- Digital Image Processing
- (Digital Video Processing)

comp 471 / cart 498c computer graphics: real-time video Monday 11 Sep 06

digital imaging Digital Image Processing Digital Video Processing

other applications of DIP/DVP

<u>A Multidisciplinary Science</u>

Type #1: Reflection Images

- Image information is **surface** information: how an object **reflects/absorbs** radiation
 - Optical (visual, photographic)
 - Radar
 - Ultrasound, sonar (non-EM)
 - Electron microscopy

Type #2: Emission Images

- Image information is **internal** information: how an object **creates** radiation
 - Thermal, infrared (FLIR)
 - Astronomy (stars, nebulae, etc.)
 - Nuclear (particle emission, e.g., MRI)

Type #3: Absorption Images

- Image information is **internal** information: how an object **modifies/absorbs** radiation
 - X-Rays in many applications
 - Brightfield optical microscopy
 - Tomography (CAT, PET) in medicine
 - "Vibro-Seis" in geophysical prospecting

Electromagnetic Radiation

All this is used by "imagers"...

Scales of Imaging

From the **gigantic**... Э Horologium Perseus (of galaxies) Fornax Local Group ----The Great Wall Centaurus / Hydra **Pisces-Cetus** Virgo 10₂₈ m Shapley Coma

Scales of Imaging

...to the everyday

video camera

Im

Scales of Imaging

...to the **tiny**.

Dimensionality of Images

Images and videos are multi-dimensional
(≥ 2 dimensions) signals.

3D-to-2D Projection

 Image projection is a reduction of dimension (3D-to-2D): 3-D info is lost. Getting this info back is very hard.

"field-of-view"

 It is a topic of many years of intensive research: "Computer Vision"

"The image is not the object" Rene Magritte (1898-1967)

Vision is a RELATION: R(object, subject, ambient) R(?, subject, ambient) R(object,?, ambient)

digital image

<u>CCD Image Sensing</u>

- Modern digital cameras sense 2-D images charge-coupled device (CCD) sensor arrays.
- The output is typically a line-by-line (raster) analog signal:

<u>CCD Image Creation</u>

• Each CCD array cell has three "potential wells." At some instant, the middle "well" has a charge applied to it.

shift register

- Each **photon** strike creates an **electron**. The # of electrons created is proportional to the # of photons.
- At each clock the electrons are shifted twice by shifting the charges on the wells.

• At the second shift the electrons at the end sensor are shifted into the shift register

 The electrons are then shifted into an amplifier outputting a current with voltage potential proportional to the # of electrons

 The amplifier output is a line-by-line video analog waveform of standard format, e.g. NTSC: 525 lines/frame, 30 frames/sec

• For computer processing, the analog image must undergo A/D Conversion. 21

A/D Conversion

- Consists of sampling and quantization.
- **Sampling** is the process of creating a signal that is defined only at **discrete points**, from one that is continuously defined.
- Quantization is the process of converting each sample into a finite digital representation.
- Analog vs Digital Video
 - IEEE 1394 = Firewire
 - cable length limitation

Sampling

• Each video raster is converted from a continuous voltage waveform into a sequence of voltage samples:

continuous electrical signal from one scanline

sampled electrical signal from one scanline

Sampled Image

• A sampled image is an array of numbers (row, column) representing image intensities

depiction of 10 x 10 image array

24

• Each of these **picture elements** is called a **pixel.**

<u>Sampled Image</u>

- The image array is rectangular (N x M) with dimensions $N = 2^{P}$ and $M = 2^{Q}$ (why?)
- Examples: square images
- P=Q=7 128 x 128 ($@ \approx 16,000 \text{ pixels}$)
- P=Q=8 256 x 256 $\sqrt{2} \approx 65,500$ pixels)
- P=Q=9 512 x 512 $(2 \approx 262,000 \text{ pixels})$
- P=Q=10 1024x1024 (2 \approx 1,000,000 pixels)

Sampling Effects

- It is essential that the image be sampled **sufficiently densely**; else the image quality will be severely degraded.
- Can be expressed via the Sampling Theorem) but the visual effects are most important (make your own example!)
- With sufficient samples, the image **appears continuous**.....

