
Pierre-Luc Bertrand
Ramzy Hissin
Justin Mereb

Eric Zaino

Comp 471 / Cart 498: Final Project Report

Work Presented to Dr. Sha Xin Wei

Concordia University
December 11, 2006

Team Members

Pierre-Luc Bertrand 5330211
Ramzy Hissin 4925548
Justin Mereb 4885368
Eric Zaino 4936957

Roles

Concept Lead: Pierre-Luc
Programming: Entire Group
Maths: Pierre-Luc
Set Construction: Entire Group

Concept

Taste of Reality is a project that was born out of the interest for the field of computer
vision, teaching machines to see and recognize. This is a very important topic today. We
wanted to be apart of this movement and implement our own small version of these ideas.
Our very basic approach allows a computer to see and recognize basic geometric shapes
and redraw them in a three-dimensional model on the computer using OpenGL The
simple shape we chose to implement was a cube. This project is not a game or any form
of entertainment, but a direct scientific and practical application.

Below is a flowchart of the design concept of our system. Please follow this figure. Note
that only a general overview is given here, a more detailed explanation is given in later
sections. As can be seen, two camera inputs are taken. An image from each camera is
then sent to an image-processing object, which contains several steps shown on the right.
The output of this step is a processed image that is ready to be used. The image is sent to
a corner detection algorithm where the corners are extracted. The x,y coordinates of each
corner are then sent to a point to point correspondence where the corners are matched.
The z coordinate (depth of the cube) is then calculated via the Rec object and finally all 3
coordinates are sent to the render object that draws the cube.

Camera Parameters [2]

A camera can be represented as a perspective projection matrix (henceforth simply
camera matrix) P where:

[|]=P A R t

A is the camera intrinsic parameters.

R and t are the external parameters.

Camera Intrinsic Parameters [2]

The camera intrinsic parameters are the parameters of the camera only. These parameters
can be acquired by using the calibration toolbox [1] running on MatLab.

The following matrix is the intrinsic parameters.

0

00
0 0 1

u

v

u
v

α γ
α

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

A

Where ,u u v vfk fkα α= − = − are the focal lengths in horizontal and vertical pixels,
respectively (f is the focal length in millimeters, uk and vk are the effective number of
pixels per millimeter along the u and v axes).

0 0(,)u v are the coordinates of the principal point, given by the intersection of the optical
axis with the retinal plane.

γ is the skew factor. I can be set to 0 for most cameras.

Camera External Parameters

The camera external parameters are the parameters describing the translation and rotation
of the second camera with respect to the first camera.

The rotation matrix R is a 3x3 matrix and t is a 3x1 matrix.

Getting the Camera Parameters [2]

Once we have the parameters, we can have the camera parameters that include both
internal and external parameters using the following formula:

0 0

0 00 0
0 0 1 0 0 1

xu u

v v y

z

tu u
v v t

t

α γ α γ
α α

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟= ⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎦⎣

P

3D Reconstruction [3]

With the cameras calibrated, we can now move on to the 3D reconstruction from
matching pair of points.

Using this formula: x = P X x x (P X) = 0

One can extract parts of it to

1

x
y

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

x and
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

1 1

2 2

3 3

A A X
AX A X = A X

A A X

Now we can make them single equations.

1. () () 0x − =3 1A X A X
2. () () 0y − =3 2A X A X
3. () () 0x y− =2 2A X A X
One can see that the third equation is a linear combination of the first two.

Now we want to relate the pair of points coming from the two different pictures.

0
' ' '
' ' '

x
y
x
y

⎡ ⎤
⎢ ⎥
⎢ ⎥ =
⎢ ⎥
⎢ ⎥
⎣ ⎦

3 1

3 2

3 1

3 2

A - A
A - A

P = X
A - A
A - A

Singular Value Decomposition

With this P, we can now get X. To do so, we use the Singular Value Decomposition
(SVD). The SVD of P, P = U D VT

X is the last column of V. D must be in a descending order.
As for the Singular Value Decomposition, I am not completely sure of what it does but I
will explain how I think it works.

