
Georges Duverger (6129609) COMP 471
Lilian Pedrali (6130615)
Loris Blanchon (6127401)

Final Project Report

Screen crime

Introduction
The « Screen Crime » project is an academic project for course « Computer Graphics »
(COMP471). It is a team-based project which allows students to approach some picture and
video processing techniques that had been reviewed during lectures and labs.

Our team is made up of 3 students:
− Georges Duverger, who comes from an engineering school in Grenoble (France), and who

studies « Computer Networks and Multimedia Communications ». Before this school, he
got qualified in « Multimedia Communication ». So for him, multimedia was not a
discovery, and this project was a good opportunity to put into practice some techniques he
studied before, and to go further into this subject.

− Lilian Pedrali, who studies « Computer Science » in Lyon (France), in a engineering
school. He has always been interested in graphics processing, and especially in
mathematics used for it. So for him , this project was the opportunity to do some research
about algorithms, their efficiency, their complexity, and so on...

− Loris Blanchon, who studies « Computer Science » in Toulouse (France), in a engineering
school too. His favorite domain is video, so he already did some video editing, with
artistic research or purely technical one. For him too, this project has been an opportunity
to learn new techniques and to use already known ones.

2

Concept presentation

Our final team project is a video responsive system named Screen Crime. The obvious
reference is these well known crime scenes from crime movies. In such scenes, we see a white
line drawn on the floor all over a dead body, as illustrated in Figure 1. It is mainly what we
tried to do but interactively.

Figure 1: Crime scene from crime movie

The main scenario of our project is the following: a passer-by staying in front of the camera
(i.e., looking at the previous victims) for too long will be killed, in his turn, by the system.
The interaction is therefore quite simple. By doing so, we thought it would be easier to
comprehend and more understandable by passers-by.

3

Figure 2: Main scenario

Our ambition was to recreate the film noir mood. We thought it would be attractive to install
this scene in a public area with a lot of unaware passers-by. To reinforce this atmosphere, we
also play a gun shot sound. It add surprise and, with hindsight, comprehension of the process.
We also planned to scotch-tape a do not cross ribbon to make explicit the space of the crime
scene (and therefore of our system).

We understand that our project could sound a little weird but that is one of the reasons why it
is interesting. In a more symbolic point of view, we liked the idea that by looking at the
previous victims and while trying to understand, the passer-by will become one of them.
Thus, he will fully understand the installation when he will be shoot (i.e., too late to be
saved).

Development
Our project is divided in 3 big steps. It was the easiest way to perform our project and share
the work.

1. Motion capture and detection of inactivity
The objective of the beginning of the patch is to obtain position of the passer-by. To do it, we
use a basic technique of edge detection.

Detecting pixel changes

For each color channel of each pixel, we do the subtraction between the value of the live
input, and the one from a picture of the background (for more explanation on how is obtained
this background picture, see below). Next, for each pixel, we take only the maximal value
between the 3 color channels and we threshold the result with an arbitrarily defined value.
For example, consider these two situations:
− Pixel from live input and same pixel from background picture are highly different : the

algorithm will detect there is something (or somebody) in front of the camera.

4

Figure 3

5

Pixel from live input and same pixel from background picture are just a bit different: the
algorithm will consider that it's just noise, and ignore it.

Figure 4

But a problem can occur if passer-by color and background one are nearby. In this case,
program won't be able to distinguish him from the background.
To reduce this problem, we decided to make the threshold value as small as possible. But a
new problem occurs, in this case. Working with a camera, pictures are not totally clean: there
is some noise (even if there is no change on the scene, 2 successive frames aren't exactly the
same).
With a small threshold value, obtained matrix is really noisy, so we decided to combine this
technique with another one, convolution.

6

Reducing noise

Principle is to calculate, for each pixel, a value that is function of the values of its neighbors.
The « kernel » is the given name of the matrix which indicates what this function is. In our
case, we use a n-by-n matrix filled with value 1/n. So the value of each pixel is the mean of its
n² neighbors.
Thresholding the obtained value by a high value, for example (n²-1) if input matrix is a binary
one, we can remove most noise pixels.
Look at these examples (assuming a binary matrix):
− if the considered pixel and most of its neighbors are white

Figure 5

7

− in the opposite case :

Figure 6

Updating background

We tried to imagine our project running for a long time, and thought that ambient light may
change slowly with day. So we try to get some mechanism that updates continuously the
background picture. The patch « background » takes the video in input.
The first frame is considered as background (so when you turn on the patch, make sure there
is nobody in front of the camera).
For the next ones, it makes these operations:
− It computes the difference between the last background picture and the received frame.
− It thresholds the result with a value not too small, but not too big (12 for example).
− Pixels which have small difference with background picture are taken from live input.
− Other ones are replaced by those from the registered picture.
− The obtained picture is given to the cv.jit.mean, which computes the mean value on each

channel of each pixel, over the time.
− It sends out the obtained picture.