<u>Sampling in Art</u>

Seurat - La Grande Jatte – Pointillist work took 2 years to create

Quantization

- Each gray level is quantized: assigned an integer indexed from 0 to K-1.
- Typically there $K = 2^B$ possible gray levels.
- Each pixel is represented by B bits, where usually $1 \le B \le 8$.
- 24bit Color

8-bit representation

Quantization

- The pixel intensities or gray levels must be quantized **sufficiently densely** so that excessive information is not lost.
- This is hard to express mathematically, but again, quantization effects are visually obvious (make your own example!)

Image as a Set of Bit Planes

>> Image Notation <<</p>

• Denote an image matrix $I = [I(i, j); 0 \le i \le N-1, 0 \le j \le M-1]$ where

> (i, j) = (row, column) I(i, j) = image value at (i, j)

 $\mathbf{I} = \begin{bmatrix} I(0, 0) & I(0, 1) & \cdots & I(0, M-1) \\ I(1, 0) & I(1, 1) & \cdots & I(1, M-1) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ I(1, M-1) & \vdots & \vdots & \vdots \\ I(1, M-1) & \vdots & \vdots & \vdots \\ I(1, M-1) & I(1, M-1) & \vdots & \vdots \\ I(1, M-1) & I(1, M-1) & \vdots & \vdots \\ I(1, M-1) & I(1, M-1) & \vdots & \vdots \\ I(1, M-1) & I(1, M-1) & \vdots & \vdots \\ I(1, M-1) & I(1, M-1) & \vdots & \vdots \\ I(1, M-1) & I(1, M-1) & \vdots & \vdots \\ I(1, M-1) & I(1, M-1) & \vdots & \vdots \\ I(1, M-1) & I(1, M-1) & \vdots & \vdots \\ I(1, M-1) & I(1, M-1) & \vdots & \vdots \\ I(1, M-1) & I(1, M-1) & \vdots & \vdots \\ I(1, M-1) & I(1, M-1) & \vdots & \vdots \\ I(1, M-1) & I(1, M-1) & \vdots & \vdots \\ I(1, M-1) & I(1, M-1) & \vdots & \vdots \\ I(1, M-1) & I(1, M-1) & \vdots & \vdots \\ I(1, M-1) & I(1, M-1) & \vdots & \vdots \\ I(1, M-1) & I(1, M-1) & \vdots & \vdots \\ I(1, M-1) & I(1, M-1) & \vdots & \vdots \\ I(1, M-1) & I(1, M-1) & \vdots & \vdots \\ I(1, M-1) & I(1, M-1) & \vdots & i \\ I(1, M-1) & I(1, M-1) & I(1, M-1) & i \\ I(1, M-1) & I(1, M-1) & I(1, M-1) & i \\ I(1, M-1) & I(1$

 $\begin{bmatrix} I(N-1,0) & I(N-1,1) & \dots & I(N-1,M-1) \end{bmatrix}$ or I(n), where n = vector (i,j) in Z x Z

<u>Common Image Formats</u>

- JPEG (Joint Photographic Experts Group) images are compressed with loss see Module 7. All digital cameras today have the option to save images in JPEG format. File extension: image.jpg
- TIFF (Tagged Image File Format) images can be lossless (LZW compressed) or compressed with loss. Widely used in the printing industry and supported by many image processing programs. File extension: image.tif
- GIF (Graphic Interchange Format) an old but still-common format, limited to 256 colors. Lossless and lossy (LZW) formats. File extension: image.gif
- PNG (Portable Network Graphics) is the successor to GIF. Supports true color (16 million colors). Somewhat new not yet widely supported. File extension: image.png
- BMP (bit mapped) format is used internally by Microsoft Windows. Not compressed. Widely accepted. File extension: image.jbmp

The Image/Video Data Explosion

- Total storage required for one digital image with 2^P x 2^Q pixels spatial resolution and B bits / pixel gray-level resolution is
 - B x 2^{P+Q} bits.
- Usually B=8 and often P=Q=9. A common image size is then ¼ megabyte.

33

• Five years ago this was a lot.

