Team UberPong

Technical Report

Concordia University

Department of Computer Science

and Engineering

Computer Graphics: Realtime Video

COMP471 --- Fall 2006

[image: image29.png]
Project Technical Document
	Team information

	Team : UberPong

	Name
	SID

	Alain Chung
	5450373

	Ludovic Briere
	6129447

	Jae Won Chun
	4435729

	David Yu
	4926390

	
	

	
	

TABLE OF CONTENTS
41. Introduction and Scope

41.1 History

41.2 Introduction

41.3 Scope

62. The Team & Responsibilities

62.1 Alain Chung

62.2 Jae Won Chun

62.3 David Yu

62.4 Ludovic Briere

73. Design and Conception

73.1 Project Vision

83.2 Setup and Required Equipment

114. Implementing Project Components

114.1 Camera Live Feed

114.2 Color Detection

144.3 Matrix Operations

144.4 Edge detection

164.5 Motion Detection and Ball Collision Physics

174.6 Ball Animation (physic)

194.7 Ball Animation (OpenGL)

214.8 Collision detection

234.9 Scene projection

255. The Result

255.1 A Few Words Concerning Exhibitions

265.2 Possible Tweaks and Ameliorations

276. Conclusion

287. Milestones / Timetable:

297.1 Deliverables :

308. References

319. Appendix

319.1 ballOpenGL

329.2 CheckInBounds

329.3 ColorDetection

339.4 DerivativeFromSuccessive

349.5 EdgeDetection

359.7 GetDerivative

359.8 GetNewPosition

369.10 LinearMovement

379.11 Main

389.12 MoveBall

399.13 Score

409.13 SoundGenerator

1. Introduction and Scope
1.1 History
Pong was a game released by Atari in 1972. This was the first commercial video game that made its way to consumer’s homes. Back then, it was considered a top end technology. In parallel to this, UberPong is the first video game that most of us have had the chance to work on. The reason why we chose to work on this project is to show how powerful responsive video has become nowadays. While it took years of development to release Pong, only a few months were necessary to create UberPong, which is by far, a lot more potent.

1.2 Introduction
UberPong is an interactive game that is played in real time, using a live feed to update and synchronize the players and ball’s movements in the project screen. This will be accomplished using a camera, a Max/MSP/Jitter patch, and a projector. The game involves two players, who will have a glove to knock the ball back and forth between each other, such as the original Pong game. When the ball gets hit past the opponent and reaches the border of the screen, the player gets a point. The score will be shown in the top of the projected screen.

1.3 Scope
This document introduces the members of Team UBERPONG and describes the project itself. UberPong will be broken down to multiple stages of development and each stage will be described. Included with the documentation are the actual patches used to implement UberPong (on a CD), as well as pictures taken from the presentations. A screenshot of all the patches is presented in the annex of this document.

The scope of this document encapsulates the technical aspect of UberPong such as the setup, resources needed, technical challenges, and the general vision of the project. In addition, a thorough explanation of the different patches used to accomplish this project together with the logic and physics for each part will be described in the subsequent sections of this technical document. A project timeline is also available.
Our project website can be accessed at http://hybrid.concordia.ca/~sasooab/cart498/.

2. The Team & Responsibilities
The team consists of three students from the Faculty of Engineering and Computer Science (ENCS) and one from the Fine Arts Department (CART).

2.1 Alain Chung

(Computer Eng.) 5450373

Alain has taken the lead designer role. He has also given the preliminary concepts for UberPong and will accept the role of project leader. Alain will also implement the mathematics and physics underlying UberPong. Alain will also help design the Max/MSP/Jitter patches and their documentation.

2.2 Jae Won Chun

(Comp. Arts) 4435729

Jae Won has chosen to design and implement the UberPong project website. She will also be assisting the team in finding creative effects to be applied in Max/MSP/Jitter.
2.3 David Yu

(Computer Eng.) 4926390

David will also assist in design the Max/MSP/Jitter patches, including the addition of visual and sound effects. David is also responsible for documentation and will be working on the technical document as the project progresses.
2.4 Ludovic Briere

(Computer Science) 6129447

Ludovic will be taking a leading role in integrating OpenGL and video manipulation that will make UberPong possible. He will be solving problems such as color detection, matrix operations, and video compositing. Ludovic will also be assisting in applying mathematical concepts and documentation.
3. Design and Conception
3.1 Project Vision
The average time spent admiring a piece of art is about 30 seconds. UberPong will attempt to keep its public interested for longer since they will be occupied in a fun and competitive game. This idea came from the consideration of the great potential of responsive real-time video. That aspect is well captured in UberPong, since it uses a patched live feed.

