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Vector Notation
A vector is a one-dimensional array. Vectors are 
assumed columns (N x 1). The unity vector is: 

e =               (N x 1) matrix

The transpose is a row vector (1 x N), and is denoted 

eT = [1  1  1 ... 1]
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Image Notation
A digital image is an array or matrix of values, a mapping

F:  ℝxℝ→ V   or   F:  ℤxℤ→ V
Typically V = ℤ256   or  ℤ256 x ℤ256x ℤ256x ℤ256

Denote an image matrix

F = [F(i, j); 0 ≤ i ≤ M-1, 0 ≤ j ≤ N-1]

F[0,0]      F[0,1]      ...     F[0, N-1]
F[1,0]      F[1,1]      ...     F[1, N-1]
.                                       .
.                                       .
F[M-1,0]  F[M-1,1]  ... F[M-1, N-1]
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Basic Matrix Algebra
Transpose of a matrix:

FT[i, j] = F[j, i]

A symmetric matrix satisfies FT = F  

Recall: inner product of two vectors a and b of the same 
length (N x 1) is

which is a scalar. 
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Matrix Product
The matrix product R of two matrices S (MxN) and T 
(NxP) is of dimensions M x P

The elements of the matrix product K are:

 

 

The  inner product of the i-th column vector of ST and 
the j-th column vector of T. 
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Matrix Product
Matrix product does not commute. Generally
    S  T ≠  T  S

The (N x N) identity matrix I  is

1  0         .       0                  
0  1  0     .       0

.              .       0

0      .      .       1

Set of square matrices of dimension N is a multiplicative 
group with identity element I:

  I R = R I  = R

for any N x N matrix R.
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Matrix Inverse
The matrix inverse of an N x N matrix R is another N x 
N matrix denoted R-1  

It satisfies R R-1 = R-1R = I.

Note that R-1 commutes with R.

When does R-1 exist? When is it stable?

Of course, [R-1]-1 = R

Computing R-1 is a laborious process, especially for 
large matrices. 



Histograms
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Simple Histogram Operations 

The gray-level histogram HF of an image F is a graph of 

the frequency of occurrence of each gray level in F.

HF is a one-dimensional function :

 HF : {0, ... , K-1} →ℤ+ non-negative integers

where kmax = the number of gray levels (e.g. 255)

HF(k) = n if gray-level k occurs (exactly) n times in F,

for each k, 0 ≤ k ≤ kmax - 1

(histogram)
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HF contains no spatial information - only the relative 

frequency of intensities.

Much useful info is obtainable from HF.

Image quality is effected (enhanced, modified) by 
altering HF.

k gray level

HF(k)
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Average Optical Density (AOD)
The average intensity of the NxM image I:

Can compute it from the histogram as well:

Exercise: Prove this fact.
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Average Optical Density
Examining the histogram can reveal possible errors in 
the imaging process:

         Low AOD                    High AOD  

By operating on the histogram, such errors can be 
ameliorated.

underexposed overexposed



Point Operations
• A point operation is a function g: ℝ→ℝ  that 

operates on single pixels in the image:

• G(i, j) = g[F(i, j)], 0 ≤ i ≤  M-1, 0 ≤ j ≤ N-1

• The same function g applied at every (i, j).

• Unlike local operations (e.g. OPEN), point 
operations do not use neighboring values of F(i, j).

• Point operations don’t modify spatial relationships. 
They do change the histogram, and therefore the 
appearance of the image. 



Linear Point Operations
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Linear Point Operations
The simplest class of point operations. They offset and 
scale the image intensities.

Suppose -(kmax-1) ≤ L ≤ kmax-1. An additive image 

offset is defined by
    G(i, j) =F(i, j) + L

Suppose λ > 0. Image scaling is defined by
    G(i, j) = λ F(i, j)
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Image Offset

If λ > 0, then G is a brightened version of F. If λ < 0, a 
dimmed version of F.

The histogram is shifted by amount L:

 HG(k) = HF(k - λ) 

Original

Shifted by λ

λ > 0 λ < 0
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Q.  What does the following do to an image?

    G(i, j) =  - F(i, j) + (kmax-1)

(jitops)
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Image Offset Example

Compare multiple images F1, F2 ,..., Fm_max of the same 

scene taken with different exposures or lighting 
conditions.