By giving the camera parameters and a point, we are forming a line in the space since our
camera is a pin-hole camera. A pin-hole camera has a center point and by using the point
on the retinal plane, we can define a line in the space. Doing that for two cameras and
two points, we are defining two lines. In theory, these two lines will intersect in the space
but in practice, they will probably not. From my understanding of Eigen values and
eigenvectors, the Eigen value will give us the critical point in this system. By taking the
smallest critical point, we are in fact taking the smallest distance between the two lines
which is in our case, close to the intersection. By taking the eigenvector, we get the
coordinates of this close to an intersection point which gives us our coordinate of interest.

Image Processing

The first step in the algorithm is to process the image. The inputs from the eyesights are
fed into the first patcher named “imageprocessing”. This is a file we wrote to take in a
camera feed and output an edge detected image that we can send to the corner detection
external. The output of each step is shown in Figure 1below. Figure 1 (a) is the original
image.
The first step in the patcher is to convert the image into greyscale; this is done to lower
the info for each pixel by setting all the RGB values equal to each other. Also greyscaling
an image is very convenient for programming in image processing as it sharpens an
image. This is done using “ jit.rgb2luma”. This is shown in figure 1 (b).

The next step is to blur the image. This serves to smooth out the jagged edges, and hence
remove unwanted noise elements. Blurring is done in jitter using “jit.fastblur”. Blurring is
usually done by applying the image with a Gaussian distribution, which is essentially
passing the image through a low pass filter. Shown in Figure 1 (c).

Then edge detection is performed followed by an inversion of black and white to make
the image brighter. All the pixels are scanned and whenever there is a difference between
one pixel and its neighbour, that pixel will be filled with white colour. If there is no
difference between two pixels then they will both be black, or filled with no colour. This
is done with he “jit.robcross” and “jit.op” objects. Shown in figure 1(d).

The final step is to do convolution to sharpen the image. A small window, called the
convolution kernel, is scanned across the image. The center of the kernel is applied to
each pixel in the image and then each value in the kernel is multiplied with its

corresponding value in the image area that is covering. These values are then summed up
and stored in the center pixel. Convolution continues until the kernel has been applied to
all values in the image. Our convolution kernel is set to 2.71. Shown in figure 1(e).

Figure 1: Image Processing

 (a): Original Image (b) Grey Scale (c) Smoothing

 (d) Edge detection (e) Convolution

Corner Detection

This algorithm takes in an image-processed picture and extracts the corners. The code
was written in Java and designed by the team. An mxj external was written to import this
code into jitter. It was hoped to use an already designed algorithm from a published
paper, however due to time constraints this approach was abandoned and a unique one
was implemented. This also made the design more interesting for the team.
The algorithm as it stands works nicely but is fragile. The correct corners are extracted
every pass but from time to time there are false negatives or false positives. This means
that the algorithm will find any corners in the screen, not only those of the cube, and that
it might mistake a point on one of the edges of the cube as a corner.

How it works

The algorithm functions in a nearest neighbour approximation: The image is fed into the
mxj external as a down sampled matrix of 1’s and 0’s shown in figure 2 below.

Figure 2: Corner Detection input Figure 3: Detected Corners

The algorithm then analyses every pixel and stops when it finds a 1. It then proceeds to
search all its neighbours for known corner configurations. It is as if the image is being
run through with several different masks, matching each type of corner shown here:

---- ---- | | | | ---- ---- |
					/ \
			\ / / \ \		
	---- ---- \ / / \ \				

An example of one of the search algorithms in the first pass is shown in figure (4) below.
Please note that an array element value of 2 defines a corner, and a 1 defines an edge. As
can be seen in the comments, it identifies what kind of corner is being searched for.