The two players will stand in a place with uniformly lighted background. The ball used is created using. The ball depicts real physics of motion. Thus, the ball used during game play is a virtual one and is going to move with respect to real time inputs, which is the responsive component. The players are given a big red glove which will act as a shield to reflect or hit the ball back to the opponent. The red color is chosen to facilitate movement tracking. In fact we can choose any color we want since we can set the color we want to track.

When the ball reaches either end of the screen, the opposite player gets a point. Also, the player will be banned from wearing any red to avoid “cheating”. The reason for doing so is that it will allow the ball to go through the player when the latter misses the ball.
[image: image2.png]
Figure 1: Initial Project Vision
3.2 Setup and Required Equipment

When UberPong will be set up in the EV building; the Mac lab will be perfect for our project settings. An iSight camera will be connected to any computer terminal equipped with Max/MSP/Jitter, a projector, and speakers. The live feed will be driven through the patch and the final product will be projected onto the screen in front of the room. Here is diagram of the setup:

[image: image3.png]
Figure 2: UberPong Setup
Setup area: Room EV.5.525

Required Equipment:
1 X Camera
1 X Projector
1 X Projection screen
1 X Pair of red gloves
1 X Computer with Max/MSP/Jitter (under Mac OS X)
1 X Set of speakers

3.2.1 Stage 1: Live feed
Equipment used: camera, pair of red gloves
Description:
To properly isolate colors for the overall image and to focus on the important objects (gloves), the gloves need to exhibit strong contrast from other objects. The camera will film an area of 2 X 4 meters in which 2 players are standing on opposite sides of the screen.

3.2.2 Stage 2: Video processing
Equipment used: computer
Description:
The live feed will be processed using the computer using Max/MSP/Jitter. The processed video will be overlapped onto the live feed.

3.2.3 Stage 3: Projection
Equipment used: projector, projection screen, set of speakers
Description:
The final video will be projected onto a projection screen. The command console in room EV.5.525 as a VGA input cable that feeds the projector. The speakers will be connected to the computer because there will be audio effects.

3.3 Software Architecture

The main components underlying UberPong are enumerated in the flow chart below:

[image: image4]
The details of each component are explained in details in the subsequent section.

4. Implementing Project Components
All patches described below are presented as screenshot in the appendix of this document. The actual patches are contained in the CD submitted with the Technical Report.
4.1 Camera Live Feed

For the streaming of live video, the patch camerainput from our lab instructor is used. It gets the available video input from the machine which includes the iSight used for our project. The core of this patch is the jit.qt.grab that enables video digitization from an external source into a Jitter matrix, which can be manipulated. This patch takes in two inputs which are the open/close and a metronome input which enables/disables video capture from the iSight and sets the sampling rate of video digitization. The sampling rate is very important in our project for the movement detection. The sampling rate needs to be as high as possible to capture fast movement of the gloves.

4.2 Color Detection

The purpose of this patch is to detect and isolate a specific colour from the rest of an image. This poses a challenge if an image is highly saturated with rich colours. So, for the purpose of UberPong, a ‘boring’ background will be preferable.
In image processing, an image is composed of a vector of values. Each value inside the vector represents a pixel and the pixel can take on three colours RGB (Red, Blue, and Green). In most applications such as Max/MSP/Jitter, the image is usually expressed as a red, blue, and green image added together (I = R + G + B). So when we look for a special colour we are actually looking for pixels which have their three components set to a special value.

To build this patch we use a jit.unpack to separate each colour layer of the video. The jit.unpack object makes multiple single plane matrices out of a multi-plane matrix. That is decomposing the image feed into the four ARGB (alpha, red, green, and blue) planes. Then we build a mask for the image so that only the pixels which are in a certain range are kept. The mask is done for each plane so that it will allow colours of a particular colour and its neighbouring colours to be kept.

To make this mask we first use a jit.op @op <=p that let values lower than a certain threshold pass. Then we use a jit.op @op > that let values higher than a certain threshold pass. This operator has the specificity to set all pixels to 1 if their original value was higher than the threshold. Combining the result of these two operations, we get a matrix in which there is only “ones” and “zeroes”. The “ones” corresponds to pixels which had their original value in the right range and thus only the colour needed and its similar colours are displayed.

