
Linear Image Filtering
Monday 2 Oct 2006

• ·!! Wraparound and Linear Convolution

• ·!!!Linear Image Filters

• ·!!!Linear Image Denoising

• ·!!!Linear Image Restoration (Deconvolution)

•

QUICK INDEX

 2

WRAPAROUND
CONVOLUTION

Modifying the DFT of an image changes its appearance.
For example, multiplying a DFT by a zero-one mask
predictably modifies image appearance:

 3

Multiplying DFTs

What if two arbitrary DFTs are (pointwise) multiplied
together, or divided?

The answer has profound consequences in image
processing.

Division is a special case which need special handling if
contains near-zero or zero values.

J̃ [u, v] = Ĩ1 ⊗ Ĩ2 (10)

2

Product of two DFT’s
J̃ [u, v] = Ĩ1 ⊗ Ĩ2 (10)

Quotient of two DFT’s
J̃ [u, v] = Ĩ1∆Ĩ2 (11)

Inverse of that is:

J [i, j] =
1

N2

N−1∑

u,v=0

J̃ [u, v]W−(ui+vj)
N (12)

=
1

N2

N−1∑

u,v=0

Ĩ1[u, v] · Ĩ2[u, v]W−(ui+vj)
N (13)

=
1

N2

N−1∑

u,v=0

{
N−1∑

m,n=0

I1[m,n]W um+vn
N }

· {
N−1∑

p,q=0

I2[p, q]W up+vq
N }W−(ui+vj)

N

(14)

=
1

N2

N−1∑

m,n=0

I1[m,n]
N−1∑

p,q=0

I2[p, q]
N−1∑

u,v=0

W [u(p+m−i)+v(q+n−j)]
N (15)

But form last module we know that

N−1∑

u,v=0

W (
N [u(p + m− i) + v(q + n− j)]) = N2 · δ(p + m− i, q + n− k) (16)

so

J [i, j] =
N−1∑

m,n=0

I1[m,n]
N−1∑

p,q=0

I2[p, q]δ(p + m− i, q + n− k) (17)

=
N−1∑

m,n=0

I1[m,n]I2[(i−m)N , (j − n)N)] (18)

=
N−1∑

p,q=0

I1[(i− p)N , (j − q)N)]I2[p, q] (19)

= I1 ! I2 (20)

Wraparound Convolution

J [i, j] =
N−1∑

m,n=0

I1[m,n]I2[(i−m)N , (j − n)N)] (21)

2

 4

Multiplying DFTs

Consider the pointwise product of two DFT’s

This has inverse DFT

J̃ [u, v] = Ĩ1 ⊗ Ĩ2 (10)

2

Product of two DFT’s
J̃ [u, v] = Ĩ1 ⊗ Ĩ2 (10)

Inverse of that is:

J [i, j] =
1

N2

N−1∑

u,v=0

J̃ [u, v]W−(ui+vj)
N (11)

=
1

N2

N−1∑

u,v=0

Ĩ1[u, v] · Ĩ2[u, v]W−(ui+vj)
N (12)

=
1

N2

N−1∑

u,v=0

{
N−1∑

m,n=0

I1[m,n]W um+vn
N }

· {
N−1∑

p,q=0

I2[p, q]W up+vq
N }W−(ui+vj)

N

(13)

=
1

N2

N−1∑

m,n=0

I1[m,n]
N−1∑

p,q=0

I2[p, q]
N−1∑

u,v=0

W [u(p+m−i)+v(q+n−j)]
N (14)

2

 5

Inverse of product of DFTs:

Product of two DFT’s
J̃ [u, v] = Ĩ1 ⊗ Ĩ2 (10)

Inverse of that is:

J [i, j] =
1

N2

N−1∑

u,v=0

J̃ [u, v]W−(ui+vj)
N (11)

=
1

N2

N−1∑

u,v=0

Ĩ1[u, v] · Ĩ2[u, v]W−(ui+vj)
N (12)

=
1

N2

N−1∑

u,v=0

{
N−1∑

m,n=0

I1[m,n]W um+vn
N }

· {
N−1∑

p,q=0

I2[p, q]W up+vq
N }W−(ui+vj)

N

(13)

=
1

N2

N−1∑

m,n=0

I1[m,n]
N−1∑

p,q=0

I2[p, q]
N−1∑

u,v=0

W [u(p+m−i)+v(q+n−j)]
N (14)

2

 6

From the impulse function:

Where we periodically extend I1 and I2

And (x)N means x mod N

Product of two DFT’s
J̃ [u, v] = Ĩ1 ⊗ Ĩ2 (10)

Inverse of that is:

J [i, j] =
1

N2

N−1∑

u,v=0

J̃ [u, v]W−(ui+vj)
N (11)

=
1

N2

N−1∑

u,v=0

Ĩ1[u, v] · Ĩ2[u, v]W−(ui+vj)
N (12)

=
1

N2

N−1∑

u,v=0

{
N−1∑

m,n=0

I1[m,n]W um+vn
N }

· {
N−1∑

p,q=0

I2[p, q]W up+vq
N }W−(ui+vj)

N

(13)

=
1

N2

N−1∑

m,n=0

I1[m,n]
N−1∑

p,q=0

I2[p, q]
N−1∑

u,v=0

W [u(p+m−i)+v(q+n−j)]
N (14)

But form last module we know that

N−1∑

u,v=0

W (
N [u(p + m− i) + v(q + n− j)]) = N2 · δ(p + m− i, q + n− k) (15)

so

J [i, j] =
N−1∑

m,n=0

I1[m,n]
N−1∑

p,q=0

I2[p, q]δ(p + m− i, q + n− k) (16)

=
N−1∑

m,n=0

I1[m,n]I2[(i−m)N , (j − n)N)] (17)

=
N−1∑

p,q=0

I1[(i− p)N , (j − q)N)]I2[p, q] (18)

= I1 ! I2 (19)

2

 7

Wraparound Convolution

The summation

is also called cyclic convolution and circular
convolution.

Like linear convolution, it is an inner product between
one sequence and a (doubly) reversed, shifted version of
the other – except with indices taken modulo-M,N
(M=N here for simplicity).

