference with backgropnzture are taken from live input.

- Other ones are replaced by those from the regcsfaoture.

- The obtained picture is given to the cv.jit. meahjocl computes the mean value on each

channel of each pixel, over the time.

- It sends out the obtained picture.

We think this mechanism is able to obtain a baakgdoup-to-date, but we couldn't test it,

because it needs to run patch for a long time.

We can note that enabling this patch reduce dedistithe frame rate, so if the patch must be
ran for only few time, we advise to turn it on fgetting a background picture, and then to

turn it off.

Detect immobility

Once the passer-by is detected, we need to desschimobility.

To do it, we just verify that 2 conditions are Viedl:

- Somebody is behind the camera: We count the nuofl@rels that are considered as
different from the background picture, and we wetiifat this number is greater than a
threshold value.

- This person doesn't move: we subtract the numbeiffefent pixels between 2
consecutive frames, and verify that this numbemaller than another threshold value.

After several frames verifying these conditions,cae take a snapshot.

Get the border line

The next step is to get only the border line of thetected shape. We use the object

« cv.jit.canny » that performs the canny algorithm.

It operates in several steps (sourceshttp://en.wikipedia.org/wiki/Canny

http://fr.wikipedia.org/wiki/Algorithme_de_Canity

- First, it convolves the matrix with a gaussian masleliminate noise (obtained picture is
a slightly blurred version of the input matrix).i¥hs a classical gaussian filter.

- Next, it create a map of intensity gradients ahgamint in the image, by convolving it
with Sobel operators (3-by-3 matrices : [[-1,0,2]0,2][-1,0,1]] and [[1,2,1][0,0,0][-1,-2,-
1]]). Highest values indicate a probable edge,sagd indicates its direction.

- It thresholds the result with hysteresis : withratfhigh threshold value, it defines some
points with high probability to be edges. And watlsecond lower value, it try to complete
the obtained edges, for having continuous lines.

- The result of this algorithm is a matrix, whereyoetiges of big shapes from the input
matrix are present.

2. Silhouette recognition and re-drawing

At the end of the first step, we get a sinuousrangh thin line, as illustrated in Figure 3.

Figure 7: Original sinuous and rough thin line

Our artistic goal was to stylize this line. Thatans, choose some points on this original line
and draw segments between them. The objectiveavgsttcloser to the crime scenes look, as
illustrated in Figure 1.

Because we did not find a simple way to do so \Withx/Jitter and because we had a keen
interest in using Java into Jitter, we have impletaé this second step in Java. This decision
includes, of course, some studies and readindswnto uselava in Max/Jitter, for example:

- Thejitter-java api documentatiom MaxMSP 4.6/Cycling ‘74/javaljitter-javadoc/
- Writing Max Externals in Java 0.3 by Topher La Fata

- The mxj javadoc of the com.cycling74.* packages

- TheTutorial 51: Java Jitterof theJitter Tutorial Version 1.6

- Etc.

Package [SETT] Tree Deprecated Index Help

Overview [ETIEITI Class Use Tree Deprecated Index Help
o

PREV PACKAGE NEXT PACKAGE

comeydingramsp | Package com.cycling74.max
com cyeling74 net

‘Interfﬂce Summary

| Executable ‘Exe:utable ‘provides a common interface for classes thatneed a method to ex

com.cycling74 max
Inte:

Class Summary

At i element of a it or argument of a message
Callback s an implementation of the Executable inferface.
Thi sins Constants describing the various data ypes that MaxObjet s a java wrapper o the Titer Mati object
rea
e sents the graphical element of an external in a patcher. Author

Toshua Kit Clayton
HaxClack provides a way for your mg classes to set up the execution of eve
The context and company in which a Max object finds sclf.
Base class for 2 Tava Max object | Fields inherited from class com.cycling74 jitter JitterObject
e to dynamically modify
Th of amethod from the ¢ i@ 5
Sy Col ating p with the Max environm |Constructor Summary
MaxWind HaxTind rence to the wirdow contamng apatcher. | | ||Te
P R e S s, G R S S e s

Figure 8: Javadocs

10

Once we got used to the Max/Jitter Java APl (Agpicca Programming Interface), the
process we have followed to achieve our goal (thiced above) was divided in two parts.

- Path finding including backtracking algorithm: bese the input was just a flatten
image without any meaning of silhouette (or evespsf), we had to analyze the image
in order to recognize and store each point.

- Re-draw the stylized silhouette using the Bresenladgorithm: once we get a real
polygon (i.e., Java Polygon Object), we can eadlilgose which points to keep and
draw segments between them.

Path finding including backtracking algorithm

The original image was of course just a matrix ¢dck and white spots. In order to
manipulate the silhouette as we wished, we hadakenthe computer understand that these
black and white spots represent actually a contisupath (which defines the whole
silhouette). To do so, we had to start from onetavispot, look for another one in the
surrounding area and so on until we reach theolzest

The Figure 5 below illustrates how we proceed. tAis said in the title of the paragraph, it
includes a backtracking algorithm in the way thdtew a path reaches a dead end it comes
back to the previous states and try to find angplagi.