The previous operations are made 3 times, one for each color component. After, we add the three masks using a logical AND (using jit.op @op &&) to get the final mask which represent the pixels of the video which matches the colour and neighbouring colours that we are looking for.

Finally, we multiply this mask (using jit.op @op *) with the original video to display only the colour matching pixels. The multiplication of the original video with the mask containing only “ones” and “zeroes” will result in a matrix that contains only values at the pixel locations with values “ones” of the masks. Thus, pixels in the mask range will be shown and everything else will be stripped out. The following three figures will show how a mask isolates the required pixels.

Mask

Result Matrix

 Original Matrix
	0
	0
	0

	0
	5
	0

	0
	0
	0

	0
	0
	0

	0
	1
	 0

	0
	0
	0

	1
	2
	1

	3
	5
	7

	-1
	-2
	-1

To find the red colour of the glove that is used for our project, we use the jit.sukah to obtain its RGB components. In the ColorDetection patch, a sub function was written to find the average RGB saturation in a given zone (i.e. we can drag the mouse over the red colored object and make an average presense of each RGB component). With this information, we can build the three masks in each plane in order to detect the right colour range. This step is required and repeated during the setting in different lighting conditions since the RGB component captured by the camera will differ in each case. We then adjust the range to more or less 20 to 30 units, out of 255, above and below our mask, which allows only a distinctive colour to pass through the filter. The images below show the input and the output of this patch.

[image: image1][image: image24.jpg]Before:

After:

4.3 Matrix Operations

After the applying the colour detection patch to the live video feed, the object jit.resamp is used to resample the output spatially with a factor of -1. This will have the effects of inverting the projected image during play so that the player’s movement will follow in the same direction on the screen.
Following, we use the jit.scissors @columns 2 object to cut the matrix into two even parts on the vertical axis. So in our case we have a 320*240 matrix as input, after applying jit.scissors @columns 2 we obtain two 160*240 matrixes. This will separate the playing sides for each player so we can track the position of each glove and apply different ball movement and sound effects for each side. The reason why we use this object is that for position and movement detection we use the jit.findbounds object which returns the bounding box of pixels having specified values. If we do not separate the two sides of the image the jit.findbounds object will return the coordinates of the bounding box holding the two gloves, preventing us to calculate two different speeds.
Just after this operation we have to rebuild two matrixes of the right size, i.e. 320*240. To do this we use the jit.concat object which can append or prepend a matrix to another to build a bigger matrix. For the left part of the video we use jit.concat with the attribute mode set to 1 so we append a 160*240 matrix filled of 0 at the right of the 160*240 input matrixes. For the right we set mode to 1, so we append a 160*240 matrix filled of 0 on the left.
4.4 Edge detection

The next component consists of detecting the edge of the gloves. The first patch was useful in sense that it removes all unnecessary information from the original live feed. The edge detection is then applied in order to realize the collision detection. For the edge detection component, we have decided to use the built in jitter object jit.sobel. The edge detection will be processed only on the live feed. The following images show the input and output of this patch.

Before:

After:

[image: image25.jpg][image: image26.jpg]
The mathematical aspect of the edge detection object jit.sobel is covered in more detail in the following lines. To do Sobel (1970) edge detection, we once again use masks. This time we make two passes over the image, using a different set of matrix values each time. Here are the mask values that are used.

	1
	2
	1

	0
	0
	0

	-1
	-2
	-1

	1
	0
	-1

	2
	0
	-2

	1
	0
	-1

Two new values at each pixel location namely temp1 and temp2 are obtained by applying both of these mask kernels on each pixel in the image. This method uses convolution in the following manner: the first mask is for blurring and the second for the derivative of the image.

[image: image5.emf]
These derived values are then averaged for each pixel using the following formula.

[image: image6.emf]
A single value at each location can also be produced using this formula: sqrt(temp1*temp1 + temp2*temp2). It may be noticed that this formula looks like the Pythagora’s hypotenuse equation c = sqrt(a*a + b*b). Finally, this single value is used in the following way: if it is above a certain threshold (specified inside Jitter), then there is an edge at that location.