A solution: equalize the image AODs, e.g., set them all 
to kmax/2 (for gray scale range 0 ,..., kmax-1).

Let Lm = AOD(Fm), m = 1 ,..., mmax. Then equalize via

Gm(i, j) = Fm(i, j) - Lm + kmax/2
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AOD Equalization
Basically, bringing these weighted “beams” to all balnce 
at the same point kmax/2

Normalized image histogram

pF (k) =
1

MN
HF (k) (9)

pdf
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r∑

k=0

pF (k) (11)

Discrete
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Continuous
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Image Scaling

G(i, j) = λ · I(i, j)
If λ > 1, the intensity range is widened.

If λ < 1, the intensity range is narrowed.

Multiplying by λ stretches or compresses the image 
histogram by a factor λ: 

HG(k) = HF(k / λ) (continuous)

 HG(k) = HF[INT(k/P)] (discrete)
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Image Scaling

An image with a compressed gray level range generally 
has reduced visibility – a washed out appearance (and 
vice-versa). 

λ > 1
0 < λ < 1
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Affine Point Operations: Offset & 
Scaling

Given reals λ and μ, an affine (”linear”) point operation 
on F is a function

G(i, j) = μ· F(i, j) + λ
comprising both offset and scaling.

If μ < 0, the histogram is reversed, creating a negative 
image. For example, μ = -1, λ = kmax-1:

G(i, j) = (kmax-1) - F(i, j)  
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Full-Scale Contrast Stretch
The most common linear point operation. Suppose I has 
a compressed histogram:

Let A and B be the min and max gray levels in F. Define

G(i, j) = μ· F(i, j) + λ
such that μA+ λ = 0 and μB + λ = (kmax-1).

Q. Can you always find such μ, λ ?
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Full-Scale Contrast Stretch
Solving these 2 equations in 2 unknowns yields:

so the stretched image becomes

G(i, j) = (kmax-1) [F(i, j) - A] / (B - A)

The result is an image J with a full-range histogram: 
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Nonlinear Point Operations



  27

Nonlinear Point Operations
Now consider nonlinear point functions f

J(i, j) = f[I(i, j)].

A very broad class of functions!

Commonly used:

G(i, j) = |F(i, j)| (magnitude)

G(i, j) = [F(i, j)]2 (square-law)

G(i, j) = √[F(i, j)] (square root)

G(i, j) = log[1+F(i, j)] (logarithm)

G(i, j) = exp[F(i, j)] = eI(i,j) (exponential)

Most of these are special-purpose, for example…
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Logarithmic Range Compression
Small groupings of very bright pixels may dominate the 
perception of an image at the expense of other rich 
information that is less bright and less visible.

Astronomical images of faint nebulae and galaxies with 
dominating stars are an excellent example.
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Rosette Nebula
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Logarithmic Range Compression
Logarithmic transformation

G(i, j) = log[1+F(i, j)]

nonlinearly compresses and equalizes the gray-scales.

Bright intensities are compressed much more heavily - 
thus faint details emerge.  
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Logarithmic Range Compression

A full-scale contrast stretch then utilizes the full gray-scale range:

stretched contrast logarithmic 
transformation  

typical 
histogram
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contrast stretched Rosetta Nebula
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mapped to “false” red

Q. How would you define the “color” of the Rosetta Nebula?



Histogram Shaping
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Histogram Distribution
An image with a flat histogram makes rich use of the 
available gray-scale range. This might be an image with

Smooth changes in intensity across many gray levels

Lots of texture covering many gray levels 

We can obtain an image with an approximately flat 
histogram using nonlinear point operations. 
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Histogram Shaping
Define the normalized histogram:

These values 0 ≤ pF(k) ≤ 1 sum to one:

See: pF(k) is the probability that gray-level k will occur 

(at a pixel).

Normalized image histogram

pF (k) =
1

MN
HF (k) (9)

2

Normalized image histogram

pF (k) =
1

MN
HF (k) (9)

kmax−1∑

k=0

pF (k) = 1 (10)

2
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Histogram Shaping

The cumulative histogram is 

which is non-decreasing (why?); also, PF(kmax-1) = 1. 