 Figure 4: Corner detection code

After the first pass, suspected corner points are marked and the algorithm begins its
second pass.
The point of the second pass is remove non-corner points. If there are two pixels beside
each other that have both been marked as corners, then one will be removed, usually the
one that is not an absolute edge. Other non-corner points are removed using similar
criteria. An example of one of the checking code is shown below.

 Figure 5: second pass

Then the image is run through a third and final pass. The point of this pass is to combine
suspected corner points that are a certain distance from each other: if a corner point exists
in a radius, maybe 10 pixels, from another suspected corner, then the midpoint between

these two is marked as a corner and the original two points are unmarked. This is to
ensure that not more than one point is marked as a corner in a given area. The
accompanying ASCII text is shown with the results of each pass.

Figure 6: Third pass to group together close corners

After the third pass the corner points are exported into a paint object defined below, and
the output of the corners is shown on the original image, shown in figure 3 above. Please
note that there is a phase issue, the corners do not all flash at the same time. All the
corners are found, but flash at different times.

The Paint Object

The paint object is a patcher we designed to take the coordinates found by the corner
detection and paint flashing squares on the original image. This was done to visually
enhance the corner detection algorithm and make it nicer to look at. The list of x and y
coordinates of the corners are inputted into the patch. A copy of each list goes through a
vexpr object so that 10 is added to each element. This addition defines the length and
width of the square we will draw. As shown in the figure below, the outputs of each
unpack object are colour coded to make the code easier to follow.

Figure 7: Paint input

The x and y coordinates, along with the length and width of the square are then packed
into a list and sent to a paintrect object shown in figure 8 below which draws the initial
square. The first four numbers with $ signs are so that we can dynamically enter in the
coordinates, as well as the size and width of the square, meaning during run time. The

last three numbers are the RGB colours that we chose to make the cube. In our case, the
colour of the square are Red=0, Green =0, Blue =255. The squares are painted blue as
shown in figure 3.

Figure 8: Paintrect object

This only draws the initial cube. We would like the cube to flash, so that the corners
scream out, “HERE I AM” and are immediately discernible on the original image. The
cubes are made to flash with the following objects:

Figure 9: Switching code to make squares flash

The metro sends out a bang every half a second that causes the switch to alternate
between the clear object and the paintrect object not seen in this image, The pink wire
coming out of the right side of the switch enters the paintrect object shown in figure 8
above. So the square is first painted blue, then cleared from the screen, and then painted
blue again. This process repeats itself for the duration of the runtime of the program, and
the squares will flash where the corners are found.

The following code serves to combine the flashing squares in the same output window. It
is here that the phasing problem occurs, in which all the found corners do not flash at the
same time. The jit.op object only allows the flashing squares through.

Figure 10: Combine flashing squares

Finally each flashing corner is shown in a separate window at the bottom of the patch, as
well as a final window with all of them combined. As can be seen below, the final
combined window is still flashing out of phase. Only the bottom-most pwindow is
outputted.

Figure 11: Paint output

This output is then superimposed on the original image to produce the corner-detected
image shown in figure 3 above.

Corner Correspondences

The CornerCorrespondences patch was created to make our lives much easier. Since our
corner detection algorithm was not finding all the corners reliably, we needed to create
this patch so that we could choose the right corners of the left and right cameras and enter
them into a matrix which is then sent to be reconstructed. Due to time constraints this was
a necessary patcher to design.

Its design is quite simple; in essence, it takes the initial camera inputs, and then applies
the paint objects onto each corner to actually see which corners where detected. After
that, user input is required to find all seven visible corners of the cube on both cameras.
This is done by clicking on a corner on the left camera view and then clicking on the
corresponding corner on the other camera view. This information is then entered into a
4x7 jit.matrix object using a counter object connected to jit.fill to enter the x,y,x’,y’
coordinates one by one with an offset of y =1 each time, so that the coordinates already
entered in the matrix aren’t being overwritten. The output of the CornerCorrespondences
patch is the matrix, which is then sent to the Rec patcher. The figure below is what this
part of the patch looks like.

