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* Sinusoidal Image

e Discrete Fourier Transform

* Meaning of Image Frequencies of DFT



Sinusoidal Images

We shall make frequent discussion in this module of
Image frequency content.

The image having the simplest frequency content is the
sinusoidal image.




Sinusoidal Images

A discrete sine image | has elements
I(i, j) =sin [2n (i M/u + j N/V)]
for0<i<N-1,0<j<M-1
and a discrete cosine image has elements
(I, ) = cos [2n( 1 M/u + | N /v)]

where u,v are integer frequencies in the i- and j-directions
(cycles/image).
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Radial Frequency

The radial frequency (how fast the image oscillates in
its direction of propagation) is

QO = Vu? + v?

The angle of the wave (relative to i-axis) is

0 = arctan ()




Digital Sinusoidal Example

Let N =16, v =0: l(i) = cos (2mui/16): a cosine wave
oriented in i-direction with frequency u. One row:

Note that I(i) = cos (2xui/1 6) = cos [2n(16-u)i/16].

4 Thus the highest frequency wave occurs at u = N/2 (N
s even here). This will be important later. -—
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Values of Complex Exponential

The complex exponential
Wum A 6—27TLM
is a frequency representatlon indexed by exponent ui.

Minimum physical frequencies: If u = kM, then as a function

of m
WiMm = 1 Vk € Z

Maximum physical frequencies: If u = (k+1/2)M, then

B m
T e Ve

period 2 function of m (Q. What could this look like as

bitmap?) L



Complex Exponential Image

We'll use complex exponential functions to define the
Discrete Fourier Transform.

Define the 2-D complex exponential functions of (u,v):

2™V —1(Um+Vn)
O0<m<M-1,0<n<N-1T

The complex exponential allows convenient
representation and manipulation of frequencies.
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Properties of Complex
Exponential

We will use the abbreviation

Wi = ea:p[—%]

. - L = Va1
(K = image dimension, M or N).
Powers of W, index the frequencies of the component
sinusoids.

This gives functions of (u,v):
WY g WO i = cos|2m(qpm + wn)| — esin2n(57m + xn))
)

using Euler’s identity o0 — cos(0) — vsin(0
Will be our basis functions for the finite images 9



Basis Functions

Wmn [U, fU] — W]’L\LJTLW]?\J[n

These basis functions W, [u,v] = W¥mW¥™ are orthogonal w/r
to this inner product:

E = M—-1N-1
D D Winnlu, o]Wpg[—u, —v] = 37 > WiF'Wy P Wi W™
u=0 v=0 u=0 v=0

N s iane, p=c
0O otherwise
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Comments

It's possible to develop frequency domain concepts w/
o complex numbers - but the math is much lengthier.

Using W, [u, v] = WMWY to represent a frequency
component oscillating at u (cycles/image) and v (cy/im)
in the M- and N-directions simplifies things
considerably.

It is useful to think of W___-as a representation of a

direction and frequency of oscillation.
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DISCRETE FOURIER TRANSFORM

3 M—-1N-1
Flu,v) =Y Y flm,n]Wi"Wx"
m=0 n=0

These basis functions W,,,,[u, v] = WW X" are orthogonal w/r
to this inner product:

i ok M—1N-1
D D Winnlu, o]Wpg[—u, —v] = 37 > WiF'Wy P Wi W™
’U/:O 'U:O ’LLZO v=0

=M N if m=n and p=q,
0 otherwise
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Inverse Discrete Fourier Transform

M—-1N-1

1 » T — UM 7 —UN
flm,n] = TN L L Flu,v|W, "W
u=0 v=0

Any MxN image f[m,n], 0O<m<M-1, 0<n<N-1 is
uniquely expressed as the weighted sum of a finite
number of complex exponential images.

The weights F'[u, v] are unique. (Why?)
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properties of DFT

If F'is the DFT of f

Linear: DFT[af + bg] = a DFTIf] + b DFT|g]
Invertible

Symmetric:

Periodic => image periodicity
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, onvolution

W
f*g <--> F G ¢

true for infinite images...




Interpreting the DFT

The DFT of an image is usually displayed as images of
magnitude and of phase.

The magnitude and phase values are given gray-scale
values / intensities.

The phase is usually visually meaningless.

The magnitude matrix is usually logarithmically
transformed (followed by a FSCS) prior to display:
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Note that the coefficients of the highest physical
frequencies are located near the center of the DFT
matrix: near (u, v) = N/2, M/2). \%
>
0, 0) (0, M-1)




Periodicity of the DFT

The DFT matrix is finite (M x N):
U N —1

Yy‘fmnW

m=0 n=0
O<us<M-1,0<v<N-1
Yet if the indices are allowed to range outside

[0,M-1]x[0,N-1], we see the DFT is periodic with
periods M and N:

~

Flu+ aM,v + bN] = Flu, ]
for any integers a and b.
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Periodic extension of DF1][
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Periodic Extension of Image

The IDFT equation
M—-1N-1

flm,n] = ;‘YFuv Wir Wy

u=0 v=0

Implies the periodic extension of the image as well:

flm+a M, n+ b N) =f(m,n)

21
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Centering the DFT

Usually, the DFT is displayed with DC coordinate (u, v)
= (0, 0) at the center.