We think this mechanism is able to obtain a background up-to-date, but we couldn't test it,
because it needs to run patch for a long time.
We can note that enabling this patch reduce drastically the frame rate, so if the patch must be
ran for only few time, we advise to turn it on for getting a background picture, and then to
turn it off.

8

Detect immobility

Once the passer-by is detected, we need to detect his immobility.
To do it, we just verify that 2 conditions are verified:
− Somebody is behind the camera: We count the number of pixels that are considered as

different from the background picture, and we verify that this number is greater than a
threshold value.

− This person doesn't move: we subtract the number of different pixels between 2
consecutive frames, and verify that this number is smaller than another threshold value.

After several frames verifying these conditions, we can take a snapshot.

Get the border line

The next step is to get only the border line of the detected shape. We use the object
« cv.jit.canny » that performs the canny algorithm.
It operates in several steps (sources: http://en.wikipedia.org/wiki/Canny
http://fr.wikipedia.org/wiki/Algorithme_de_Canny):
− First, it convolves the matrix with a gaussian mask, to eliminate noise (obtained picture is

a slightly blurred version of the input matrix). This is a classical gaussian filter.
− Next, it create a map of intensity gradients at each point in the image, by convolving it

with Sobel operators (3-by-3 matrices : [[-1,0,1][-2,0,2][-1,0,1]] and [[1,2,1][0,0,0][-1,-2,-
1]]). Highest values indicate a probable edge, and sign indicates its direction.

− It thresholds the result with hysteresis : with a first high threshold value, it defines some
points with high probability to be edges. And with a second lower value, it try to complete
the obtained edges, for having continuous lines.

− The result of this algorithm is a matrix, where only edges of big shapes from the input
matrix are present.

9

2. Silhouette recognition and re-drawing

At the end of the first step, we get a sinuous and rough thin line, as illustrated in Figure 3.

Figure 7: Original sinuous and rough thin line

Our artistic goal was to stylize this line. That means, choose some points on this original line
and draw segments between them. The objective was to get closer to the crime scenes look, as
illustrated in Figure 1.

Because we did not find a simple way to do so with Max/Jitter and because we had a keen
interest in using Java into Jitter, we have implemented this second step in Java. This decision
includes, of course, some studies and readings on how to use Java in Max/Jitter, for example:

- The jitter-java api documentation in MaxMSP 4.6/Cycling ‘74/java/jitter-javadoc/
- Writing Max Externals in Java v 0.3 by Topher La Fata
- The mxj javadoc of the com.cycling74.* packages
- The Tutorial 51: Java Jitter of the Jitter Tutorial Version 1.6
- Etc.

Figure 8: Javadocs

10

Once we got used to the Max/Jitter Java API (Application Programming Interface), the
process we have followed to achieve our goal (introduced above) was divided in two parts.

- Path finding including backtracking algorithm: because the input was just a flatten
image without any meaning of silhouette (or even shape), we had to analyze the image
in order to recognize and store each point.

- Re-draw the stylized silhouette using the Bresenham algorithm: once we get a real
polygon (i.e., Java Polygon Object), we can easily choose which points to keep and
draw segments between them.

Path finding including backtracking algorithm

The original image was of course just a matrix of black and white spots. In order to
manipulate the silhouette as we wished, we had to make the computer understand that these
black and white spots represent actually a continuous path (which defines the whole
silhouette). To do so, we had to start from one white spot, look for another one in the
surrounding area and so on until we reach the last one.

The Figure 5 below illustrates how we proceed. As it is said in the title of the paragraph, it
includes a backtracking algorithm in the way that when a path reaches a dead end it comes
back to the previous states and try to find another path.

Figure 9: Backtracking path finder

Below are the signatures of the main methods. The first one returns a collection of polygons
which have been found in the original matrix.

