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WRAPAROUND 
CONVOLUTION 

Modifying the DFT of an image changes its appearance. 
For example, multiplying a DFT by a zero-one mask 
predictably modifies image appearance: 
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Multiplying DFTs

What if two arbitrary DFTs are (pointwise) multiplied 
together, or divided?

       

The answer has profound consequences in image 
processing.

Division is a special case which need special handling if     
contains near-zero or zero values.

J̃ [u, v] = Ĩ1 ⊗ Ĩ2 (10)

2

Product of two DFT’s
J̃ [u, v] = Ĩ1 ⊗ Ĩ2 (10)

Quotient of two DFT’s
J̃ [u, v] = Ĩ1∆Ĩ2 (11)

Inverse of that is:

J [i, j] =
1

N2

N−1∑

u,v=0

J̃ [u, v]W−(ui+vj)
N (12)

=
1

N2

N−1∑

u,v=0

Ĩ1[u, v] · Ĩ2[u, v]W−(ui+vj)
N (13)

=
1

N2

N−1∑

u,v=0

{
N−1∑

m,n=0

I1[m,n]W um+vn
N }

· {
N−1∑

p,q=0

I2[p, q]W up+vq
N }W−(ui+vj)

N

(14)

=
1

N2

N−1∑

m,n=0

I1[m,n]
N−1∑

p,q=0

I2[p, q]
N−1∑

u,v=0

W [u(p+m−i)+v(q+n−j)]
N (15)

But form last module we know that

N−1∑

u,v=0

W (
N [u(p + m− i) + v(q + n− j)]) = N2 · δ(p + m− i, q + n− k) (16)

so

J [i, j] =
N−1∑

m,n=0

I1[m,n]
N−1∑

p,q=0

I2[p, q]δ(p + m− i, q + n− k) (17)

=
N−1∑

m,n=0

I1[m,n]I2[(i−m)N , (j − n)N )] (18)

=
N−1∑

p,q=0

I1[(i− p)N , (j − q)N )]I2[p, q] (19)

= I1 ! I2 (20)

Wraparound Convolution

J [i, j] =
N−1∑

m,n=0

I1[m,n]I2[(i−m)N , (j − n)N )] (21)

2
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Multiplying DFTs 

Consider the pointwise product of two DFT’s

This has inverse DFT

J̃ [u, v] = Ĩ1 ⊗ Ĩ2 (10)

2

Product of two DFT’s
J̃ [u, v] = Ĩ1 ⊗ Ĩ2 (10)

Inverse of that is:

J [i, j] =
1

N2

N−1∑

u,v=0

J̃ [u, v]W−(ui+vj)
N (11)

=
1

N2

N−1∑

u,v=0

Ĩ1[u, v] · Ĩ2[u, v]W−(ui+vj)
N (12)

=
1

N2

N−1∑

u,v=0

{
N−1∑

m,n=0

I1[m,n]W um+vn
N }

· {
N−1∑

p,q=0

I2[p, q]W up+vq
N }W−(ui+vj)

N

(13)

=
1

N2

N−1∑

m,n=0

I1[m,n]
N−1∑

p,q=0

I2[p, q]
N−1∑

u,v=0

W [u(p+m−i)+v(q+n−j)]
N (14)

2
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Inverse of product of DFTs:

Product of two DFT’s
J̃ [u, v] = Ĩ1 ⊗ Ĩ2 (10)

Inverse of that is:

J [i, j] =
1

N2

N−1∑

u,v=0

J̃ [u, v]W−(ui+vj)
N (11)

=
1

N2

N−1∑

u,v=0

Ĩ1[u, v] · Ĩ2[u, v]W−(ui+vj)
N (12)

=
1

N2

N−1∑

u,v=0

{
N−1∑

m,n=0

I1[m,n]W um+vn
N }

· {
N−1∑

p,q=0

I2[p, q]W up+vq
N }W−(ui+vj)

N

(13)

=
1

N2

N−1∑

m,n=0

I1[m,n]
N−1∑

p,q=0

I2[p, q]
N−1∑

u,v=0

W [u(p+m−i)+v(q+n−j)]
N (14)

2
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From the impulse function:

Where we periodically extend I1  and I2 

And (x)N means x mod N

Product of two DFT’s
J̃ [u, v] = Ĩ1 ⊗ Ĩ2 (10)

Inverse of that is:

J [i, j] =
1

N2

N−1∑

u,v=0

J̃ [u, v]W−(ui+vj)
N (11)

=
1

N2

N−1∑

u,v=0

Ĩ1[u, v] · Ĩ2[u, v]W−(ui+vj)
N (12)

=
1

N2

N−1∑

u,v=0

{
N−1∑

m,n=0

I1[m,n]W um+vn
N }

· {
N−1∑

p,q=0

I2[p, q]W up+vq
N }W−(ui+vj)

N

(13)

=
1

N2

N−1∑

m,n=0

I1[m,n]
N−1∑

p,q=0

I2[p, q]
N−1∑

u,v=0

W [u(p+m−i)+v(q+n−j)]
N (14)

But form last module we know that

N−1∑

u,v=0

W (
N [u(p + m− i) + v(q + n− j)]) = N2 · δ(p + m− i, q + n− k) (15)

so

J [i, j] =
N−1∑

m,n=0

I1[m,n]
N−1∑

p,q=0

I2[p, q]δ(p + m− i, q + n− k) (16)

=
N−1∑

m,n=0

I1[m,n]I2[(i−m)N , (j − n)N )] (17)

=
N−1∑

p,q=0

I1[(i− p)N , (j − q)N )]I2[p, q] (18)

= I1 ! I2 (19)

2
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Wraparound Convolution

The summation

is also called cyclic convolution and circular 
convolution.

Like linear convolution, it is an inner product between 
one sequence and a (doubly) reversed, shifted version of 
the other – except with indices taken modulo-M,N 
(M=N here for simplicity). 

Product of two DFT’s
J̃ [u, v] = Ĩ1 ⊗ Ĩ2 (10)

Inverse of that is:

J [i, j] =
1

N2

N−1∑

u,v=0

J̃ [u, v]W−(ui+vj)
N (11)

=
1

N2

N−1∑

u,v=0

Ĩ1[u, v] · Ĩ2[u, v]W−(ui+vj)
N (12)

=
1

N2

N−1∑

u,v=0

{
N−1∑

m,n=0

I1[m,n]W um+vn
N }

· {
N−1∑

p,q=0

I2[p, q]W up+vq
N }W−(ui+vj)

N

(13)

=
1

N2

N−1∑

m,n=0

I1[m,n]
N−1∑

p,q=0

I2[p, q]
N−1∑

u,v=0

W [u(p+m−i)+v(q+n−j)]
N (14)

But form last module we know that

N−1∑

u,v=0

W (
N [u(p + m− i) + v(q + n− j)]) = N2 · δ(p + m− i, q + n− k) (15)

so

J [i, j] =
N−1∑

m,n=0

I1[m,n]
N−1∑

p,q=0

I2[p, q]δ(p + m− i, q + n− k) (16)

=
N−1∑

m,n=0

I1[m,n]I2[(i−m)N , (j − n)N )] (17)

=
N−1∑

p,q=0

I1[(i− p)N , (j − q)N )]I2[p, q] (18)

= I1 ! I2 (19)

Wraparound Convolution

J [i, j] =
N−1∑

m,n=0

I1[m,n]I2[(i−m)N , (j − n)N )] (20)

2
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Wraparound Convolution
It is a weighted sum of the elements I1(m, n) of the image I1, 

where the weights I2(i-m, j-n) are shifted  elements of the 

image I2.

The amount of shift depends on (i, j).
 (i, j) given, J(i, j), the new image, is defined by:

superimposing I2 directly "on top of" I1
reversing I2 : [I2(-m, -n)]

shifting I2 by an amount (i, j)

computing I1(m, n)·I2[(i-m)N, (j-n)N] for 0 " m, n " N-1

adding the results

Product of two DFT’s
J̃ [u, v] = Ĩ1 ⊗ Ĩ2 (10)

Inverse of that is:

J [i, j] =
1

N2

N−1∑

u,v=0

J̃ [u, v]W−(ui+vj)
N (11)

=
1

N2

N−1∑

u,v=0

Ĩ1[u, v] · Ĩ2[u, v]W−(ui+vj)
N (12)