Product of two DFT’s
J̃ [u, v] = Ĩ1 ⊗ Ĩ2 (10)

Inverse of that is:

J [i, j] =
1

N2

N−1∑

u,v=0

J̃ [u, v]W−(ui+vj)
N (11)

=
1

N2

N−1∑

u,v=0

Ĩ1[u, v] · Ĩ2[u, v]W−(ui+vj)
N (12)

=
1

N2

N−1∑

u,v=0

{
N−1∑

m,n=0

I1[m,n]W um+vn
N }

· {
N−1∑

p,q=0

I2[p, q]W up+vq
N }W−(ui+vj)

N

(13)

=
1

N2

N−1∑

m,n=0

I1[m,n]
N−1∑

p,q=0

I2[p, q]
N−1∑

u,v=0

W [u(p+m−i)+v(q+n−j)]
N (14)

But form last module we know that

N−1∑

u,v=0

W (
N [u(p + m− i) + v(q + n− j)]) = N2 · δ(p + m− i, q + n− k) (15)

so

J [i, j] =
N−1∑

m,n=0

I1[m,n]
N−1∑

p,q=0

I2[p, q]δ(p + m− i, q + n− k) (16)

=
N−1∑

m,n=0

I1[m,n]I2[(i−m)N , (j − n)N)] (17)

=
N−1∑

p,q=0

I1[(i− p)N , (j − q)N)]I2[p, q] (18)

= I1 ! I2 (19)

Wraparound Convolution

J [i, j] =
N−1∑

m,n=0

I1[m,n]I2[(i−m)N , (j − n)N)] (20)

2

 8

Wraparound Convolution
It is a weighted sum of the elements I1(m, n) of the image I1,

where the weights I2(i-m, j-n) are shifted elements of the

image I2.

The amount of shift depends on (i, j).
 (i, j) given, J(i, j), the new image, is defined by:

superimposing I2 directly "on top of" I1
reversing I2 : [I2(-m, -n)]

shifting I2 by an amount (i, j)

computing I1(m, n)·I2[(i-m)N, (j-n)N] for 0 " m, n " N-1

adding the results

Product of two DFT’s
J̃ [u, v] = Ĩ1 ⊗ Ĩ2 (10)

Inverse of that is:

J [i, j] =
1

N2

N−1∑

u,v=0

J̃ [u, v]W−(ui+vj)
N (11)

=
1

N2

N−1∑

u,v=0

Ĩ1[u, v] · Ĩ2[u, v]W−(ui+vj)
N (12)

=
1

N2

N−1∑

u,v=0

{
N−1∑

m,n=0

I1[m,n]W um+vn
N }

· {
N−1∑

p,q=0

I2[p, q]W up+vq
N }W−(ui+vj)

N

(13)

=
1

N2

N−1∑

m,n=0

I1[m,n]
N−1∑

p,q=0

I2[p, q]
N−1∑

u,v=0

W [u(p+m−i)+v(q+n−j)]
N (14)

But form last module we know that

N−1∑

u,v=0

W (
N [u(p + m− i) + v(q + n− j)]) = N2 · δ(p + m− i, q + n− k) (15)

so

J [i, j] =
N−1∑

m,n=0

I1[m,n]
N−1∑

p,q=0

I2[p, q]δ(p + m− i, q + n− k) (16)

=
N−1∑

m,n=0

I1[m,n]I2[(i−m)N , (j − n)N)] (17)

=
N−1∑

p,q=0

I1[(i− p)N , (j − q)N)]I2[p, q] (18)

= I1 ! I2 (19)

Wraparound Convolution

J [i, j] =
N−1∑

m,n=0

I1[m,n]I2[(i−m)N , (j − n)N)] (20)

J = I1 ! I2 = IFFTN [FFTN [I1]⊗ FFTN [I2]] (21)

2

 9

Depicting Wraparound
Convolution

Consider hypothetical images and

at which we wish to compute the cyclic
convolution at (i, j) in the spatial domain (without
DFTs).

 10

Without wraparound:

Modulo arithmetic defines the product for all 0 < i <
N-1, 0 < j < M-1.

 11

 12

Computation of Wraparound
Convolution

Direct computation of

is simple but expensive.

For an NxM image:

- for each of NM coordinates: NM additions and
NM multiplies

- or (NM)(NM) multiplies

- for N=M=512, this 236 = 6.9 x 1010 operations

Product of two DFT’s
J̃ [u, v] = Ĩ1 ⊗ Ĩ2 (10)

Inverse of that is:

J [i, j] =
1

N2

N−1∑

u,v=0

J̃ [u, v]W−(ui+vj)
N (11)

=
1

N2

N−1∑

u,v=0

Ĩ1[u, v] · Ĩ2[u, v]W−(ui+vj)
N (12)

=
1

N2

N−1∑

u,v=0

{
N−1∑

m,n=0

I1[m,n]W um+vn
N }

· {
N−1∑

p,q=0

I2[p, q]W up+vq
N }W−(ui+vj)

N

(13)

=
1

N2

N−1∑

m,n=0

I1[m,n]
N−1∑

p,q=0

I2[p, q]
N−1∑

u,v=0

W [u(p+m−i)+v(q+n−j)]
N (14)

But form last module we know that

N−1∑

u,v=0

W (
N [u(p + m− i) + v(q + n− j)]) = N2 · δ(p + m− i, q + n− k) (15)

so

J [i, j] =
N−1∑

m,n=0

I1[m,n]
N−1∑

p,q=0

I2[p, q]δ(p + m− i, q + n− k) (16)

=
N−1∑

m,n=0

I1[m,n]I2[(i−m)N , (j − n)N)] (17)

=
N−1∑

p,q=0

I1[(i− p)N , (j − q)N)]I2[p, q] (18)

= I1 ! I2 (19)

Wraparound Convolution

J [i, j] =
N−1∑

m,n=0

I1[m,n]I2[(i−m)N , (j − n)N)] (20)

2

 13

Because of FFT, computing # in the DFT domain is
much faster, provided that N = a power of 2.

Simply

Computing an (NxM) FFT is O[NM· log (NM)], so
computation of # is as well.

We now will discover that # must be modified in order
to make it useful.

DFT Computation of
Wraparound Convolution

Product of two DFT’s
J̃ [u, v] = Ĩ1 ⊗ Ĩ2 (10)

Inverse of that is:

J [i, j] =
1

N2

N−1∑

u,v=0

J̃ [u, v]W−(ui+vj)
N (11)

=
1

N2

N−1∑

u,v=0

Ĩ1[u, v] · Ĩ2[u, v]W−(ui+vj)
N (12)

=
1

N2

N−1∑

u,v=0

{
N−1∑

m,n=0

I1[m,n]W um+vn
N }

· {
N−1∑

p,q=0

I2[p, q]W up+vq
N }W−(ui+vj)

N

(13)

=
1

N2

N−1∑

m,n=0

I1[m,n]
N−1∑

p,q=0

I2[p, q]
N−1∑

u,v=0

W [u(p+m−i)+v(q+n−j)]
N (14)

But form last module we know that

N−1∑

u,v=0

W (
N [u(p + m− i) + v(q + n− j)]) = N2 · δ(p + m− i, q + n− k) (15)

so

J [i, j] =
N−1∑

m,n=0

I1[m,n]
N−1∑

p,q=0

I2[p, q]δ(p + m− i, q + n− k) (16)

=
N−1∑

m,n=0

I1[m,n]I2[(i−m)N , (j − n)N)] (17)

=
N−1∑

p,q=0

I1[(i− p)N , (j − q)N)]I2[p, q] (18)

= I1 ! I2 (19)

Wraparound Convolution

J [i, j] =
N−1∑

m,n=0

I1[m,n]I2[(i−m)N , (j − n)N)] (20)

J = I1 ! I2 = IFFTN [FFTN [I1]⊗ FFTN [I2]] (21)

2

 14

LINEAR CONVOLUTION

Wraparound convolution is a consequence of the periodic DFT.