Then low frequency info (which dominates most
images) will cluster at the center of the display.

Centering is accomplished by taking the DFT of the
alternating image:

[D)#)1Gi,j) ; 0< i, j < N-1]

This is for display only!
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Centering the DFT

Note that
( ,I)H_J o en (i+)) = (i+))/ -
SO
DET[(—1)™"F[m,n] = Z F[m,n](—1)™mnyygm+vn
m,n=0
N—1
Z Flm n]WJQMmJFn)/ 2W“m+m
m,n=>0
N-—1
- Z F[m, n]W](\;L—N/Q)m—l—(U—N/Z)TL
m,n=0

— Flu— N/2,v — N/2]

. s



Shifted (cent«?red) DFT from




Centered DFT

N/2W/ = (N/2, M/2
h

u

.~ centerec

v
(N/M/2) (N/2, M/2
DFT Example DEMO
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Computation of the DFT

Fast DFT algorithms collectively referred to as the Fast
Fourier Transform (FFT).

We won't study these — take a DSP class.
Available in any math software library, Jitter!

Forward and inverse DFTs essentially identical.
Q. How are they different?

27




THE MEANING OF
IMAGE FREQUENCIES

It's easy to lose track of the meaning of the DFT and
the notion of frequency content in all the math.

By examining the DFT or spectrum of an image
(especially its magnitude), we can often deduce much
about the image.

28




QUALITATIVE PROPERTIES OF
THE DFT

We may regard the DFT magnitude as an image of
frequency content.

Bright regions in the DFT magnitude "image"
correspond to frequencies having large magnitudes in
the actual image.

It is intuitive to think of image frequency content in
terms of granularity (distribution of radial frequencies)
and orientation.

29




IMAGE GRANULARITY

Large DFT coefficients near the origin correspond to
smooth image regions or a strong background. Since
images are positive, image DFTs usually have a large
peak at (u, v) = (0, 0).

The distribution of DFT coefficients relative to the
origin is related to the granularity of the image.
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MASKING DFT
GRANULARITY

Define toroidal zero-one masks (black = 1)

low-frequency mask mid-frequency mask high-frequency mask

Masking (multiplying) a DFT with these will produce
IDFT images with only low-, middle-, or high
frequencies: EXERCISE. Do this i home! 31



Image Directionality

Large DFT coefficients along certain orientations
correspond to highly directional image patterns.

The distribution of DFT coefficients as a function of
angle relative to the axes is related to the directionality

of the image.
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MASKING DFT
GRANULARITY

Try oriented, angular zero-one masks like these:
F 'ﬁ
- The frequency origin is at the center of each mask. ‘
33
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Aliased Chirp Image

A chirp image
has instantaneous spatial frequencies

which increase linearly away from the origin.
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Aliased Image

Sand Dune Image Centered DFT Showing Aliasing
- - B




IMPORTANT 2-D FUNCTIONS
AND THEIR DFTS

It is worthwhile to examine the DFTs of some specific
images. This is usually hard to do explicitly for the DFT
/ DSFT (infinite discrete image).

So we'll give some simple ones.

Then state some others as CFT transform pairs.
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Constant Image

|f f(i, ) =c, forO<i<N-1,0<j<M-1
Then

DFT[f][u,v] = N2-c-8(u, v)
where

O(u, v) = unit impulse function
= {1 at (u=0, v=0)

0 elsewhere }

39



Let
Then

2-D Unit Pulse Image
Fim,n| =c-dm,n

N—1
u v E W“erm

40



Cosine Wave Image

Let
Flm,n| =d - cos|mt(bm + cn)| = g[W]lifm+cn i ng(bercn)]
by the Euler formula. Then
g N-1 ( )
nli - bm-+cn —(bm—+cn um-—on
Flu,v] = 5 ZO[WN + Wy W

N-—1
d u+b)m+(v+c)n u—b)ym—+(v—c)n
:§Z[WJ(V+)+(+)+WJ(V )m+( ))]

m,n=0
using the lemma DFT[impulse] = constant W},
= gN2[5(u+b,v—|—c) +6(u—b,v —¢)]

so DFT is non-zero only at the frecwcies of cosine wave



Sinusoidal Images

Ditto for sine wave

Sinusoids are concentrated single frequencies

42



(Gaussian Function

If

Fylm,n| = e~ (m 79/

then

N

) 202 Pk 2
FU[U,U]:G 2o (uc4v°)

The Fourier transform of a Gaussian is also Gaussian.
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Comments

We now have a basic understand of frequency-domain
concepts

We can put them to use in linear filtering applications.
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