Figure 12: Corner Correspondence Matrix Output

Basically, the counter goes up to seven, and then when it reaches that number, it goes
back down to zero. This counter is directly connected to the pak offset 0 0 object
connected to jit.fill, which offsets the matrix by a set amount.

SortCoord

This object is essentially what sorts the matrix of coordinates coming out of
cornercorrespondences the same way the corners are organized on the cube shown below.

Figure 13: Order of the Corners

The reason this is done is that the cube render patch does not do a sorting and the order is
hard coded. If there were no sorting, then the cube wouldn’t really look like a cube.

The algorithm that was used for the sorting was a simple one; in other words, not very
efficient, but easy to write. Its efficiency is around O(n2). Basically, it scans through the
matrix trying to find coordinates bigger or smaller than the initial one, corresponding to

x1

x2

x6

x7

x3

x4

x5

the corner that is being found. In other words, if the initial corner is x6 and we are trying
to find x5, then will look for a smaller x and a smaller z. The output of this sorting
algorithm is a list containing the x,y,x’,y’ of each corner starting at x1 and ending at x7.
Here’s a part of the code written in JAVA.

public Coord[] sort(double[][] a)
{

Coord[] all = new Coord[7];

for(int i=0;i<a.length;i++)
{

all[i] = new Coord(a[i][1], a[i][0]);
}

SortRows(all);

Coord[] left = { all[0], all[1] };
Coord[] center = { all[2], all[3], all[4] };
Coord[] right = { all[5], all[6] };

SortCol(left);
SortCol(center);
SortCol(right);

all[0] = left[0];
all[1] = left[1];
all[2] = right[0];
all[3] = right[1];
all[4] = center[0];
all[5] = center[1];
all[6] = center[2];

return all;
}

private void SortCol(Coord[] c)
{

double smallest = 0.0;

for(int i=0;i<c.length;i++)
{

smallest = c[i].getCol();

for(int j=i;j<c.length;j++)
{

if(c[j].getCol() < smallest)
{

smallest = c[j].getCol();
swap(c, i, j);

}
}

}
}

private void SortRows(Coord[] c)
{

double smallest = 0.0;

for(int i=0;i<c.length;i++)
{

smallest = c[i].getRow();

for(int j=i;j<c.length;j++)
{

if(c[j].getRow() < smallest)
{

smallest = c[j].getRow();

swap(c, i, j);
}

}
}

}

private void swap(Coord[] c, int index1, int index2)
{

Coord dummy = c[index1];
c[index1] = c[index2];
c[index2] = dummy;

}

Matlab Calibration

Even though everyone was using iSights for filming, each camera has little differences
that can make quite a big difference when measuring focal lengths and such. This is why
calibrating the camera is very important. To calibrate the camera, we used a built in
calibration tool found in Matlab. To use this tool it is necessary to first print a
checkerboard.

This checkerboard is used to find all the corners of each square. To first step to perform
the calibration is to take around twenty different pictures of the checkerboard using one
camera and then do the same thing with the other camera, Once this is completed, the
pictures are then input into Matlab, which will ask that the user inputs the origin of the
first square on the checkerboard and then make a big square using each corners of the
checkerboard. This needs to be done on each picture taken for both cameras.

 Once this is done, the software will give a whole page of results, including the focal
points and principal points, which are needed in the project. These results are specific for
each camera and the differences can be quite large; so it is important to first perform this
calibration before starting the project so that the cube that will be measured can be
accurately represented. The text below shows the results of a calibration test we did.