For continuous images, if two CFTs are multiplied together:

CFT[J](wx, wy) =
CFT[IC1](wx, wy) · CFT[IC2](wx, wy)

then we get a useful linear convolution:
J(x, y) = IC1(x, y) * IC2(x, y)

Wraparound convolution is an artifact of sampling the CFT –
 which causes spatial periodicity.

 15

About Linear Convolution

Most of circuit theory, optics, and analog filter theory is
based on linear convolution.

And … (linear) digital filter theory also requires the
concept of digital linear convolution.

Fortunately, wraparound convolution can be used to
compute linear convolution.

 16

Undesirability of Wraparound

A very simple type of linear convolutions is the local
average operation (or averaging filter).

Each image pixel is replaced by the average of its
neighbors within a window:

 17

Depiction of Average Filtering

input output

 18

Computation of Average Filtering
The average filter operation may be expressed (at most
points) as the wraparound convolution of the image
with an image of a square with intensity 1/M, where M
= # pixels in the square

 19

Wraparound Effect

Near the image borders, however, wraparound effects occur.

Usually, it is desirable to average only neighboring elements ...

... and convolution should superimpose and weight images
according to their spatial ordering rather than DFT-induced
periodic ordering.

The effect is much worse if the filter is large.

If the filter is small, then the effect can (perhaps) be trimmed
from along borders

Opposite edges of image are
being averaged together.

 20

Linear Convolution by Zero
Padding

Adapting wraparound convolution to do linear
convolution is conceptually simple.

Accomplished by padding the two image arrays with
zero values.

Typically, both image arrays are doubled in size:

 21

Wraparound eliminated, since the "moving" image is
weighted by zero values outside the image domain.

Can be seen by looking at the overlaps when computing
the convolution at a point (i, j):

2N x 2M zero padded images

 22

Wraparound Cancelling
Visualized

Remember, the summations take place only within the blue
shaded square (0 " i, j " 2N-1).

Instead of summing over the periodic extension of the
"moving image," zero values are summed with the weighted
interior values.

Linear convolution
by zero padding.

 23

DFT Computation of Linear
Convolution

Let I
1
´ , I

2
´ , and J´ be the 2N x 2N zero-padded

versions of the images, and apply the FFT

then the NxN sub-image with elements

contains the linear convolution result.

DFT computation of Linear Convolution

Let I ′
1 , I ′

2, J ′ be zero-padded 2N x 2Nimages to be convolved

J ′ = I ′
1 ! I ′

2 = IFFT2N [FFT2N [I ′
1]⊗ FFT2N [I ′

2]] (22)

N x N image given by
J(i, j) = J ′(i, j); (N/2) + 1 ≤ i, j ≤ 3N/2 (23)

3

DFT computation of Linear Convolution

Let I ′
1 , I ′

2, J ′ be zero-padded 2N x 2Nimages to be convolved

J ′ = I ′
1 ! I ′

2 = IFFT2N [FFT2N [I ′
1]⊗ FFT2N [I ′

2]] (22)

N x N image given by
J(i, j) = J ′(i, j); (N/2) + 1 ≤ i, j ≤ 3N/2 (23)

3

 24

Recap DFT-Based Linear
Convolution

By multiplying zero-padded DFTs, then taking the IFFT,
one obtains

The linear convolution is larger than NxM (in fact
2Nx2M) but the interesting part is contained in NxM J.

To convolve an NxM image with a small filter (say PxQ),
where P,Q < N,M: pad the filter with zeros to size NxM.

If P,Q << N,M, it may be faster to perform the linear
convolution in the space domain.

 25

Direct Linear Convolution

Assume images I1, I2 are not periodically extended (not
using the DFT!), and assume that

whenever i < 0 or j < 0 or i > N-1 or j > M-1.

In this case

DFT computation of Linear Convolution

Let I ′1 , I ′2, J ′ be zero-padded 2N x 2Nimages to be convolved

J ′ = I ′1 ! I ′2 = IFFT2N [FFT2N [I ′1]⊗ FFT2N [I ′2]] (22)

N x N image given by
J(i, j) = J ′(i, j); (N/2) + 1 ≤ i, j ≤ 3N/2 (23)

DIRECT computation of linear convolution

I1[i, j] = I2[i, j] = 0

J [i, j] =
N−1∑

m,n=0

I1[m,n]I2[i−m, j − n)] (24)

3

DFT computation of Linear Convolution

Let I ′1 , I ′2, J ′ be zero-padded 2N x 2Nimages to be convolved

J ′ = I ′1 ! I ′2 = IFFT2N [FFT2N [I ′1]⊗ FFT2N [I ′2]] (22)

N x N image given by
J(i, j) = J ′(i, j); (N/2) + 1 ≤ i, j ≤ 3N/2 (23)

DIRECT computation of linear convolution

I1[i, j] = I2[i, j] = 0

J [i, j] =
N−1∑

m,n=0

I1[m,n]I2[i−m, j − n)] (24)

3

 26

LINEAR IMAGE FILTERING

A process that transforms a signal or image I by linear
convolution is a type of linear system.

 27

Goals of Linear Image Filtering

Process sampled, quantized images to transform them
into

- images of better quality (by some criteria)

- images with certain features enhanced

- images with certain features de-emphasized or
eradicated

 28

Some Specific Goals

smoothing - remove noise from bit errors, transmission,
etc

deblurring - increase sharpness of blurred images

sharpening - emphasize significant features, such as
edges

combinations of these

 29

Variety of Image Distortions

impulse noisegaussian white noise

blur

JPEG compression

Albert

 30

A Tough One!

Try to undo (”engineering problem”) or, more
interestingly, create this effect (creative application).

 31

Low-Pass, Band-Pass, and
High-Pass Filters

The terms low-pass, band-pass, and high-pass are
qualitative descriptions of a system's frequency
response.

"Low-pass" - attenuates all but the "lower" frequencies.

"Band-pass" - attenuates all but an intermediate range of
"middle" frequencies.

"High-pass" - attenuates all but the "higher" frequencies.

We have seen examples of these: the zero-one
frequency masking results.

 32

Generic Uses of Filter Types

Low-pass filters are typically used to

- smooth noise

- blur image details to emphasize gross features

High-pass filters are typically used to

- enhance image details and contrast

- remove image blur

Bandpass filters are usually special-purpose

 33

Example Low-Pass Filter
The Gaussian filter with frequency response

hence, sampling at

which quickly falls at larger frequencies.

The Gaussian is an important low-pass filter.