Figure 9: Backtracking path finder

Below are the signatures of the main methods. Treedne returns a collection of polygons
which have been found in the original matrix.

/**

* Find a polygonal shape

* @param jm The <t>JitterMatrix</t>

* @return <t>polygon</t>

* @throws Exception

*/

private Vector<Polygon> findPolygons(JitterMatrix jm)

11

/**

* Finds all the start points on the edge of the gi ven matrix
* @param jm The <t>JitterMatrix</t>

* @return a <t>Vector</t> of <t>Point</t>

*/

private Vector<Point> findStartPointsOnEdge(JitterMatrix jm)

In the signature below, we see that there is atbate of type integer nameghp. This is
because the algorithm allows the path to contamesholes in it. We have implemented this
extra-functionality because we realize that ¢aanyobject provides us with a discontinuous
line sometimes. Moreover it offers more robustriedbe system.

/**
* Finds all the next points from the given start p oint in the given
matrix

* @param jm The <t>JitterMatrix</t>

* @return <t>true</t> if a path is found

*/

private boolean findNextPoints(JitterMatrix jm, Vector<Point>
currentPoints, int gap) {.}

Re-draw the stylized silhouette using the Bresenhawaigorithm

Once we finished the analysis part, we performsyrethesis step described below. At this
moment, we have several polygons (i.e., Java Paoly@bject). We could easily transform
these polygons into something else, make some tipesgtranslation, rotation, etc.) on them
because it is no longer just a flatten image buneaningful object recognized by the
computer.

In our system, we only decided to skip some paanis$ draw a line between the others. Once
we get this processing done, we had to renderdbgtrinto a matrix (i.e., black and white
spots again). To determine which cells in the mattill be white while tracing a segment, we
use the Bresenham'’s line algorithm introduced below

Bresenham's line algorithm is an algorithm thatestetines which points in an n-
dimensional raster should be plotted in order tonfa close approximation to a
straight line between two given points. It is comiaised to draw lines on a
computer screen, as it uses only integer additsatraction and bit shifting all
of which are very cheap operations in standard cat@parchitectures. It is one
of the earliest algorithms developed in the fidld@mputer graphics.

Source:Wikipedia,http://en.wikipedia.org/wiki/Bresenham%27s_line aalthm

In other words, we studied this algorithm and tlatesit into Java language.

/**

* Draw a line between two points
* The Bresenham's line algorithm (...) is availabl e here:

*

http://fr.wikipedia.../Algorithme_de_trac%C3%A9 de segment_de_Bresenham
* @param jm The <t>JitterMatrix</t>

* @param pl The first <t>Point</t>

12

* @param p2 The second <t>Point</t>
*/

private void drawSegment(JitterMatrix jm, Point p1, Point p2)
{.}

Figure 10: Bresenham'’s line algorithm

13

3. Final display with additional information

With the Java algorithm, we have a good silhoustieed in a matrix. The purpose of the step
3 is enlarging the silhouette, adding differenbmfiations on the silhouette and displaying the
last persons “killed” by the responsive system. hhenber of silhouettes displayed can be
specified by a number box.

Enlarge the edge

To enlarge the edge, we use the convolution. Wdeiment the same object used during the
step 1 with different parameters. We can speciémidth of the edge.

Write the time

Just after retrieving the matrix from the step 2, display the current time when somebody is
“killed” by the responsive system. To perform thiwe easiest way is using OpenGL Jitter
object: jit.gl.text2d. We specify to this objecetkolor, the position and the font of the text.
We have to display the time in different positiar ach silhouette. To do that, we use a
counter. When a new silhouette has to be displagdaiang is sent to the counter and the
output is incremented. The maximum of the courgegheé number of silhouettes. The output
of the counter is used for the vertical positioikelthat, the time is not written at the same
position for each silhouette.

Using jit.gl.text2d is not enough. Indeed, this emj provides to write bitmap text with
OpenGL but it does not render OpenGL. To perforat, tive have to use jit.gl.render.

Display the last persons “killed”

All the last silhouettes are stored in a matrix.aNtsomebody is captured by the system, the
new silhouette is adding in this matrix. But ithetter if we can see more easily the last
silhouettes. Before adding the new silhouette, widtiply the matrix by a number between 0

and 1. This number is computed with this foer/I@Tl, n is the number of silhouettes

displayed. Like that, after n silhouettes, the stdglhouette is multiplied by 0,1 and with 0,1,
the silhouette cannot be viewed.

There is not Jitter object to compt{lﬂ@_,l. So, we have to implement this operator. To dg tha
we use a dichotomy algorithm.

14

Demonstration

The demonstration of our system was divided on dags: Thursday, Decembef" And
Friday, December"8 During the first one, we show to a jury that puoject woks correctly
and during the second one, we took few picturesdiaide it in the report.