The Image/Video Data Explosion

- Storing 1 second of a gray-level movie (TV rate = 30 images / sec) requires 7.5 Mbytes.
- A 2-hour gray-level video (8x512x512x30) requires 27,000 megabyte or **27 gigabytes of storage** at nowhere near theatre quality. That's a lot **today**.
- DIP/DVP includes ways to **compress** digital images and videos (*not this class*).

Sampling Tesselations

- Digital image processing systems almost always use Cartesian (row, column) sampling of images.
- Simplicity of indexing in (procedural) algorithms.
- Worth noting: the retina of the eye uses a hex sampling packs pixels more tightly:

Hexagonal Sampling

- Hex images can also be indexed by rowcolumn, though the axes are not orthogonal.
- Hex sampling eliminates ambiguity in "connectivity"

4-connectivity

8-connectivity

Unambiguous hex neighbors.

Kepler Sphere Packing Problem (1611)

Sir Walter Raleigh, how to pack the most cannonballs in a given volume Kepler conjectured in 1611 Hexagonal Face-centered cubic lattice Thomas Hales, University of Michigan

Hexagonally sampled image (with exaggerated pixels)

What About Color?

- Color is an important aspect of images.
- A color image is a vector-valued signal. At each pixel, the image has three values: Red, Green, and Blue.
- Usually expressed as three images: the Red, Green and Blue images: **RGB representation**.
- Although color is important, we will nearly always process the intensity image I = R + G + B.
- Most color algorithms process **R**, **G**, **B** components separately like gray-scale images then add the results.

39

• There are other color representations, e.g. HSB, CMYK (why also dim 3 ?).

Color is Important!

... in many ways...

...although we can function without it

The Boating Party - Renoir

Color

R

Intensity 41

B

human vision

<u>A Bit About Visual Perception</u>

- In most cases, the intended receiver of the result of image/video processing or communications algorithms is the human eye.
- A fair amount is known about the eye:
 - the neurons (rods, cones) sample and quantize
 - the retinal ganglion and cortical cells linearly filter

• Notice that image sampling at the retina is **highly nonuniform**!

44

1.5 mm

Eye Movement

- The eyes **move constantly, to** place/keep the fovea on places of interest.
- There are five major types of eye movement:
 - saccadic (attentional)
 - pursuit (smooth tracking)
 - vestibular (head movement compensating)
 - microsaccadic (tiny; image persistency)
 - vergence (stereoscopic)

To demonstrate microsaccades, first fixate the center of the white dot for 10 sec, then fixate the small black dot. Small displacements of the afterimage are then obvious -- the slow drifting movements as well as the corrective microsaccades.

Saccades and Fixations

Highly contextual

Less contextual

phenomenology of vision

- Constancy of scene is a construction!
- Object is a construction!

Visual Husiens Constructions

Find the black dot

Which lines are straight?

Which face is blue?

The Mars "face"

Spiral?

Triangle? 48

More Visual Constructions

Even More Visual Constructions

A Rabbit.... Or A Duck? hint: the duck is looking left, the rabbit is looking right

How many legs does this elephant have?

Man Playing Horn... Or Woman Sillhouette? (hint: woman's right eye is the black speck in front of horn handle)

Old Woman...Or Young Girl? hint:The old woman's nose is the young girls Chin.

Woman In Vanity... Or Skull? hint: move farther a bit from the screen and blink to see the skull or the woman (looking at the mirror)

"Illusions" involving object shapes

Yet More Visual Constructions

Keep staring at the black dot. After a while the gray haze around it will appear to shrink.

Yes, perfectly straight lines...

Ascending and Descending M.C. Escher

An Unusual Visual Aftereffect

Stare at the dot for ten seconds.....

An Unusual Visual Aftereffect

Which image is blurred?

Which Face Is Angry?

(try blurring them)

Watch this!

... then stare at this...

FOCUS ON THE DOT IN THE CENTRE AND MOVE YOU HEAD BACKWARDS AND FORWARDS. WEIRD HEY ...

You Thought That Was Bad...

.... And How About This

"The image is not the object" Rene Magritte (1898-1967)

Vision is a RELATION: R(object, subject, ambient) R(?, subject, ambient) R(object,?, ambient)

Wednesday

- Video Art
- Video as Structured Light
 - Installation
 - Performance
- Max / Jitter