DFT computation of Linear Convolution

Let I ′1 , I ′2, J ′ be zero-padded 2N x 2Nimages to be convolved

J ′ = I ′1 ! I ′2 = IFFT2N [FFT2N [I ′1]⊗ FFT2N [I ′2]] (22)

N x N image given by
J(i, j) = J ′(i, j); (N/2) + 1 ≤ i, j ≤ 3N/2 (23)

DIRECT computation of linear convolution

I1[i, j] = I2[i, j] = 0

J [i, j] =
N−1∑

m,n=0

I1[m,n]I2[i−m, j − n)] (24)

Gaussian filter with frequency response

H̃continuous(ω1,ω2) = e−2π2σ2(ω2
1+ω2

2) (25)

so, sampling at u, v integer indices: ω1 = u
N , ω2 = v

N

H(ω1,ω2) = e−2π2σ2(ω2
1+ω2

2) (26)

3

DFT computation of Linear Convolution

Let I ′1 , I ′2, J ′ be zero-padded 2N x 2Nimages to be convolved

J ′ = I ′1 ! I ′2 = IFFT2N [FFT2N [I ′1]⊗ FFT2N [I ′2]] (22)

N x N image given by
J(i, j) = J ′(i, j); (N/2) + 1 ≤ i, j ≤ 3N/2 (23)

DIRECT computation of linear convolution

I1[i, j] = I2[i, j] = 0

J [i, j] =
N−1∑

m,n=0

I1[m,n]I2[i−m, j − n)] (24)

Gaussian filter with frequency response

H̃continuous(ω1,ω2) = e−2π2σ2(ω2
1+ω2

2) (25)

so, sampling at u, v integer indices: ω1 = u
N , ω2 = v

N

H(u, v) = e−2π2σ2(u2+v2)/N2
(26)

where 0 ≤ |u|, |v| ≤ N
2 − 1

3

DFT computation of Linear Convolution

Let I ′1 , I ′2, J ′ be zero-padded 2N x 2Nimages to be convolved

J ′ = I ′1 ! I ′2 = IFFT2N [FFT2N [I ′1]⊗ FFT2N [I ′2]] (22)

N x N image given by
J(i, j) = J ′(i, j); (N/2) + 1 ≤ i, j ≤ 3N/2 (23)

DIRECT computation of linear convolution

I1[i, j] = I2[i, j] = 0

J [i, j] =
N−1∑

m,n=0

I1[m,n]I2[i−m, j − n)] (24)

Gaussian filter with frequency response

H̃continuous(ω1,ω2) = e−2π2σ2(ω2
1+ω2

2) (25)

so, sampling at u, v integer indices: ω1 = u
N , ω2 = v

N

H(u, v) = e−2π2σ2(u2+v2)/N2
(26)

where 0 ≤ |u|, |v| ≤ N
2 − 1

3

DFT computation of Linear Convolution

Let I ′1 , I ′2, J ′ be zero-padded 2N x 2Nimages to be convolved

J ′ = I ′1 ! I ′2 = IFFT2N [FFT2N [I ′1]⊗ FFT2N [I ′2]] (22)

N x N image given by
J(i, j) = J ′(i, j); (N/2) + 1 ≤ i, j ≤ 3N/2 (23)

DIRECT computation of linear convolution

I1[i, j] = I2[i, j] = 0

J [i, j] =
N−1∑

m,n=0

I1[m,n]I2[i−m, j − n)] (24)

Gaussian filter with frequency response

H̃continuous(ω1,ω2) = e−2π2σ2(ω2
1+ω2

2) (25)

so, sampling at u, v integer indices: ω1 = u
N , ω2 = v

N

H̃(u, v) = e−2π2σ2(u2+v2)/N2
(26)

where 0 ≤ |u|, |v| ≤ N
2 − 1

3

 34

Gaussian Filter Profile

 35

Example Band-Pass Filter

Can define a BP filter as the difference of two LPFs
identical except for a scaling factor.

A common choice in image processing is the difference-of-
gaussians (DOG) filter, with frequency scaling factor K:

hence

Typically, K # 1.5.

DFT computation of Linear Convolution

Let I ′1 , I ′2, J ′ be zero-padded 2N x 2Nimages to be convolved

J ′ = I ′1 ! I ′2 = IFFT2N [FFT2N [I ′1]⊗ FFT2N [I ′2]] (22)

N x N image given by
J(i, j) = J ′(i, j); (N/2) + 1 ≤ i, j ≤ 3N/2 (23)

DIRECT computation of linear convolution

I1[i, j] = I2[i, j] = 0

J [i, j] =
N−1∑

m,n=0

I1[m,n]I2[i−m, j − n)] (24)

Gaussian filter with frequency response

H̃continuous(ω1,ω2) = e−2π2σ2(ω2
1+ω2

2) (25)

so, sampling at u, v integer indices: ω1 = u
N , ω2 = v

N

H̃(u, v) = e−2π2σ2(u2+v2)/N2
(26)

where 0 ≤ |u|, |v| ≤ N
2 − 1

Band-Pass Filter frequency scaling factor K

H̃C(ω1,ω2) = e−2(σπ)2(ω2
1+ω2

2) − e−2(Kσπ)2(ω2
1+ω2

2) (27)

so,
H̃(u, v) = e−2(σπ)2(u2+v2)/N2 − e−2(Kσπ)2(u2+v2)/N2

(28)

where 0 ≤ |u|, |v| ≤ N
2 − 1

3

DFT computation of Linear Convolution

Let I ′1 , I ′2, J ′ be zero-padded 2N x 2Nimages to be convolved

J ′ = I ′1 ! I ′2 = IFFT2N [FFT2N [I ′1]⊗ FFT2N [I ′2]] (22)

N x N image given by
J(i, j) = J ′(i, j); (N/2) + 1 ≤ i, j ≤ 3N/2 (23)

DIRECT computation of linear convolution

I1[i, j] = I2[i, j] = 0

J [i, j] =
N−1∑

m,n=0

I1[m,n]I2[i−m, j − n)] (24)

Gaussian filter with frequency response

H̃continuous(ω1,ω2) = e−2π2σ2(ω2
1+ω2

2) (25)

so, sampling at u, v integer indices: ω1 = u
N , ω2 = v

N

H̃(u, v) = e−2π2σ2(u2+v2)/N2
(26)

where 0 ≤ |u|, |v| ≤ N
2 − 1

Band-Pass Filter frequency scaling factor K

H̃C(ω1,ω2) = e−2(σπ)2(ω2
1+ω2

2) − e−2(Kσπ)2(ω2
1+ω2

2) (27)

so,
H̃(u, v) = e−2(σπ)2(u2+v2)/N2 − e−2(Kσπ)2(u2+v2)/N2

(28)

where 0 ≤ |u|, |v| ≤ N
2 − 1

3

 36

DOG Filter Profile

DOG filters are very useful for image analysis – and in
human visual modelling.