Probabilistic interpretation: at any pixel(i,j), 

PF(k)(r) = Pr{F(i, j) ≤ r}

pF(r) = PF(r) - PF(r-1) ≥ 0 ; r = 0,..., kmax-1 

Normalized image histogram

pF (k) =
1

MN
HF (k) (9)

pdf
kmax−1∑

k=0

pF (k) = 1 (10)

Cumulative probability distribution

PF (r) =
r∑

k=0

pF (k) (11)

2
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Continuous Histograms

Suppose p(x) and P(x) are continuous: can regard as 
probability density (pdf) and cumulative distribution 
(cdf).

Then p(x) = dP(x)/dx 

P-1(x) exists or defined by convention.

Theorem: monotone functions have inverse (a.e.?)

We’ll describe histogram flattening/shaping for the 
continuous case, then extend to discrete case.
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Continuous Flattening and 
Shaping

Transform (continuous) image F, with pF(x), and P = PF(x) 

into image K with flat histogram.

The following image G will have a flattened histogram 
with range [0, 1]:

G = P(F)      

meaning G(i, j) = P[F(i, j)]
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Reason: the cumulative histogram Q of G:

Q(x) = Pr{G ≤ x}     (at any pixel (i, j)*)

= Pr{P(F) ≤ x}    (def.)

= Pr{F ≤ P-1(x)}

= P[P-1(x)] = x

hence q(x) = dQ(x)/dx = 1 for 0 < x < 1

Finally define image K as full scale contrast stretch of G:

K = FSCS[G]

Continuous Flattening

*  abuse of notation, interpret at a particular pixel (i,j)
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Continuous Shaping
Suppose we’d like arbitrary q(x), Q(x). Then define image H

H = Q-1[P(F)]

     H(i, j) = Q-1{P[I(i, j)]}  for all (i, j)

Since the cumulative histogram of G is:

  Pr{H ≤ x} = Pr{Q-1[P(F)] ≤ x} = Pr{P(I) ≤ Q(x)}

= Pr{F ≤ P-1[Q(x)]} = P{P-1[Q(x)]}

= Q(x)

All this can only be approximated with discrete histograms    
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Discrete Histogram Flattening
To approximately flatten the histogram of the digital 
image F:

Define the cumulative histogram image

G = PF(F)

so that

G(i, j) = PF[F(i, j)].

This is the cumulative histogram evaluated at the gray 
level of the pixel (i, j).   
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Discrete Histogram Flattening
Note that

0 ≤ G(i, j) ≤ 1

The elements of J are approximately linearly distributed 
between 0 and 1.

Finally, let K = FSCS(J) (full scale contrast stretch of 
image J) yielding the histogram-flattened image.
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Histogram Flattening Example
Given a 4x4 image I with gray-level range {0, ..., 15} 
(K-1 = 15):

I = 

The histogram: 
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The normalized histogram…

The intermediate image J is computed followed by the 
"flattened" image K (after rounding):

 J =                      K = 
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The new, flattened histogram looks like this: 

The heights H(k) cannot be reduced - only stacked

Digital histogram flattening doesn't really "flatten" - just 
spreads out the histogram – more flat.

The spaces that appear are characteristic of "flattened" 
histograms - especially when the original histogram is 
highly compressed. 

k 012 4567891011121314153
H(k)300 0003020020213
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Histogram Shaping
Can create a new image K with an approximate 
specified histogram shape, such as a triangle or bell-
shaped curve.

Let HK(k) be the desired histogram shape, with 

corresponding normalized values (probabilities) pK(k), 

and cumulative probability distribution  function 

Normalized image histogram

pF (k) =
1

MN
HF (k) (9)

pdf
kmax−1∑

k=0

pF (k) = 1 (10)

Cumulative probability distribution

PF (r) =
r∑

k=0

pF (k) (11)

QK(y) =
∫ y

k=0
pK(x)dx (12)

2

Normalized image histogram

pF (k) =
1

MN
HF (k) (9)

pdf
kmax−1∑

k=0

pF (k) = 1 (10)

Cumulative probability distribution

PF (r) =
r∑

k=0

pF (k) (11)

Discrete

QK [r] =
r∑

k=0

pK(k) (12)

Continuous
QK(y) =

∫ y

k=0
pK(x)dx (13)

2

Discrete cumulative histogram function:
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Histogram Shaping
Define the “cumulative histogram” image as before:

G = Q-1[PF(F)]

Then the cumulative histogram of this image G is:

PG(x) = Pr{G ≤ x}     (at any pixel (i, j))

= Pr{Q-1[PF(F)] ≤ x}    (def.)

