
COMP 471 & CART 498C

Text Snow Project Report

Phuong Thanh NGUYEN, Elena ZAPEVALOVA, Philippe ADIB, Pierre NOGUES

December 11, 2006

1

Team Members
Phuong Thanh NGUYEN : Jitter programming, Design, Set Construction
Elena ZAPEVALOVA : Research
Philippe ADIB : Jitter programming, Physics, Maths
Pierre NOGUES : Jitter programming, Physics, Maths

2

Contents

1 Concept 4

1.1 Description . 4

2 Diagram and Flowchart 5

3 Technical Description 7

3.1 Background subtraction patch . 7

3.2 Main patch . 9

3.3 Sapin noel & letter movie player patches 10

3.4 Fusion patch . 11

3.5 Letter fg patch . 13

3.6 4letters patch . 15

3.7 Collision patch . 16

3.8 New rate patch . 20

3

1 Concept

Text Snowing is an interactive video installation art which requires the motion of
the bodies to lift and play with falling letters that do not really exist. On a large
projection screen, there are slowly falling letters from the top of the screen down
to the bottom. These letters will stop falling when they meet any obstacle, for
example: bodies, any object and keep falling when we remove these obstacles.
When the letters land on any object, each character produces its specific sound.
Sometimes, the participants can catch the whole word or phrase. These letters are
not random because they form lines of a poem or sentence.

The idea of this project is exploring the interactive between real people (or object)
and computer through a camera using motion tracking and video effect.

1.1 Description

”..Interaction between the viewers/performers and the text creates a unique dy-
namic suited for both individual and collaborative exploration. Viewers work to-
gether to decipher the poem, communicating with each other through their pro-
jected/mediated image, or alternatively, disrupt the ”reading” of the poem by steal-
ing letters from one another. One’s image is inserted into a flat abstract space along
with the text, while the text acts as objects that respond to forces in the real world
and also to the physical gestures of viewers. Just as one’s body is ”dematerialized”
onto the projected screen, the text is ”materialized,” appearing as substances that
respond to physical movement. The text ”continues to serve its symbolic function
as an decipherable code, but also as an ’object’ viewers can engage with as if it were
a real physical entity [...] the physical act of catching letters is necessary in order
to read the text at all [...] Because most of one’s body is visible in the virtual space
of the screen as well as in the physical space in front of the screen, a pleasurable
confusion results between the screen space and the real space...”

4

2 Diagram and Flowchart

Here is the diagram of installation :

Figure 1: Installation diagram

5

And the Flowchart of the application :

Figure 2: Flowchart

6

3 Technical Description

3.1 Background subtraction patch

Author : Phuong Thanh NGUYEN

Figure 3: Background subtraction

General Algorithm

Background subtraction is a technique that enables a detection of the body

7

shape of people or other objects in a scene in order to distinguish the pixels which
belong to them from those that do not.

Mathematic Analysis

The arithmetic means:

• Background Subtraction frame by frame :
Result matrix M = The Input matrix (static image) - the set of input matrices
(frames over time)

• The Threshold :
T: fix threshold value Result matrix after threshold = 0 if result matrix M at
coordinate (x, y) ≤ T, and = 255 if result matrix M at coordinate (x, y) > T

Apply algorithm into Jitter

Real time input through a webcam will be captured by jit.qt.grab. To subtract
the background, a static image of the first frame is taken and input into a matrix.
That frame image will be compared with the rest of frames by using jit.op @op
absdiff to subtract the absolute different values between the first frame and the
rest. The background value subtracted will be changed to black and the different
value pixels will turn white or be inverted by controlling the threshold parameter
of jit.op @op >. The black and white threshold output will go through jit.brcosa
to adjust the brightness/contrast/saturation. Fina(lly, its output passes the object
jit.convolve to reduce the noise of the shape and background.

8

3.2 Main patch

Author : Elena ZAPEVALOVA

Figure 4: Main patch

In this patch we create a fusion of three images. The first one is the backgroud
image with a Christmas theme. The second one is the image of falling letters and
the third one is the live video image. To produce the image of falling letters we
take the output from the bgSubtraction patch, which gives us the live video image
transformed in black and white, and pass it through the patch letter fg, which give
us the letters falling with appropriate speed. All these three images pass as input
to the patch fusion, which produces the final output image.

9

3.3 Sapin noel & letter movie player patches

Author : Elena ZAPEVALOVA

Figure 5: Sapin noel patch

In this patch we use jit.qt.movie object which opens our background image and
play it.

Figure 6: Letter movie player patch

This patch plays a letter, taking into account the speed calculated after collision
process.

10

3.4 Fusion patch

Author : Phuong Thanh NGUYEN

Figure 7: fusion patch

General Algorithm

Alpha Blending technique permits the combining of the alpha channels. Frames
can overlay other layers in an image or video in order to show the transparent

11

effects. The alpha channel is an additional eight bits used with each pixel in a
32-bit graphics system that can represent 256 levels of translucency.