 Take K=1.5, ! < 5

u

1.0

N=32

 37

Example High-Pass Filter
The Laplacian filter is also important

hence

An approximation to the Fourier transform of the
continuous Laplacian:

(Heat equation ++!)

DFT computation of Linear Convolution

Let I ′1 , I ′2, J ′ be zero-padded 2N x 2Nimages to be convolved

J ′ = I ′1 ! I ′2 = IFFT2N [FFT2N [I ′1]⊗ FFT2N [I ′2]] (22)

N x N image given by
J(i, j) = J ′(i, j); (N/2) + 1 ≤ i, j ≤ 3N/2 (23)

DIRECT computation of linear convolution

I1[i, j] = I2[i, j] = 0

J [i, j] =
N−1∑

m,n=0

I1[m,n]I2[i−m, j − n)] (24)

Gaussian filter with frequency response

H̃continuous(ω1,ω2) = e−2π2σ2(ω2
1+ω2

2) (25)

so, sampling at u, v integer indices: ω1 = u
N , ω2 = v

N

H̃(u, v) = e−2π2σ2(u2+v2)/N2
(26)

where 0 ≤ |u|, |v| ≤ N
2 − 1

Band-Pass Filter frequency scaling factor K

H̃C(ω1,ω2) = e−2(σπ)2(ω2
1+ω2

2) − e−2(Kσπ)2(ω2
1+ω2

2) (27)

so,
H̃(u, v) = e−2(σπ)2(u2+v2)/N2 − e−2(Kσπ)2(u2+v2)/N2

(28)

where 0 ≤ |u|, |v| ≤ N
2 − 1

LAPLACIAN High-Pass Filter
H̃C(ω1,ω2) = A(ω2

1 + ω2
2) (29)

so
H̃(u, v) = A(u2 + v2)/N2 (30)

3

DFT computation of Linear Convolution

Let I ′1 , I ′2, J ′ be zero-padded 2N x 2Nimages to be convolved

J ′ = I ′1 ! I ′2 = IFFT2N [FFT2N [I ′1]⊗ FFT2N [I ′2]] (22)

N x N image given by
J(i, j) = J ′(i, j); (N/2) + 1 ≤ i, j ≤ 3N/2 (23)

DIRECT computation of linear convolution

I1[i, j] = I2[i, j] = 0

J [i, j] =
N−1∑

m,n=0

I1[m,n]I2[i−m, j − n)] (24)

Gaussian filter with frequency response

H̃continuous(ω1,ω2) = e−2π2σ2(ω2
1+ω2

2) (25)

so, sampling at u, v integer indices: ω1 = u
N , ω2 = v

N

H̃(u, v) = e−2π2σ2(u2+v2)/N2
(26)

where 0 ≤ |u|, |v| ≤ N
2 − 1

Band-Pass Filter frequency scaling factor K

H̃C(ω1,ω2) = e−2(σπ)2(ω2
1+ω2

2) − e−2(Kσπ)2(ω2
1+ω2

2) (27)

so,
H̃(u, v) = e−2(σπ)2(u2+v2)/N2 − e−2(Kσπ)2(u2+v2)/N2

(28)

where 0 ≤ |u|, |v| ≤ N
2 − 1

LAPLACIAN High-Pass Filter
H̃C(ω1,ω2) = A(ω2

1 + ω2
2) (29)

so
H̃(u, v) = A(u2 + v2)/N2 (30)

3

DFT of Fourier transform of Laplacian

∆ =
∂2

∂x2
+

∂2

∂y2
(31)

4

 38

Laplacian Profile

A = 4.5, N = 32

1.0

u

DFT computation of Linear Convolution

Let I ′1 , I ′2, J ′ be zero-padded 2N x 2Nimages to be convolved

J ′ = I ′1 ! I ′2 = IFFT2N [FFT2N [I ′1]⊗ FFT2N [I ′2]] (22)

N x N image given by
J(i, j) = J ′(i, j); (N/2) + 1 ≤ i, j ≤ 3N/2 (23)

DIRECT computation of linear convolution

I1[i, j] = I2[i, j] = 0

J [i, j] =
N−1∑

m,n=0

I1[m,n]I2[i−m, j − n)] (24)

Gaussian filter with frequency response

H̃continuous(ω1,ω2) = e−2π2σ2(ω2
1+ω2

2) (25)

so, sampling at u, v integer indices: ω1 = u
N , ω2 = v

N

H̃(u, v) = e−2π2σ2(u2+v2)/N2
(26)

where 0 ≤ |u|, |v| ≤ N
2 − 1

Band-Pass Filter frequency scaling factor K

H̃C(ω1,ω2) = e−2(σπ)2(ω2
1+ω2

2) − e−2(Kσπ)2(ω2
1+ω2

2) (27)

so,
H̃(u, v) = e−2(σπ)2(u2+v2)/N2 − e−2(Kσπ)2(u2+v2)/N2

(28)

where 0 ≤ |u|, |v| ≤ N
2 − 1

LAPLACIAN High-Pass Filter
H̃C(ω1,ω2) = A(ω2

1 + ω2
2) (29)

so
H̃(u, v) = A(u2 + v2)/N2 (30)

3

 39

LINEAR IMAGE DENOISING

Linear image denoising means a process that smooths
noise without destroying the image information.

The noise is usually modeled as additive or
multiplicative.

We consider additive noise now.

Multiplicative noise is better handled by a
homomorphic filtering that uses nonlinearity.

Additive White Noise Model

• Model additive white noise as an image N with highly
chaotic, unpredictable elements.

• Can be thermal circuit noise, channel noise, sensor
noise, etc.

• Noise may effect the continuous image before sampling:
JC(x, y) = IC(x, y) + NC(x, y)

where N is the white noise

 41

Zero-Mean White Noise

The white noise is zero-mean if the limit of the average
of P arbitrary noise image NC(xi, yi) ; i = 1 ,..., P:

vanishes as P " $:

On average, the noise falls around the value zero.*

*Strictly speaking, the noise is also "mean-ergodic."