4.5 Motion Detection and Ball Collision Physics

This part will be used mainly to detect movement from the vertically split matrixes. This component is required to make the virtual ball move according to real time inputs. Once a collision between the ball and a glove is detected, the ball needs to move according to the speed and direction applied by the player. To realize movement detection, the jit.findbounds object is applied on the feed from the split matrix that is after colour and edge detection. This is done on both halves of the screen and will track the exact position of each glove on the screen at all time.
This is applied on the collision detection matrix output. This patch will then find the location of the collision by first finding the four bounds of the collision point. After, we use these boundaries and calculate the middle point in the x and y to find the centre of the collision or point of impact.

By computing the derivative between two successive frames within set intervals of time, we will have the instantaneous velocity of the moving glove. The derivative of the displacement is the velocity. Thus we use the following equation to obtain the velocity:

v(t) = (x(t + delay) – x(t) / time delay)

The live feed video is sampled at a default value of 50 and thus the delay of is 50. The sampling rate can be changed but this value is optimized for the computer running the patch. It is essential that the image be sampled sufficient rate; else the image quality will be severely degraded. In theory, the sampling rate should be as high as possible so fast movement are detected and a better derivative to be calculated. However, in reality, the computational limitation of the computer has to be taken into account so that the patch can runs smoothly without being overloaded.

Also, the velocity transfer from the glove is based on the displacement of the glove at the point of collision. If the glove is standing still, the ball will not move when it hit the glove. However, a tweak is done such that when the velocity of the glove is under 0.25, we double the glove velocity in the opposite direction. This has the effect of the ball bouncing off the glove instead of stopping on the glove. All is done with the assumption that all objects share the same mass.
4.6 Ball Animation (physic)
The MoveBall patch is responsible for the ball movement which gives free space momentum to an object centred at (x, y). It is also used to compute the score of each player to be displayed on screen. The user can also change the boundaries on the x and y axis where the ball will be reflected with the same reversed velocity. This patch has a total of seven inlets and four outlets.

· inlet 1: start/stop the patch

· inlet 2: sets the metronome rate (15 ms by default)

· inlet 3: x-direction ball velocity

· inlet 4: y-direction ball velocity

· inlet 5: x boundary value (22 by default)

· inlet 6: y boundary (15 by default)

· inlet 7: score reset

· outlet 1: outputs the x position

· outlet 2: outputs the y position

· outlet 3: outputs the score of the player on the left

· outlet 4: outputs the score of the player on the right

The inlets 2 and 3 are used to bang a velocity change when a collision is detected. If the ball simply hits a boundary on the screen, it will be reflected with the same velocity, but in the opposite direction. The outlet 1 and 2 returns the new position of the ball after a collision. The patch uses two instance of the LinearMovement patch which computes a new position for the x and y position. This patch has four inlets and three outlets.

· inlet 1: bang from metro

· inlet 2: screen size

· inlet 3: velocity

· inlet 4: bang to reset

· outlet 1: outputs new position

· outlet 2: outputs the score of the player on the left

· outlet 3: outputs the score of the player on the right

The new position is calculated using the initial position x(t), the delay , acceleration a(t), and the initial velocity v(t) using the following physics’ equation for the new position x(t+delay) = x(t) + delay*v(t) + 0.5*a(t)*delay2. The default value for acceleration is zero for our patch, so the last part of the equation is always zero. We left the equation in its original form for completeness purpose. The default values for the other variables are x(t) = 0, delay = 0.05, and v(t) = -1. Another part of this patch is to check if the new ball position is inside the x and y boundaries of the screen. If the ball is getting out of bounds, the velocity of the ball is inverted. This will make the ball bounce off from the screen edges. In addition, this patch is used to count the number of times the ball reaches on edge of the screen at x = 0 and at x = boundary value set to display the score of each player.

The new position values are from the first subpart MoveBall is then passed on to the ballOpenGL which renders a ball in OpenGL given inputs (x, y, z) and outputs a matrix which display the ball at the specified location. This patch has three inlets and one outlet.

· inlet 1: x position (default 11)

· inlet 2: y position (default 7)

· inlet 3: z position (default 0)

· outlet: 320 X 240 matrix

The default value for z is set to zero and is never changed to keep the on screen size of the ball constant. The default x and y values allow the whole ball to be displayed on the screen initially.
Instead of using existing Jitter objects, we have chosen to implement our own patches since it offers more flexibility. The physics are applied through Max/MSP/Jitter because the input data can be extracted directly from the live feed. So, we can use that data right away, even though synchronizing all the data was a challenge.
4.7 Ball Animation (OpenGL)

What is OpenGL ?