/**
 * Find a polygonal shape
 * @param jm The <t>JitterMatrix</t>
 * @return <t>polygon</t>
 * @throws Exception
 */
private Vector<Polygon> findPolygons(JitterMatrix jm) {...}

11

/**
 * Finds all the start points on the edge of the gi ven matrix
 * @param jm The <t>JitterMatrix</t>
 * @return a <t>Vector</t> of <t>Point</t>
 */
private Vector<Point> findStartPointsOnEdge(JitterMatrix jm) {

In the signature below, we see that there is an attribute of type integer named gap. This is
because the algorithm allows the path to contain some holes in it. We have implemented this
extra-functionality because we realize that the canny object provides us with a discontinuous
line sometimes. Moreover it offers more robustness to the system.

/**
 * Finds all the next points from the given start p oint in the given
matrix
 * @param jm The <t>JitterMatrix</t>
 * @return <t>true</t> if a path is found
 */
private boolean findNextPoints(JitterMatrix jm, Vector<Point>
currentPoints, int gap) {...}

Re-draw the stylized silhouette using the Bresenham algorithm

Once we finished the analysis part, we perform the synthesis step described below. At this
moment, we have several polygons (i.e., Java Polygon Object). We could easily transform
these polygons into something else, make some operations (translation, rotation, etc.) on them
because it is no longer just a flatten image but a meaningful object recognized by the
computer.

In our system, we only decided to skip some points and draw a line between the others. Once
we get this processing done, we had to render the result into a matrix (i.e., black and white
spots again). To determine which cells in the matrix will be white while tracing a segment, we
use the Bresenham’s line algorithm introduced below.

Bresenham's line algorithm is an algorithm that determines which points in an n-
dimensional raster should be plotted in order to form a close approximation to a
straight line between two given points. It is commonly used to draw lines on a
computer screen, as it uses only integer addition, subtraction and bit shifting all
of which are very cheap operations in standard computer architectures. It is one
of the earliest algorithms developed in the field of computer graphics.

Source: Wikipedia, http://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm

In other words, we studied this algorithm and translate it into Java language.

/**
 * Draw a line between two points
 * The Bresenham's line algorithm (...) is availabl e here :
 *
http://fr.wikipedia.../Algorithme_de_trac%C3%A9_de_ segment_de_Bresenham
 * @param jm The <t>JitterMatrix</t>
 * @param p1 The first <t>Point</t>

12

 * @param p2 The second <t>Point</t>
 */
private void drawSegment(JitterMatrix jm, Point p1, Point p2)
{...}

Figure 10: Bresenham’s line algorithm

13

3. Final display with additional information

With the Java algorithm, we have a good silhouette stored in a matrix. The purpose of the step
3 is enlarging the silhouette, adding different informations on the silhouette and displaying the
last persons “killed” by the responsive system. The number of silhouettes displayed can be
specified by a number box.

Enlarge the edge

To enlarge the edge, we use the convolution. We implement the same object used during the
step 1 with different parameters. We can specify the width of the edge.

Write the time

Just after retrieving the matrix from the step 2, we display the current time when somebody is
“killed” by the responsive system. To perform that, the easiest way is using OpenGL Jitter
object: jit.gl.text2d. We specify to this object the color, the position and the font of the text.
We have to display the time in different position for each silhouette. To do that, we use a
counter. When a new silhouette has to be displayed, a bang is sent to the counter and the
output is incremented. The maximum of the counter is the number of silhouettes. The output
of the counter is used for the vertical position. Like that, the time is not written at the same
position for each silhouette.

Using jit.gl.text2d is not enough. Indeed, this object provides to write bitmap text with
OpenGL but it does not render OpenGL. To perform that, we have to use jit.gl.render.

Display the last persons “killed”

All the last silhouettes are stored in a matrix. When somebody is captured by the system, the
new silhouette is adding in this matrix. But it is better if we can see more easily the last
silhouettes. Before adding the new silhouette, we multiply the matrix by a number between 0
and 1. This number is computed with this formula:0,1n , n is the number of silhouettes
displayed. Like that, after n silhouettes, the oldest silhouette is multiplied by 0,1 and with 0,1,
the silhouette cannot be viewed.

There is not Jitter object to compute0,1n . So, we have to implement this operator. To do that,
we use a dichotomy algorithm.

14

Demonstration

The demonstration of our system was divided on two days: Thursday, December 7th and
Friday, December 8th. During the first one, we show to a jury that our project woks correctly
and during the second one, we took few pictures to include it in the report.

Problems encountered

For the first demonstration, we decided to project our video output on the wall because it was
the easiest way to perform our system and to prove to the jury that our installation works
correctly. Moreover, the Macintosh where our Max / Jitter patch ran was a G5. Indeed, our
system needs a good processor, especially for the Java algorithm. With this computer, the
number of frames per second reached 17. We never had a so high number of frames per
second before.