DFT of Fourier transform of Laplacian

∆ =
∂2

∂x2
+

∂2

∂y2
(31)

Noise Smoothing with Gaussian Filter

H̃(u, v) = H̃(u2 + v2) = e−2(σπ)2(u2+v2)/N2
; 0 ≤ |u|, |v| ≤ N

2
− 1 (32)

√
u2 + v2 = Ucutoff solve for σ

e−2π2σ2U2
cutoff /N2

= 1/2 (33)

σ =
NUcutoff

π

√
log
√

2 (34)

Motion Blur Linear distortion

J̃C(ω1,ω2) = G̃C(ω1,ω2) · ĨC(ω1,ω2) (35)

J̃ = G̃⊗ Ĩ (36)

Inverse
G̃inverse(u, v) = 1/G̃(u, v); 0 ≤ |u|, |v| ≤ N

2
− 1 (37)

DFT of restored image K:
K̃ = G̃inverse ⊗ G̃⊗ Ĩ (38)

White Noise

meanP [NC] =
1
P

P∑

i=1

NC(xi, yi) (39)

meanP [NC]→ 0 as P →∞

4

DFT of Fourier transform of Laplacian

∆ =
∂2

∂x2
+

∂2

∂y2
(31)

Noise Smoothing with Gaussian Filter

H̃(u, v) = H̃(u2 + v2) = e−2(σπ)2(u2+v2)/N2
; 0 ≤ |u|, |v| ≤ N

2
− 1 (32)

√
u2 + v2 = Ucutoff solve for σ

e−2π2σ2U2
cutoff /N2

= 1/2 (33)

σ =
NUcutoff

π

√
log
√

2 (34)

Motion Blur Linear distortion

J̃C(ω1,ω2) = G̃C(ω1,ω2) · ĨC(ω1,ω2) (35)

J̃ = G̃⊗ Ĩ (36)

Inverse
G̃inverse(u, v) = 1/G̃(u, v); 0 ≤ |u|, |v| ≤ N

2
− 1 (37)

DFT of restored image K:
K̃ = G̃inverse ⊗ G̃⊗ Ĩ (38)

White Noise

meanP [NC] =
1
P

P∑

i=1

NC(xi, yi) (39)

meanP [NC]→ 0 as P →∞

4

 42

Spectrum of White Noise

The noise energy spectrum is the Fourier transform of N

If the noise is white, then, on average, the energy
spectrum will be flat (flat spectrum = ‘white’):

Note: is called noise power.

DFT of Fourier transform of Laplacian

∆ =
∂2

∂x2
+

∂2

∂y2
(31)

Noise Smoothing with Gaussian Filter

H̃(u, v) = H̃(u2 + v2) = e−2(σπ)2(u2+v2)/N2
; 0 ≤ |u|, |v| ≤ N

2
− 1 (32)

√
u2 + v2 = Ucutoff solve for σ

e−2π2σ2U2
cutoff /N2

= 1/2 (33)

σ =
NUcutoff

π

√
log
√

2 (34)

Motion Blur Linear distortion

J̃C(ω1,ω2) = G̃C(ω1,ω2) · ĨC(ω1,ω2) (35)

J̃ = G̃⊗ Ĩ (36)

Inverse
G̃inverse(u, v) = 1/G̃(u, v); 0 ≤ |u|, |v| ≤ N

2
− 1 (37)

DFT of restored image K:
K̃ = G̃inverse ⊗ G̃⊗ Ĩ (38)

White Noise

meanP [NC] =
1
P

P∑

i=1

NC(xi, yi) (39)

meanP [NC]→ 0 as P →∞

Energy spectrum
Ñ(ω1,ω2) = FouriertransformofNC(x, y) (40)

meanP [|Ñ(ω1,ω2)|2]→ η;P →∞∀(ω1,ω2) (41)

4

DFT of Fourier transform of Laplacian

∆ =
∂2

∂x2
+

∂2

∂y2
(31)

Noise Smoothing with Gaussian Filter

H̃(u, v) = H̃(u2 + v2) = e−2(σπ)2(u2+v2)/N2
; 0 ≤ |u|, |v| ≤ N

2
− 1 (32)

√
u2 + v2 = Ucutoff solve for σ

e−2π2σ2U2
cutoff /N2

= 1/2 (33)

σ =
NUcutoff

π

√
log
√

2 (34)

Motion Blur Linear distortion

J̃C(ω1,ω2) = G̃C(ω1,ω2) · ĨC(ω1,ω2) (35)

J̃ = G̃⊗ Ĩ (36)

Inverse
G̃inverse(u, v) = 1/G̃(u, v); 0 ≤ |u|, |v| ≤ N

2
− 1 (37)

DFT of restored image K:
K̃ = G̃inverse ⊗ G̃⊗ Ĩ (38)

White Noise

meanP [NC] =
1
P

P∑

i=1

NC(xi, yi) (39)

meanP [NC]→ 0 as P →∞

Energy spectrum
Ñ(ω1,ω2) = FouriertransformofNC(x, y) (40)

meanP [|Ñ(ω1,ω2)|2]→ ηP →∞∀(ω1,ω2) (41)

4

DFT of Fourier transform of Laplacian

∆ =
∂2

∂x2
+

∂2

∂y2
(31)

Noise Smoothing with Gaussian Filter

H̃(u, v) = H̃(u2 + v2) = e−2(σπ)2(u2+v2)/N2
; 0 ≤ |u|, |v| ≤ N

2
− 1 (32)

√
u2 + v2 = Ucutoff solve for σ

e−2π2σ2U2
cutoff /N2

= 1/2 (33)

σ =
NUcutoff

π

√
log
√

2 (34)

Motion Blur Linear distortion

J̃C(ω1,ω2) = G̃C(ω1,ω2) · ĨC(ω1,ω2) (35)

J̃ = G̃⊗ Ĩ (36)

Inverse
G̃inverse(u, v) = 1/G̃(u, v); 0 ≤ |u|, |v| ≤ N

2
− 1 (37)

DFT of restored image K:
K̃ = G̃inverse ⊗ G̃⊗ Ĩ (38)

White Noise

meanP [NC] =
1
P

P∑

i=1

NC(xi, yi) (39)

meanP [NC]→ 0 as P →∞

Energy spectrum
Ñ(ω1,ω2) = FouriertransformofNC(x, y) (40)

meanP [|Ñ(ω1,ω2)|2]→ ηP →∞∀(ω1,ω2) (41)

4

DFT of Fourier transform of Laplacian

∆ =
∂2

∂x2
+

∂2

∂y2
(31)

Noise Smoothing with Gaussian Filter

H̃(u, v) = H̃(u2 + v2) = e−2(σπ)2(u2+v2)/N2
; 0 ≤ |u|, |v| ≤ N

2
− 1 (32)

√
u2 + v2 = Ucutoff solve for σ

e−2π2σ2U2
cutoff /N2

= 1/2 (33)

σ =
NUcutoff

π

√
log
√

2 (34)

Motion Blur Linear distortion

J̃C(ω1,ω2) = G̃C(ω1,ω2) · ĨC(ω1,ω2) (35)

J̃ = G̃⊗ Ĩ (36)

Inverse
G̃inverse(u, v) = 1/G̃(u, v); 0 ≤ |u|, |v| ≤ N

2
− 1 (37)

DFT of restored image K:
K̃ = G̃inverse ⊗ G̃⊗ Ĩ (38)

White Noise

meanP [NC] =
1
P

P∑

i=1

NC(xi, yi) (39)

meanP [NC]→ 0 as P →∞

Energy spectrum
Ñ(ω1,ω2) = FouriertransformofNC(x, y) (40)

meanP [|Ñ(ω1,ω2)|2]→ ηP →∞∀(ω1,ω2) (41)