OpenGL is a programming interface mainly for 3D applications invented by Silicon Graphics. It renders 3D objects to the screen, providing the same set of instructions on different computers and graphics adapters. The OpenGL API was designed for use with the C and C++ programming languages, and allows developers in diverse markets such as broadcasting, CAD/CAM/CAE, entertainment, medical imaging, and virtual reality to produce and display incredibly compelling 2D and 3D graphics.

What OpenGL Does

· Allows definition of object shapes, material

· Arranges objects and interprets synthetic

· Converts mathematical representations

· Calculates the colour of every object

Why we use OpenGL
OpenGL is a really powerful way to render 3D objects. So we chose it to create different special effects and gaming mode. Unfortunately we had not enough time to implements this. But it’s still possible to modify this patch to add any interesting effect like blurring, shadowing and texturing.

Our patch ballOpenGL uses OpenGL included in jitter. However, in order to be able to manipulate the OpenGL object and integrate it with the rest of UberPong, it was necessary to import it into a Jitter matrix. This complicates rendering since it will be done using software rendering, instead of the GPU. Consequently, this causes UperPong to run slower.
The inlets of this patch are the x, y and z coordinates of the ball to render. The right part of the patch allows us to define how we will see the rendered object.

If you have an object and you want to render it from a special viewpoint you have to specify some information:
· Position of the camera
· Which way we are looking

· Which way is “up”

· Field of View

· Near and Far clipping plane
That’s exactly theses information we provide using pak camera x y z pak up x y z pak look at x y z lens_angle x near_clip x et far_clip x.
The near and far clipping planes are used to specify the bounds of the space we want to see in the screen. In our case we don’t really need this but we have to specify it.
The following picture illustrates perfectly the situation.

[image: image7.emf]
In the middle of the patch we can specify the scaling of the object we are drawing. This can be useful to change the aspect of the ball. In the same part we can specify the jit.gl.gridshape to draw object of different aspect like a tore or a cube. This can be used to create special gaming mode! We can also change the color of the renderer object.
4.8 Collision detection

This component is a very important part of our project since it will allow us to detect the collision between the ball and the glove when a player tries to hit the virtual ball. Although this part is crucial for our project, it was surprisingly one of the simplest to implement. In fact, the input 1 of this patch is the live feed after color and edge detection and the input 2 is the OpenGL generated ball after edge detection. Then, both matrices are combined using the jitter object jit.op @op &&.
This operation will make a matrix with values on pixels when both input matrices contain a nonzero value at the same pixel location and zero values for other pixels. In other words, the resulting matrix will be a video showing only overlapping edges from both videos and specifically a collision between a glove and the ball. If there is no collision, nothing will appear on the resulting video. The result from this patch is used in the subsequent part for determining the exact on screen location of the collision. The following images shows the inputs to the patch and the output from the patch where a collision occurs between the objects.

[image: image8.png]
The collision detection patch is applied on each halves of the screen and will generate a different sound depending which player is hitting the ball. Also, jit.concat is applied to each halves to fill in a 320 X 240 matrix before submitting to the input of the collision detection patch.
4.9 Scene projection

The final component of our project consists of combining the live feed together with the OpenGL ball in the same video. The jit.chromakey object from jitter is used to fulfil this purpose. The merging of both input videos is achieved by keying based on chromatic distance. This is done by replacing the black background of the OpenGL ball video with live feed. The jit.chromakey object posses attributes such as minkey, maxkey, and fade.
The input in the left inlet, ballOpenGL, is converted to a greyscale mask internally. Pixels with color values within the tolerance range are set to the maxkey attribute’s 1 in the mask. Regions outside the tolerance range are multiplied by the minkey attribute 0. This mask is then applied on the first inlet by multiplying the input matrix with the mask. The result is a ball moving on a black background. The white part represents the original to be kept while the black part is to be replaced by the other input. The mask is inverted and multiplied with the other input video thus removing the part to be replaced. This process is illustrated in the following pictures.