=
1

N2

N−1∑

u,v=0

{
N−1∑

m,n=0

I1[m,n]W um+vn
N }

· {
N−1∑

p,q=0

I2[p, q]W up+vq
N }W−(ui+vj)

N

(13)

=
1

N2

N−1∑

m,n=0

I1[m,n]
N−1∑

p,q=0

I2[p, q]
N−1∑

u,v=0

W [u(p+m−i)+v(q+n−j)]
N (14)

But form last module we know that

N−1∑

u,v=0

W (
N [u(p + m− i) + v(q + n− j)]) = N2 · δ(p + m− i, q + n− k) (15)

so

J [i, j] =
N−1∑

m,n=0

I1[m,n]
N−1∑

p,q=0

I2[p, q]δ(p + m− i, q + n− k) (16)

=
N−1∑

m,n=0

I1[m,n]I2[(i−m)N , (j − n)N )] (17)

=
N−1∑

p,q=0

I1[(i− p)N , (j − q)N )]I2[p, q] (18)

= I1 ! I2 (19)

Wraparound Convolution

J [i, j] =
N−1∑

m,n=0

I1[m,n]I2[(i−m)N , (j − n)N )] (20)

J = I1 ! I2 = IFFTN [FFTN [I1]⊗ FFTN [I2]] (21)

2
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Depicting Wraparound 
Convolution

Consider hypothetical images      and     

at which we wish to compute the cyclic 
convolution at (i, j) in the spatial domain (without 
DFTs).
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Without wraparound:

Modulo arithmetic defines the product for all 0 < i < 
N-1, 0 < j < M-1.
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Computation of Wraparound 
Convolution 

Direct computation of

is simple but expensive.

For an NxM image:

- for each of NM coordinates: NM additions and 
NM multiplies

- or (NM)(NM) multiplies

- for N=M=512, this  236 = 6.9 x 1010 operations

Product of two DFT’s
J̃ [u, v] = Ĩ1 ⊗ Ĩ2 (10)

Inverse of that is:

J [i, j] =
1

N2

N−1∑

u,v=0

J̃ [u, v]W−(ui+vj)
N (11)

=
1

N2

N−1∑

u,v=0

Ĩ1[u, v] · Ĩ2[u, v]W−(ui+vj)
N (12)

=
1

N2

N−1∑

u,v=0

{
N−1∑

m,n=0

I1[m,n]W um+vn
N }

· {
N−1∑

p,q=0

I2[p, q]W up+vq
N }W−(ui+vj)

N

(13)

=
1

N2

N−1∑

m,n=0

I1[m,n]
N−1∑

p,q=0

I2[p, q]
N−1∑

u,v=0

W [u(p+m−i)+v(q+n−j)]
N (14)

But form last module we know that

N−1∑

u,v=0

W (
N [u(p + m− i) + v(q + n− j)]) = N2 · δ(p + m− i, q + n− k) (15)

so

J [i, j] =
N−1∑

m,n=0

I1[m,n]
N−1∑

p,q=0

I2[p, q]δ(p + m− i, q + n− k) (16)

=
N−1∑

m,n=0

I1[m,n]I2[(i−m)N , (j − n)N )] (17)

=
N−1∑

p,q=0

I1[(i− p)N , (j − q)N )]I2[p, q] (18)

= I1 ! I2 (19)

Wraparound Convolution

J [i, j] =
N−1∑

m,n=0

I1[m,n]I2[(i−m)N , (j − n)N )] (20)

2
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Because of FFT, computing # in the DFT domain is 
much faster, provided that N = a power of 2. 

Simply

Computing an (NxM) FFT is O[NM· log (NM)], so 
computation of # is as well.

We now will discover that # must be modified in order 
to make it useful.  