4

DFT of Fourier transform of Laplacian

∆ =
∂2

∂x2
+

∂2

∂y2
(31)

Noise Smoothing with Gaussian Filter

H̃(u, v) = H̃(u2 + v2) = e−2(σπ)2(u2+v2)/N2
; 0 ≤ |u|, |v| ≤ N

2
− 1 (32)

√
u2 + v2 = Ucutoff solve for σ

e−2π2σ2U2
cutoff /N2

= 1/2 (33)

σ =
NUcutoff

π

√
log
√

2 (34)

Motion Blur Linear distortion

J̃C(ω1,ω2) = G̃C(ω1,ω2) · ĨC(ω1,ω2) (35)

J̃ = G̃⊗ Ĩ (36)

Inverse
G̃inverse(u, v) = 1/G̃(u, v); 0 ≤ |u|, |v| ≤ N

2
− 1 (37)

DFT of restored image K:
K̃ = G̃inverse ⊗ G̃⊗ Ĩ (38)

White Noise

meanP [NC] =
1
P

P∑

i=1

NC(xi, yi) (39)

meanP [NC]→ 0 as P →∞

Energy spectrum
Ñ(ω1,ω2) = FouriertransformofNC(x, y) (40)

meanP [|Ñ(ω1,ω2)|2]→ ηP →∞∀(ω1,ω2) (41)

4

 43

White Noise Model
White noise is an approximate model of additive
broadband noise:

 J’C(!x, !y) = I’C(!x, !y) + N’C(!x, !y)

‘ denotes transform

x
x+

I (x)C N (x)C

+

 44

Linear Denoising

Objective: Remove as much of the high-frequency noise
as possible while preserving as much of the image
spectrum as possible.

Generally accomplished by a Low Pass Filter of fairly
wide bandwidth (images are fairly wideband):

Denoising - Gaussian Filter
• The isotropic Gaussian filter is an effective :

• It gives more weight to “closer” neighbors.

• DFT design: Set the half-peak bandwidth
Solve for !:

DFT of Fourier transform of Laplacian

∆ =
∂2

∂x2
+

∂2

∂y2
(31)

Noise Smoothing with Gaussian Filter

H̃(u, v) = H̃(u2 + v2) = e−2(σπ)2(u2+v2)/N2
; 0 ≤ |u|, |v| ≤ N

2
− 1 (32)

√
u2 + v2 = Ucutoff solve for σ

e−2π2σ2U2
cutoff /N2

= 1/2 (33)

σ =
NUcutoff

π

√
log
√

2 (34)

4

DFT of Fourier transform of Laplacian

∆ =
∂2

∂x2
+

∂2

∂y2
(31)

Noise Smoothing with Gaussian Filter

H̃(u, v) = H̃(u2 + v2) = e−2(σπ)2(u2+v2)/N2
; 0 ≤ |u|, |v| ≤ N

2
− 1 (32)

√
u2 + v2 = Ucutoff solve for σ

e−2π2σ2U2
cutoff /N2

= 1/2 (33)

σ =
NUcutoff

π

√
log
√

2 (34)

4

DFT of Fourier transform of Laplacian

∆ =
∂2

∂x2
+

∂2

∂y2
(31)

Noise Smoothing with Gaussian Filter

H̃(u, v) = H̃(u2 + v2) = e−2(σπ)2(u2+v2)/N2
; 0 ≤ |u|, |v| ≤ N

2
− 1 (32)

√
u2 + v2 = Ucutoff solve for σ

e−2π2σ2U2
cutoff /N2

= 1/2 (33)

σ =
NUcutoff

π

√
log
√

2 (34)

4

DFT of Fourier transform of Laplacian

∆ =
∂2

∂x2
+

∂2

∂y2
(31)

Noise Smoothing with Gaussian Filter

H̃(u, v) = H̃(u2 + v2) = e−2(σπ)2(u2+v2)/N2
; 0 ≤ |u|, |v| ≤ N

2
− 1 (32)

√
u2 + v2 = Ucutoff solve for σ

e−2π2σ2U2
cutoff /N2

= 1/2 (33)

σ =
NUcutoff

π

√
log
√

2 (34)

4

 46

LINEAR IMAGE DEBLURRING

Often an image that is obtained digitally has already
been corrupted by a linear process.

This may be due to motion blur, blurring due to
defocusing, etc.

We can model such an observed image as the result of a
linear convolution:

JC(x, y) = GC(x, y)*IC(x, y)

so the FFT

DFT of Fourier transform of Laplacian

∆ =
∂2

∂x2
+

∂2

∂y2
(31)

Noise Smoothing with Gaussian Filter

H̃(u, v) = H̃(u2 + v2) = e−2(σπ)2(u2+v2)/N2
; 0 ≤ |u|, |v| ≤ N

2
− 1 (32)

√
u2 + v2 = Ucutoff solve for σ

e−2π2σ2U2
cutoff /N2

= 1/2 (33)

σ =
NUcutoff

π

√
log
√

2 (34)

Motion Blur Linear distortion

J̃C(ω1,ω2) = G̃C(ω1,ω2) · ĨC(ω1,ω2) (35)

4

 47

Digital Blur Function

The sampled image will then be of the form (assuming
sufficient sampling rate

J = G * I

with DFT

The distortion G is almost always low-pass (blurring).

Our goal is to use digital filtering to reduce blur – a
VERY hard problem!

DFT of Fourier transform of Laplacian

∆ =
∂2

∂x2
+

∂2

∂y2
(31)

Noise Smoothing with Gaussian Filter

H̃(u, v) = H̃(u2 + v2) = e−2(σπ)2(u2+v2)/N2
; 0 ≤ |u|, |v| ≤ N

2
− 1 (32)

√
u2 + v2 = Ucutoff solve for σ

e−2π2σ2U2
cutoff /N2

= 1/2 (33)

σ =
NUcutoff

π

√
log
√

2 (34)

Motion Blur Linear distortion

J̃C(ω1,ω2) = G̃C(ω1,ω2) · ĨC(ω1,ω2) (35)

J̃ = G̃⊗ Ĩ (36)

4

 48

Deblur - Inverse Filter

Often it is possible to make an estimate of the distortion
G.

This may be possible by examining the physics of the
situation.

For example, motion blur (relative camera movement) is
usually along one direction. If this can be determined,
then a filter can be designed.

The effect of a camera can often be determined – and
hence, a digital deblur filter designed.