Black and White: Opaque, fully transparent Gray: levels of translucency

Alpha Blending can be accomplished in computer graphics by blending each pixel
from the first source image with the corresponding pixel in the second source image.

Mathematic Analysis

Equation of alpha blending:

Final pixel = alpha * (First image’s source pixel) + (1.0-alpha) * (Second image’s
source pixel)

Apply algorithm into Jitter

The jit.alphablend object uses the alpha channel (plane 0) of the input matrix
of one image or video in the left inlet as a per-cell cross fade value, and cross fades
between the input matrices in the left and right inlets. In mode 0, a low value
means more of the right input matrix, while a high value means more of the left
input matrix. In mode 1, a low value means more of the left input matrix, while a
high value means more of the right input matrix.

In the patch fusion we create a fusion of three images. As we cannot do three
images at once, we first take two images and mix them using the jit.alphablend
object. Afterwards we take this output and mix it with the third image in the same
manner.

12

3.5 Letter fg patch

Author : Elena ZAPEVALOVA

Figure 8: Letter fg patch

This patch receives as input the live video transformed in black and white by
bgSubtraction. We use the Jitter object scissors to cut this image into four columns.
After this every column passes as an input to the patch 4letters, which cuts them
again in four parts, and after that we paste the 4 outputs together (4 letters,
see below) using Jitter object glue. We chose to cut the video in two times for
readability reasons.

In order to end up with matrices of the size of a letter video, we used the

13

maximum number of column divisions on a 320x240 matrix, that is, 16 new matrices,
and no row subdivisions. This resulted in matrices of width 320/16 = 20 and of
height 240, that is, 20x240.

14

3.6 4letters patch

Author : Elena ZAPEVALOVA

Figure 9: 4letters patch

This patch receives as input a part (one column) of the live video in black and
white. We cut this image again in four columns using jit.scissors. Every column
passes to the right outlet of the gate object. For every column we have also a video
of falling letter. We pass this video through the patch collision to determine the
collision and the rate (positive or negative) of the falling letter. However, in our
falling text we have not only letters but also blank movies. As collision detection
is very costly, we use a condition statement. If it is a letter, the gate is closed and
the image passes to the collision patch, otherwise the gate is open and we don’t
calculate collision detection. At the end we paste together the four columns of
letters to come back to the initial size of the image and we send it to the parent
patch.

15

3.7 Collision patch

Author : Philippe ADIB

Figure 10: Collision patch

Collision detection was made using several Jitter objects: jit.op @op &&, jit.op
@op > and jit.findbounds.

jit.op @op >

Feeding it as input a letter matrix consisting of a red letter on a black background,
we set the argument of jit.op @op > to a value close to 0. What this did is that it
took any value that was very close to black (ie≈0) and assigned it the value 0. For
values not close to zero (ie > threshold) a value of 255 was assigned (since we’re
dealing with char matrices). Having set a value of 20 as threshold, the red and
black video became black and white, where the red letter became a white letter on
a black background. It would’ve been possible, yet much more strict, to use the
jit.op @op != 0 object. This being so strict, could’ve caused certain very near 0

16

values to turn to white. By precaution, we did not follow that path.

jit.op @op &&

The jit.op @op && patch is an operator that can be used on two matrices. That
is precisely what its use was in TextSnow. The two matrices in use were:

• A stripe of the shape video (in black and white), current frame.

• A letter video (in black and white), current frame.

Having constructed two black and white matrices of dimension 20x240, we can
now perform a logical AND between them. This would result in a new matrix
containing white values only where the white values of the original matrices coincide.
As an illustration, take the following two matrices:

Figure 11: Shape and letter matrices

The resulting matrix of a logical AND performed on the above matrices would
be their intersection, that is:

17

Figure 12: Intersection

As you can see, only part of the E in the letter matrix that coincided with the
shape on the left exists in the final collision matrix. The way jit.op @op && works
is that it does a cell to cell &&, whereby taking every cell of the LHS matrix and
performing a logical AND with its corresponding equivalent in the RHS matrix. This
equivalent cell is equivalent in terms of its position. In other words, a cell at row
index 75 and column index 15 of the LHS matrix will have a logical AND performed
on a cell at the same row and column indices of the RHS matrix. The result will
be stored in a resulting matrix, each logical AND result stored at the same row and
columns index of the cells on which the operation was originally performed.

jit.findbounds

Upon finding what we dubbed the ”collision matrix”, the jit.findbounds patch
was used in order to find the coordinates of the box encompassing all the white
points of the collision matrix. What jit.findbounds does, is that it reads every cell of
a matrix. But before doing so, it must initialize 4 values. Since jit.findbounds returns
a box, this box must be defined by coordinates. The creators of jit.findbounds chose