= Pr{PF(F) ≤ Q(x)}

= Pr{F ≤ P-1[Q(x)]}

= P[P-1[Q(x)]] = Q(x)

as desired.
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Histogram Shaping Algorithm
Need to define an inverse to the cumulative distribution 
in the discrete case.

Let n(i, j) denote the minimum value of n such that

PK(n) ≥ J(i, j)

Then take K(i, j) = n(i, j).

This is a convention for

n(i, j) = (PK) -1 [J(i,j)] 
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Histogram Shaping Example
Consider the same image as in the last example. We had

          I =                      J =

Fit this to a (triangular) histogram:  

k 0 1 2 4 5 6 7 8 9 1011121314153
0 0 1 2 0 3 0 4 0 3 0 2 0 1 00

3
160 0 0 0 0 0 0 00 3

16
4
16

2
16

2
16

1
16

1
16PK(k)

HK(k)
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The cumulative probabilities:

Visual inspection of J lets us form the new image.

PK(n) 0 0

n 0 1 2 4 5 6 7 8 9 1011121314153
16
16

15
16

13
16

10
16

1
16

6
16

3
16

1
16

3
16

6
16

10
16

13
16

15
16

16
16
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         K = 

Here's the new histogram: 

H  (k)K
k 0 1 2 4 5 6 7 8 9 1011121314153

0 0 0 3 0 3 0 3 0 4 0 2 0 1 00
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Histogram Matching
A special case of histogram shaping.

The histogram of image I is matched to the histogram of 
another image I´.

The procedure is identical, once the cumulative 
probabilities are computed for the model image I´.

Useful application: Comparing similar images of the 
same scene obtained under different conditions (e.g., 
lighting, time of day). Extends the concept of equalizing 
AOD described earlier. 



Arithmetic Image Operators
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Arithmetic Image Operations
Suppose we have two N x M images I1 and I2. The basic 
arithmetic operations are:

Pointwise Addition

   J = I1 + I2 ; J(i, j) = I1(i, j) + I2(i, j)

Pointwise Subtraction

   J = I1 - I2 ; J(i, j) = I1(i, j) - I2(i, j)

Pointwise Multiplication

   J = I1 ⊗ I2 ; J(i, j) = I1(i, j) x I2(i, j)

Pointwise Division

   J = I1 ∆ I2 ; J(i, j) = I1(i, j) / I2(i, j)

The operations ⊗  and ∆ are useful when manipulating Fourier 
Transform matrices. 

∆
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Applying Arithmetic Operations
We will look at two simple but important applications 
of algebraic operations on images:

- Frame averaging for noise reduction 

- Image differencing for motion detection
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Frame Averaging for Noise 
Reduction

An image J is often corrupted by additive noise:

Surface radiation scatter

Noise in the camera

Thermal noise in a computer circuit

Channel transmission noise

Model: The sum of an original image I and a noise 
image N:

J = I + N,

where the elements N(i, j) of N are random variables.  
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Zero-Mean Ergodic Noise
We won't explore the math of random variables (other 
courses).

Just assume the noise is zero mean (ergodic): the sample 
mean of  n  noise matrices  qm  tends towards a zero 

matrix as n  grows large:

as 

Normalized image histogram
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Discrete
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Continuous
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∫ y
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Discrete
Q−1

K [k] = min
s

{s : QK(s) ≥ k} (14)

Zero mean noise matrices
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1
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Frame Averaging for Noise 
Reduction

Suppose we obtain M images K1, K2,... , KM of the same 

scene

in rapid succession, so that there is little motion 
between frames

or suppose there is no motion in the scene. 

However, the frames are noisy:

Km = F + qm for i = 1 ,..., M. 
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Frame Averaging for Noise Reduction
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Frame Averaging Example
Macroalga Valonia microphysa, imaged with laser 
scanning confocal microscope (LSCM). The ring is 
chlorophyll fluorescing under Ar laser excitation.

Single frame 
(no averaging)

Average of 
four frames

Average of 
sixteen frames.
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Motion Detection by Frame 
Differencing

Often it is of interest to detect object motion between 
frames.