 49

Deconvolution
Reversing the linear blur G is deconvolution. It is done
using the inverse filter of the distortion:

Then the DFT of the restored image is:

The challenge, of course, is to model G

DFT of Fourier transform of Laplacian

∆ =
∂2

∂x2
+

∂2

∂y2
(31)

Noise Smoothing with Gaussian Filter

H̃(u, v) = H̃(u2 + v2) = e−2(σπ)2(u2+v2)/N2
; 0 ≤ |u|, |v| ≤ N

2
− 1 (32)

√
u2 + v2 = Ucutoff solve for σ

e−2π2σ2U2
cutoff /N2

= 1/2 (33)

σ =
NUcutoff

π

√
log
√

2 (34)

Motion Blur Linear distortion

J̃C(ω1,ω2) = G̃C(ω1,ω2) · ĨC(ω1,ω2) (35)

J̃ = G̃⊗ Ĩ (36)

Inverse
G̃inverse(u, v) = 1/G̃(u, v); 0 ≤ |u|, |v| ≤ N

2
− 1 (37)

DFT of restored image K:
K̃ = G̃inverse ⊗ G̃⊗ Ĩ (38)

4

DFT of Fourier transform of Laplacian

∆ =
∂2

∂x2
+

∂2

∂y2
(31)

Noise Smoothing with Gaussian Filter

H̃(u, v) = H̃(u2 + v2) = e−2(σπ)2(u2+v2)/N2
; 0 ≤ |u|, |v| ≤ N

2
− 1 (32)

√
u2 + v2 = Ucutoff solve for σ

e−2π2σ2U2
cutoff /N2

= 1/2 (33)

σ =
NUcutoff

π

√
log
√

2 (34)

Motion Blur Linear distortion

J̃C(ω1,ω2) = G̃C(ω1,ω2) · ĨC(ω1,ω2) (35)

J̃ = G̃⊗ Ĩ (36)

Inverse
G̃inverse(u, v) = 1/G̃(u, v); 0 ≤ |u|, |v| ≤ N

2
− 1 (37)

DFT of restored image K:
K̃ = G̃inverse ⊗ G̃⊗ Ĩ (38)

4

DFT of Fourier transform of Laplacian

∆ =
∂2

∂x2
+

∂2

∂y2
(31)

Noise Smoothing with Gaussian Filter

H̃(u, v) = H̃(u2 + v2) = e−2(σπ)2(u2+v2)/N2
; 0 ≤ |u|, |v| ≤ N

2
− 1 (32)

√
u2 + v2 = Ucutoff solve for σ

e−2π2σ2U2
cutoff /N2

= 1/2 (33)

σ =
NUcutoff

π

√
log
√

2 (34)

Motion Blur Linear distortion

J̃C(ω1,ω2) = G̃C(ω1,ω2) · ĨC(ω1,ω2) (35)

J̃ = G̃⊗ Ĩ (36)

Inverse
G̃inverse(u, v) = 1/G̃(u, v); 0 ≤ |u|, |v| ≤ N

2
− 1 (37)

DFT of restored image K:
K̃ = G̃inverse ⊗ G̃⊗ Ĩ (38)

4

 50

Blur Estimation

An estimate of blur G might be obtainable.

The inverse of low-pass blur is high-pass:

Gaussian

distortion

Inverse filter

Other Results

 52

Hubble Telescope

Wide Field Planetary Camera

Galaxy M100

 53

Hubble Telescope

Wide Field Planetary Camera

Galaxy M100

after repairing spherical aberration

 54

Average Filtering

Eggs + Gaussian noise:

 55

Average Filtering

Eggs + Gaussian noise:

AVE[eggs, SQUARE (9)]

 56

Average Filtering

Eggs + Gaussian noise:

AVE[eggs, SQUARE (25)]

 57

Average Filtering

Eggs + Gaussian noise:

AVE[eggs, SQUARE (81)]

 58

Optical Serial Sectioning
Microscopy

Sequence of sections of pollen grains

Inverse filtering:
High frequencies suppressed

 59

Optical Serial Sectioning
Microscopy

Sequence of sections of pollen grains

Wiener filtering:
good for blur + noise

more blur

• Deblurring

• Pseudo-inverse

• Wiener filter

 61

Deblur - Missing Frequencies

Unfortunately, things are not always so "ideal" in the
real world.

Sometimes the blur frequency response takes zero value
(s).

If

which is meaningless.

 62

Zeroed Frequencies

The reality: any frequencies that are zeroed by a linear
distortion are unrecoverable in practice (at least by
linear means) - lost forever!

The best that can be done is to reverse the distortion at
the non-zero values.

Sometimes much of the frequency plane is lost. Some
optical systems remove a large angular spread of
frequencies: unrecoverable "zeroed" frequencies

 63

Pseudo-Inverse Filter

The pseudo-inverse filter is defined

Thus no attempt is made to recover lost frequencies.

The pseudo-inverse is set to zero in the known region of
missing frequencies – a conservative approach.

In this way spurious (noise) frequencies will be
eradicated.

 64

Deblur in the Presence of Noise

A worse case is when the image I is distorted both by
linear blur G and additive noise N:

This may occur, e.g., if an image is linearly distorted
then sent over a noisy channel.

The DFT:

 65

Filtering a Blurred, Noisy Image

Filtering with a linear filter H will produce the result

or

The problem is that neither a low-pass filter (to smooth
noise, but won't correct the blur) nor a high-pass filter
(the inverse filter, which will amplify the noise) will
work.

 66

Failure of Inverse Filter

If the inverse filter were used, then

or

In this case the blur is corrected, but the restored image
has horribly amplified high-frequency noise added to it.

 67

Wiener Filter

The Wiener filter (after Norbert Wiener) or minimum-
mean-square-error (MMSE) filter is a “best” linear
approach.

The Wiener filter for blur G and white noise N is

Often the noise factor # is unknown or unobtainable.
The designer will usually experiment with heuristic
values for #.

In fact, better visual results may often be obtained by
using values for # in the Wiener filter.

 68

Wiener Filter Rationale

We won’t derive the Wiener filter here. But:

If # = 0 (no noise), the Wiener filter reduces to the
inverse filter:

which is highly desirable.

 69

Wiener Filter Rationale

If (no blur) the Wiener filter
reduces to:

which does nothing except scale the variance so
that the MSE is minimized.

So, the Wiener filter is not useful unless there is blur.

 70

Pseudo-Wiener Filter

Obviously, if there are frequencies zeroed by the linear
distortion G then it is best to define a pseudo-Wiener
filter:

Noise in the "missing region" of frequencies will be
eradicated.

DEMO (!blur < 4, # << 1, !noise < 10)

 71

Shroud of Turin Image

An intensely enhanced, denoised, deblurred, etc etc
etc and debated image

Making Noise

• Gaussian Additive Noise

• Laplacian Additive White Noise

• Exponential Multiplicative White Noise

• Salt and Pepper Noise

• What Is Noise?

 73

Additive White Noise

Gaussian Laplacian

 74

More Noise

Exponential Multiplicative
White Noise

Salt and Pepper

Comments

• Non-linear filtering methods include

• weighted median filters,

• image zooming,

• sharpening,

• edge detection

What is noise?
Source of synthesis texture

• Signal vs. Noise

• Attention, John Cage, music as organized sound