Focal Length: fc = [1024.79922 1026.49224] ± [9.33714 7.86167]
Principal point: cc = [407.55057 367.49343] ± [8.53734 12.97527]
Skew: alpha_c = [0.00000] ± [0.00000] => angle of pixel axes = 90.00000
± 0.00000 degrees
Distortion: kc = [-0.03070 -0.53234 -0.00402 0.00180 0.00000] ± [
0.02940 0.20436 0.00211 0.00211 0.00000]
Pixel error: err = [0.49771 0.61276]

Focal Length: fc = [1019.96701 1027.31694] ± [25.19010 16.74503]
Principal point: cc = [378.16745 341.12452] ± [18.79007 45.51434]
Skew: alpha_c = [0.00000] ± [0.00000] => angle of pixel axes = 90.00000
± 0.00000 degrees
Distortion: kc = [-0.01660 -0.24866 0.00996 -0.01020 0.00000] ± [
0.03942 0.28394 0.00337 0.00535 0.00000]
Pixel error: err = [0.32283 0.51939]

KK = [1019.96701 0 378.16745 ; 0 1027.31694 341.12452 ; 0 0 1]

% KK =
% 1.0e+003 *
% 1.0200 0 0.3782
% 0 1.0273 0.3411
% 0 0 0.0010

P1 = KK * [1 0 0 0 ; 0 1 0 0 ; 0 0 1 0]

% P1 =
% 1.0e+003 *
% 1.0200 0 0.3782 0
% 0 1.0273 0.3411 0
% 0 0 0.0010 0

P2 = KK * [1 0 0 247 ; 0 1 0 0 ; 0 0 1 0]

% P2 =
% 1.0e+005 *
% 0.0102 0 0.0038 2.5193
% 0 0.0103 0.0034 0
% 0 0 0.0000

The actual result is quite a bit longer than what is shown above, but what is needed is

actually the focal lengths and principal points.

Internal and External Parameters

For our project, we use MatLab to get the internal parameters and then we wrote them in
the internal parameters patcher.

Figure 14: Internal Parameters Patcher

As for the external parameters, we kept it simple by not having rotations of cameras
because at first we though we would be using only the corner detection. Using the corner
detection only, it makes thing very complicated to have matching corners because we
would have to use the epipolar geometry. Using only a translation on the x axis would
keep the corners on the same height therefore would keep the algorithm easy.

We have done a patcher to put in the external parameters. In our project, we had only the
translation in x but we let the users the freedom to do translation in other axis.

Figure 15: External Parameters Patcher

Rec

This is a necessary patcher which essentially unpacks the list coming out of the sorting
algorithm and sends the (x, y) coordinates of each camera to seven reconstruction
patchers, which will send back a list of (x, y, z) coordinates. These coordinates are then
grouped together and then are sent back to the main project patcher.

Figure 16: Rec Patcher

This patch is pretty straightforward as it simply redirects the coordinates to their
respective location so that the real world coordinates can be calculated and then sent to be
rendered.

Reconstruction, CameraTest and LineOperation

The reconstruction patch consists of a few steps. First, the matrix containing the values of
the camera calibration test, which were obtained using matlab, is obtained using the
cameratest22 patcher which essentially multiplies the external camera values with the
internal camera values for both cameras. This multiplication is obtained using the
jit.la.mult which conducts a cross product on the two incoming matrices. The cross
product is essentially the multiplication of each row of the first matrix with each column
of the second matrix. The final matrices, called P1 and P2, are then split into three
distinct matrices each which are called P11, P12, P13, P21, P22 and P23 respectively.

Figure 17: Cross product

Figure 18: Outputs of cameratest22

These matrices are then sent to the LineOperation patcher which does a scalar
multiplication between the x or y of each camera and P13 or P23, depending on whether
it's from the left camera or the right camera, and then subtracted by P11, P12, P21 or P22,
as shown on the figure below.

Figure 19: Line Operation

When this is done, all of these 4x1 matrices are put into one 4x4 matrix which is passed
on to the PLSVD algorithm written in JAVA.