The first problem that we encountered was the white balance and the auto-focus of the iSight
camera. Indeed, we have to disable the white balance and the auto-focus of the camera
because of the step 1 of our project: our patch performs the subtraction between the live input
and the background and the settings of the camera have to be the same everytime if we want
to have just the silhouette of passers-by without noise. After few tests, we pass to disable
white balance and auto-focus and the demonstration was performed without problems: all the
inactive passers-by in front of our camera were killed.

Figure 11: two innocent victims

15

For the second demonstration, we decided to project our video output on the floor because we
wanted to reproduce a scene of crime movie. We did not do that on the first day because it is
very hard to install the projector. Indeed, the projector has to be vertical. Finally, we found a
solution with the stairs. We put the projector on the stairs, just at the top of our installation.

Figure 12: Our installation

With this installation, we encountered a new problem: the output was inverted. We tried to
change the settings of the G5. But do not have good MacOS X skills and we did not pass to
apply the good settings. So, we used a basic solution and we turned over the projector.

Figure 13: the inverted projector

16

The last problem that we encountered was the biggest problem: if there are shadows, our
system can become useless. At the beginning of the step 1, the background is captured
without shadow. So, when shadows appear, the subtraction between the live input and the
background does not work very well and the system cannot recognize the silhouette. The only
solution is being careful when we are in the front of the camera. Shadows do not have to
appear. If we do not want to have shadow, the best way is looking at where the lights are.
During the second day of our demonstration, we had this problem when the cameraman
filmed us: there was too many people and these people did too big shadows and our system
became inactive.

What did people think about our project?

Most of people like our system and play with it. For them, it was funny to be “killed” like
crime movies:

Figure 14: Lilian killed

Documentation
This project is documented in several ways :
− All patches, and java class, are all self-documented. They contain comments that explain

how they work, how they can be configured, and everything you need to know for using
them. The java class is also given with its own java-style documentation called JavaDoc.
Every function is defined precisely with its parameters, its return values, and so on.

− A website (http://hybrid.concordia.ca/~g_duverg/) groups together all documents relative
to the project, and offers many information about the concept, the development, some
photos and videos of the patch, etc.

17

Work repartition

LILIAN

- Working on step 1: Motion capture and detection of inactivity
- Report parts: Introduction, Motion capture and detection of
inactivity and Documentation
- Edge detection comparative tests

GEORGES

- Original concept
- Working on step 2: Silhouette recognition and re-drawing
- Report part : Concept presentation, Silhouette recognition
and re-drawing and Conclusion
- Web site conception

LORIS

- Working on step 3 : Final display with additional
information
- Report parts: Introduction of Development, Final display
with additional information and Demonstration
- Report page setting

A step further

Other technical improvements

With hindsight, we think that it could be interesting to detect inactivity distinctly for each
passer-by. In our current system, the entire scene in front of the camera (i.e., every passer-by)
has to stay immobile for a while before we shoot. By using blob, we could detect the
inactivity of one passer-by and just shoot him. This idea came to us during the demonstration
days while more than one passer-by was using the system.

We also though that it could be interesting to improve the path finding algorithm in order to
detect start points inside the matrix (instead of just on its edges). The reason why we have not
done something like that was performance. By looking for a start point in the entire matrix,
we reduce the performance of the system a lot. But there could be some tricks as check the
diagonals of the image for example.

The two days demonstration as a reward

We think that the two days of presentation were really a good opportunities to push forward
our project. Because we had something working quite well on the first day, we wanted to go a
step further in our initial concept. That is why we decided to project the resulting image onto
the floor (i.e., onto the crime scene). We had skipped this idea at the beginning because we
thought it was logistically too complex to set up. Thus, we are glad that we have been able to
do so.

18

Moreover, these two days of presentation, because of the passers-by feedback, have been a
real reward of our work. It was really fun and enjoyable to play with our installation and,
above all, to see our peers and other students do the same.

An achieved objective

To conclude, it has been a good experience for each of us. We are relatively proud of what we
have done because it is quite exactly what we have planned to do since day one. Of course it
is not perfect and, as we have seen, there could be some improvements but the concept of the
initial idea and the mood was there (during the demonstration). Furthermore, the fact that we
have been able to do everything we planned to, knowing that we did not know anything about
Max/Jitter at the beginning of the year, implies that this course has been full of knowledge for
us.

Figure 15: Loris, Georges and Lilian from Screen Crime project

19