Many applications: video compression, target 
recognition, tracking, security, surveillance, automated 
inspection, etc. 
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A simple approach:

Let I1, I2 be consecutive frames in close time proximity, 
e.g., from a video camera.

Form the absolute difference image.

J = |I1 – I2| 

A full-scale contrast stretch will give a more visually 
dramatic result. 

(test_framedifference5)

Motion Detection by Frame 
Differencing



Geometric Operations
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Geometric Image Operations
Certain geometric image operations widely used in 
image processing.

Many concepts also overlap computer graphics.

Image processing is primarily concerned with correcting 
or improving images of the textural world.

Computer graphics is primarily concerned with creating 
images of synthetic world, more based on taxonomy of 
objects.
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Geometric Image Operations
Geometric image operations complement pointwise 
operations: they modify spatial positions but not gray 
levels.

A geometric operation generally requires two steps:

- A spatial mapping of image coordinates

- Interpolation
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Spatial Mapping
The image coordinates are mapped to create the new 
image:

    J(i, j) = I[a(i, j), b(i, j)]

The coordinates a(i, j) and b(i, j) are not generally 
integers!

For example if

a(i, j) = i/π and b(i, j) = j/π

then J(i, j) = I(i/π, j/π) has non-integer coordinates!

This implies a need for interpolation. 

Example:  jit.repos
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Interpolation
It is necessary to interpolate non-integer coordinates 
a(i, j) and b(i, j) to integer values.

We will look at two types:

- Nearest neighbor interpolation

- Bilinear interpolation
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Nearest Neighbor Interpolation
Simple-minded.

The geometrically transformed coordinates are modified 
by mapping to the nearest integer coordinates:

a’(i,j) = INT[a(i, j)+0.5]    and  b’(i,j) = INT[b(i, j)+0.5]

J(i, j) = I[ a’[i,j], b’[i,j] ]

Serious drawback: Pixel replication can occur, creating 
a “jagged” edge effect in non-smooth regions.   
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Caveat

If for some coordinate (i, j), the index map

         a’[i,j] ∉ [0,M]   or  b’[i,j] ∉  [0,N] 

Then use some convention, e.g.

Usually assign J[i, j] = 0 for these values, or wraparound  
(What arithmetic function might you use to wrap-
around?)

Nearest Neighbor Interpolation
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Bilinear Interpolation
Produces a much smoother interpolation than nearest 
neighbor approach.

Given four neighboring image coordinates I(i0, j0), I(i1, 
j1), I(i2, j2), and I(i3, j3), the new image J(i, j) is 
computed as

J(i, j) = A0 + A1·i + A2·j + A3·i·j

where bilinear weights A0, A1, A2, and A3 are 
found by solving

A linear combination of 
the four closest values. The 
best planar fit to the four 
nearest values.



Basic Geometric 
Transformations 

• The basic geometric transformations are

• Translation

• Rotation

• Zoom
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Translation
The simplest geometric operation - requires no 
interpolation. Let

   a(i, j) = i - i0,      b(i, j) = j - j0 

where (i0, j0) are constants. In this case

  G(i, j) =F(i - i0, j - j0)

a shift of the image by amounts (i0, j0) in the (row, 
column) directions. 
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Rotation
Rotation of an image by an angle q relative to the x-axis 
is accomplished by the following transformation:

a(i, j) = i cos( θ ) - j sin( θ )

b(i, j) = i sin( θ ) + j cos( θ )

Simplest cases:

θ = π/2 : [a(i, j), b(i, j)] = (-j, i)

θ = π : [a(i, j), b(i, j)] = (-i, -j)

θ = -π/2 : [a(i, j), b(i, j)] = (j, -i)

A translation is usually require afterwards to obtain 
coordinate values in the nominal range.    
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Zoom
Zooming magnifies an image by the mapping functions 

a(i, j) = i / c     and     b(i, j) = j / d 

where c ≥ 1 and d ≥ 1. 

For large magnifications, 

A zoom image will look

"blotchy" if nearest 

neighbor interpolation is used. 

A bilinear interpolation works 

quite well. 
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“Fish-Eye” geometric distortion (more complex).

Challenge:  Can you define such a deformation?  

(jit.repos-distortquad.pat)



Wednesday
• Morphological Operators on Binary Images

• Erode

• Dilate

• Examples