Figure 20: Reconstruction Patcher

Getting the Z coordinate

PLSVD is using the code from http://www.idiom.com/~zilla/Computer/Javanumeric/ for
the Singular Value Decomposition. The problem from this source was that sometimes the
diagonal matrix was not in a descending order therefore we had to sort them. The PLSVD
java code is sorting these values. The diagonal matrix is the Eigen values and the V
matrix is their corresponding eigenvector so when the Eigen values had to be swapped,
their respective eigenvector had to be swapped as well.

The last column of the V matrix is the interesting column. We are using this column to
get our real world coordinates in millimeters. The first three rows are the x, y and z
component multiplied by some factor. To get the real x, y and z component, we have to
divide them by the last row of the column. PLSVD is doing that as well then it outputs it
as a list.

Cube Render

The cuberender patch was created in a few steps. First the coordinates are sent through
three inlets, which correspond to the x, y, and z coordinates. These coordinates are sent
through an unpack object which separates them and then rearranges them in packs of
three, equivalent to a real (x, y, z) coordinate. Then, these coordinates are sent to six
message boxes corresponding to the six planes of a cube. Since we couldn’t just use a
message box with $1 - $12, for each quad, the append object was used to add each corner
coordinate. Basically, a message box containing the sentence set $1 $2 $3 was connected
to an append object. This is done a total of three times. All of these append objects are
connected to a message box containing the message quad. The picture shown below
shows this part of the patch.

Figure 21: Message Box containing the plane of the cube

When taking a live input feed of a cube using two cameras that are only translated and
not rotated, there is always going to be a point which will not be visible. This is a
problem we faced which meant that we needed to come up with an algorithm to calculate
this eight coordinate. The first thing we thought of was to take the x, y, and z coordinates
of the corners around it. While this may have worked, it required unnecessary work since
we had found a simple and cleverer algorithm. This algorithm consists of calculating the
vector of the front of the cube and then subtracting the rear top corner with the measured
vector, which would give us the missing coordinate. The picture shown below explains in

more detail how this all works out; x6 – x7 is the vector we are measuring and x8 is the
point we are looking for. So, x5 – (x6-x7) will give x8.

Figure 22: Missing Coordinate

Once all the corners are entered into the plane, it is now ready to be sketched using the
jit.gl.sketch object, which receives all the plane information as well as the color for each
of these planes. The jit.gl.handle object is also used to take care of the handling of the
cube once it’s rendered. The final step of the cuberender patch is the rendering using the
jit.gl.render object, which takes the information given by jit.gl.sketch and jit.gl.handle as
well as a camera message box and a position message box, which gives it the capability
to change the camera position relative to the object and the position of the object on the
3D plane.

There was one major issue which we were unable to resolve in the allotted timeframe and
that is the position of the object in 3D space. This is a big problem because 3D space is
enormous and finding a relatively small object can be quite arduous. Luckily, we were
able to find the object using a specific camera angle as well as a camera position and
object position. This information was entered directly to the jit.gl.render object with the
use of the pak position 0. 0. 0., pak camera 0. 0. 0. and finally the lookat attributes.
Unfortunately, by doing so, we lost the ability to rotate the cube using the mouse and the
cube itself seemed half hidden behind a sort of mask. Due to time constraints, we were
unable to solve this problem, although the axis position problem might have been solved
with some object we didn’t know of. The final cube rendering which shows the problem
stated above is shown below.

x1

x2

x6

x7

x3

x4

x5

The missing coordinate x8

Figure 23: Output of Cube Render (=O))

References

[1] Camera Calibration Toolbox for MatLab
http://www.vision.caltech.edu/bouguetj/calib_doc/

[2] Uncalibrated Euclidean Reconstruction by Andrea Fusiello, Dipartimento Scientifico
e Tecnologico, Universit’a di Verona
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/FUSIELLO2/rectif_cvol.h
tml

[3] Reconstruction from Multiple Views by Daniel DeMenthon
http://www.umiacs.umd.edu/~ramani/cmsc828d/lecture28_6pp.pdf