[image: image9.emf]
The score of each player also needs to be displayed on screen. The score patch displays the score of each player using jit.lcd and prepend move to for the display location. Jit.rgb2luma takes that results and converts it for the alpha plane. The result is then packed with the original video obtained from chromakeying and jit.alphablend puts everything together which is our final projected video on the screen

5. The Result
In this section, picture of the real set-up in lab during the presentation on December 7th and 8th can be found. A video of the game play between two players is also included in the CD-ROM included with the present document.

[image: image10.jpg]
Figure 3: Game time

5.1 A Few Words Concerning Exhibitions

The first exhibition on Thursday went smoothly. The audience was captivated by our project. This is due to the fact that UberPong was one of the only projects that processes and incorporate so many elements of the live feed. In that sense, we feel that we have accomplished our initial goals.
The only noticeable difficulties were when we let people playing our game. Whether they moved the gloves too fast preventing the patch from correctly identifying the movements or they moved not quickly enough, preventing the patch from applying the correct direction to the ball. We also noticed a few problems due to a non-uniform lighting so sometimes it seems that the collision between the gloves and the all was not properly detected. To play Uberpong a short time is needed to adapt oneself to such a way of playing.

The next day was perfect since we had a constant lighting.

The same day we also tried to play in extreme conditions: poor lighting and a dark red background. At first we thought the game would be unplayable but after correctly setting the color to be detected we have noticed that the game was still playable! We should admit that some times the path recognized part of the red background as being part of the glove, causing abnormal rebound, but it just happened a few time.
5.2 Possible Tweaks and Ameliorations
UberPong implements all basic features it initially planned, which is the most complicated part. If it were worked on further, UberPong can have more video/audio effects can be added when collisions occur. This is simple to do since the collision detection patch will output a bang as well as the (x, y) location when a collision occurs.

To increase the speed of the video response, we will need to reduce the work load on the processor. This can be done in either one of these 3 solutions:

1- Decrease the size of the input and output matrixes, thus reducing the number of pixels to be processed

2- Decrease the video sampling rate, thus reducing the input fps rate. This might be bad because collision detection depends on video sampling to be precise.

3- Decrease the projection output rate. This would result in a non-fluid final product, which will not please UberPong players.
6. Conclusion
The power of responsive video is fruitfully represented in UberPong. Using real time data as inputs to complex computations, it was possible to create a mix a virtual environment with a live feed, while applying real physical and mathematical concepts. Although the basic functions were successfully implemented, it is regrettable that we did have more time to add more visual and audio features into UberPong, as well as different game modes.

With the ever increasing progress made in the field of computation, responsive video will see its potential raised continuously. A game like UberPong might seem impressive to us now, but in a couple of years, it will maybe seem obsolete and trivial, just as Pong has become. This shows that the boundaries between machine and human imagination will only diminish until our creativity is limitless. Who knows, maybe one day, human creativity will become trivial to machines.
[image: image27.png]7. Milestones / Timetable:
7.1 Deliverables :

October 23: Proposal Deliverable
November 21: Revised Proposal
December 7: Project Due
December 11: Technical Document

8. References
1. Edge detection Sobel: http://www-csl.csres.utexas.edu/users/billmark/teach/cs384g-05-fall/projects/impressionist/imageproc.html
2. Max/MSP/Jitter Tutorials.

3. Our good old physics book from cegep:

BENSON Harris, University Physics, Revised Edition, 1996.
9. Appendix
9.1 ballOpenGL
[image: image11.png]
9.2 CheckInBounds
[image: image12.png]
9.3 ColorDetection

[image: image13.png]
9.4 DerivativeFromSuccessive
[image: image14.png]
9.5 EdgeDetection
[image: image15.png]9.6 FindLocation
[image: image16.png]
9.7 GetDerivative
[image: image17.png]
9.8 GetNewPosition
[image: image18.png]
9.10 LinearMovement
[image: image19.png]
9.11 Main
[image: image28.png][image: image20.png]
9.12 MoveBall
[image: image21.png]
9.13 Score
[image: image22.png]
9.13 SoundGenerator
[image: image23.png]
chromakey

Ball Collision

(Physics)

Scene projection

(Projector)

Ball animation

(Physics)

Virtual feed

(OpenGL)

Motion detection

(Jit.findbounds)

Collision detection

(Jit.op @op &&)

Edge detection

(Jit.Sobel)

Color detection

(threshold, mask)

Live feed

(Camera)

PAGE
13
COMP471
Concordia University