18

to return as a result the top left and bottom right corners of the encompassing box.
For that reason, all four values of the two coordinates must be initialized. The value
chosen for this purpose is -1, the reason for which being that, if no cell contains the a
color in the specified range, then a value of -1 is returned for all coordinate values.
Now, upon scanning the cells of the matrix, if it finds a cell containing a color
within the accepted range, the coordinates of that cell are set as the minimum
and maximum values for the encompassing box. As the scanning continues, the
coordinates of the new scanned cells are used to update the coordinates of the
encompassing box. In the case where one of the coordinate components of the
cell under scan are smaller than the minimum coordinates or greater than the
maximum coordinates, the corresponding component of the box’s coordinates will
be overwritten with the new value. In pseudo code, this algorithm would be written
as:

if (Scanned cell.x coor < box.xmin) then box.xmin = Scanned cell.x coor;

if (Scanned cell.y coor < box.ymin) then box.ymin = Scanned cell.y coor;

and similarly, for the maximum coordinates of the box:

if (Scanned cell.x coor > box.xmax) then box.xmax = Scanned cell.x coor;

if (Scanned cell.y coor < box.ymax) then box.ymax = Scanned cell.y coor;

It is necessary that each component of the cell’s coordinates be evaluated in-
dividually. Had the update required both components to satisfy a greater than or
less than operation, many of the previous cases where only one component of a cell
beats one of the box’s in a less than or greater than fashion would be lost.

Finally, the encompassing box will not excessively contain all the cells whose color
is within the specified range. This is translated in TextSnow in the following manner.
The specified color range is any value near exactly white, that is 255,255,255 for
the RGB scheme. Therefore, the resulting box will contain all the collision cells
and some (black) background cells due to the square nature of the resulting box.
The output coordinates of jit.findbounds will then be subsequently used in the
”new rate” patch, which is detailed in its own section in this document.

19

3.8 New rate patch

Author : Pierre NOGUES

Figure 13: New rate

This patch calculates the new speed (rate) for playing the quicktime letter movie.
A normal speed should be 0.12 (for a slow motion, like for snow). A negative value
will make the movie playing backward.

In order to do that we need the bounding box of the letter and the bounding box
of the part of the shape colliding with the letter. Then we determine how much
these two boxes overlap each other. It is just algorithm, so there is no need of
special Jitter objects. We use if/then statements to determine when a box overlap
the other, and then if the result is positive we determine if the collision comes from
the bottom of the letter or the top in order to move in the right direction the letter.

With Jitter, bounding boxes are manipulated using the upper left corner and
lower right corner coordinates. Bounding boxes were calculated in the parent patch,
collision.pat, using findbounds Jitter object as explained before. So in this patch,

20

we handle the two Y coordinates to process the comparisons.

First we use Y coordinate of the collision bounding box to know if a collision
occured or not. When -1 is received it means that no collision occured, otherwise a
collision occured and we process the speed calculation. Then we compare the letter
upper Y coordinate (which has a smaller value than the lower Y coordinate) and
the shape upper Y coordinate to determine the side (top or bottom) of the knock.
Then the speed is given by the formula Ymax - Ymin / coefficient, where Ymax
- Ymin represents the height of the shape bounding box, so a unit in pixels, and
coefficient is used to match this number with a reasonable speed. Finally the speed
is positive for a collision coming from the top and negative for a collision coming
from the bottom.

21

References

[1] Adam Lewensohnn, Max Msp Jitter
http://a.parsons.edu/~adam/fall05/max/index.htm

[2] CTIN 534 Experiments in Interactivity I, Exploration and experimentation in design innovative
interactive experiences
http://interactive.usc.edu/members/534/archives/cat_maxmspjitter.html

[3] Tom Igoe: A Few Principles of Video Tracking
http://www.tigoe.net/pcomp/videoTrack.shtml

[4] Computer Vision for Artists and Designers: Pedagogic Tools and Techniques for Novice Program-
mers
http://www.flong.com/writings/texts/essay_cvad.html

[5] Unencumbered Full-Body Interaction
http://a.parsons.edu/~jonah/full_body/

[6] Cycling 74: Max/Msp/Jitter
http://www.cycling74.com

[7] Text Rain, Camille Utterback & Romy Achituv, 1999
http://www.camilleutterback.com

Demo link :

http://video.google.com/videoplay?docid=7518563856730771001&sourceid=docidfeed&hl=en-CA

22

	Concept
	Description

	Diagram and Flowchart
	Technical Description
	Background subtraction patch
	Main patch
	Sapin_noel & letter_movie_player patches
	Fusion patch
	Letter_fg patch
	4letters patch
	Collision patch
	New_rate patch