Problems encountered

For the first demonstration, we decided to progaatvideo output on the wall because it was
the easiest way to perform our system and to ptovile jury that our installation works

correctly. Moreover, the Macintosh where our Maktter patch ran was a G5. Indeed, our
system needs a good processor, especially foraha dlgorithm. With this computer, the
number of frames per second reached 17. We newkrhso high number of frames per
second before.

The first problem that we encountered was the whélence and the auto-focus of the iSight
camera. Indeed, we have to disable the white balamd the auto-focus of the camera
because of the step 1 of our project: our patcfopes the subtraction between the live input
and the background and the settings of the canwra to be the same everytime if we want
to have just the silhouette of passers-by withaisen After few tests, we pass to disable
white balance and auto-focus and the demonstrataenperformed without problems: all the
inactive passers-by in front of our camera werkedil

Figure 11: two innocent victims

15

For the second demonstration, we decided to propcvideo output on the floor because we
wanted to reproduce a scene of crime movie. Wedidlo that on the first day because it is
very hard to install the projector. Indeed, thejgetor has to be vertical. Finally, we found a
solution with the stairs. We put the projector be stairs, just at the top of our installation.

Figure 12: Our installation

With this installation, we encountered a new probléhe output was inverted. We tried to
change the settings of the G5. But do not have ddadOS X skills and we did not pass to
apply the good settings. So, we used a basic ealatd we turned over the projector.

Figure 13: the inverted projector

16

The last problem that we encountered was the biggedblem: if there are shadows, our
system can become useless. At the beginning ofstye 1, the background is captured
without shadow. So, when shadows appear, the stibinabetween the live input and the

background does not work very well and the systammot recognize the silhouette. The only
solution is being careful when we are in the frohthe camera. Shadows do not have to
appear. If we do not want to have shadow, the wastis looking at where the lights are.

During the second day of our demonstration, we thasl problem when the cameraman
filmed us: there was too many people and theselpabg too big shadows and our system
became inactive.

What did people think about our project?

Most of people like our system and play with itr Fleem, it was funny to be “killed” like
crime movies:

Figure 14: Lilian killed

Documentation

This project is documented in several ways :

- All patches, and java class, are all self-docunteriféey contain comments that explain
how they work, how they can be configured, and yhérg you need to know for using
them. The java class is also given with its owrajatyle documentation called JavaDoc.
Every function is defined precisely with its parders, its return values, and so on.

- A website fttp://hybrid.concordia.ca/~g_duveygroups together all documents relative
to the project, and offers many information abdet ¢toncept, the development, some
photos and videos of the patch, etc.

17

Work repartition

LILIAN

- Working on step 1: Motion capture and detectibmactivity
- Report parts: Introduction, Motion capture antedgon of
inactivity and Documentation

- Edge detection comparative tests

GEORGES

- Original concept

- Working on step 2: Silhouette recognition andirawing
- Report part : Concept presentation, Silhouetteggition
and re-drawing and Conclusion

- Web site conception

LORIS

- Working on step 3 : Final display with additional
information

- Report parts: Introduction of Development, Fidisplay
with additional information and Demonstration

- Report page setting

A step further

Other technical improvements

With hindsight, we think that it could be interegfito detect inactivity distinctly for each
passer-by. In our current system, the entire soefrent of the camera (i.e., every passer-by)
has to stay immobile for a while before we shooy. using blob, we could detect the
inactivity of one passer-by and just shoot him.sTidea came to us during the demonstration
days while more than one passer-by was using ttersy

We also though that it could be interesting to iower the path finding algorithm in order to
detect start points inside the matrix (insteadust pn its edges). The reason why we have not
done something like that was performance. By logKor a start point in the entire matrix,
we reduce the performance of the system a lot.tiBere could be some tricks as check the
diagonals of the image for example.

The two days demonstration as a reward

We think that the two days of presentation werdlyeagood opportunities to push forward
our project. Because we had something working quétk on the first day, we wanted to go a
step further in our initial concept. That is why decided to project the resulting image onto
the floor (i.e., onto the crime scene). We had g#ipthis idea at the beginning because we
thought it was logistically too complex to set Tjnus, we are glad that we have been able to
do so.

18

Moreover, these two days of presentation, becatiseeopassers-by feedback, have been a
real reward of our work. It was really fun and emble to play with our installation and,
above all, to see our peers and other studentsedsaime.

An achieved objective

To conclude, it has been a good experience for ebub. We are relatively proud of what we

have done because it is quite exactly what we péaed to do since day one. Of course it
is not perfect and, as we have seen, there cousbime improvements but the concept of the
initial idea and the mood was there (during the alestration). Furthermore, the fact that we
have been able to do everything we planned to, kigpthat we did not know anything about

Max/Jitter at the beginning of the year, implieattthis course has been full of knowledge for
us.

Figure 15: Loris, Georges and Lilian from Screem@rproject

19