DFT Computation of
Wraparound Convolution 

Product of two DFT’s
J̃ [u, v] = Ĩ1 ⊗ Ĩ2 (10)

Inverse of that is:

J [i, j] =
1

N2

N−1∑

u,v=0

J̃ [u, v]W−(ui+vj)
N (11)

=
1

N2

N−1∑

u,v=0

Ĩ1[u, v] · Ĩ2[u, v]W−(ui+vj)
N (12)

=
1

N2

N−1∑

u,v=0

{
N−1∑

m,n=0

I1[m,n]W um+vn
N }

· {
N−1∑

p,q=0

I2[p, q]W up+vq
N }W−(ui+vj)

N

(13)

=
1

N2

N−1∑

m,n=0

I1[m,n]
N−1∑

p,q=0

I2[p, q]
N−1∑

u,v=0

W [u(p+m−i)+v(q+n−j)]
N (14)

But form last module we know that

N−1∑

u,v=0

W (
N [u(p + m− i) + v(q + n− j)]) = N2 · δ(p + m− i, q + n− k) (15)

so

J [i, j] =
N−1∑

m,n=0

I1[m,n]
N−1∑

p,q=0

I2[p, q]δ(p + m− i, q + n− k) (16)

=
N−1∑

m,n=0

I1[m,n]I2[(i−m)N , (j − n)N )] (17)

=
N−1∑

p,q=0

I1[(i− p)N , (j − q)N )]I2[p, q] (18)

= I1 ! I2 (19)

Wraparound Convolution

J [i, j] =
N−1∑

m,n=0

I1[m,n]I2[(i−m)N , (j − n)N )] (20)

J = I1 ! I2 = IFFTN [FFTN [I1]⊗ FFTN [I2]] (21)

2
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LINEAR CONVOLUTION

Wraparound convolution is a consequence of the periodic DFT.

For continuous images, if two CFTs are multiplied together:

CFT[J](wx, wy) = 
CFT[IC1](wx, wy) · CFT[IC2](wx, wy) 

then we get a useful linear convolution:
J(x, y) = IC1(x, y) * IC2(x, y)

Wraparound convolution is an artifact of sampling the CFT –
 which causes spatial periodicity. 
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About Linear Convolution

Most of circuit theory, optics, and analog filter theory is 
based on linear convolution.

And … (linear) digital filter theory also requires the 
concept of digital linear convolution.

Fortunately, wraparound convolution can be used to 
compute linear convolution.  
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Undesirability of Wraparound

A very simple type of linear convolutions is the local 
average operation (or averaging filter).

Each image pixel is replaced by the average of its 
neighbors within a window: 
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Depiction of Average Filtering

input output
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Computation of Average Filtering
The average filter operation may be expressed (at most 
points) as the wraparound convolution of the image 
with an image of a square with intensity 1/M, where M 
= # pixels in the square
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Wraparound Effect

Near the image borders, however, wraparound effects occur.

Usually, it is desirable to average only neighboring elements ... 

... and convolution should superimpose and weight images 
according to their spatial ordering rather than DFT-induced 
periodic ordering. 

The effect is much worse if the filter is large. 

If the filter is small, then the effect can (perhaps) be trimmed 
from along borders

Opposite edges of image are 
being averaged together.
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Linear Convolution by Zero 
Padding 

Adapting wraparound convolution to do linear 
convolution is conceptually simple.

Accomplished by padding the two image arrays with 
zero values.  

Typically, both image arrays are doubled in size: 
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Wraparound eliminated, since the "moving" image is 
weighted by zero values outside the image domain. 

Can be seen by looking at the overlaps when computing 
the convolution at a point (i, j): 

2N x 2M zero padded images
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Wraparound Cancelling 
Visualized

Remember, the summations take place only within the blue 
shaded square (0 " i, j " 2N-1).

Instead of summing over the periodic extension of the 
"moving image," zero values are summed with the weighted 
interior values.

Linear convolution 
by zero padding.
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DFT Computation of Linear 
Convolution 

Let I
1
´ , I

2
´ , and J´  be the 2N x 2N  zero-padded 

versions of the images, and apply the FFT

then the NxN sub-image with elements

contains the linear convolution result. 

DFT computation of Linear Convolution

Let I ′
1 , I ′

2, J ′ be zero-padded 2N x 2Nimages to be convolved

J ′ = I ′
1 ! I ′

2 = IFFT2N [FFT2N [I ′
1]⊗ FFT2N [I ′

2]] (22)

N x N image given by
J(i, j) = J ′(i, j); (N/2) + 1 ≤ i, j ≤ 3N/2 (23)

3

DFT computation of Linear Convolution

Let I ′
1 , I ′

2, J ′ be zero-padded 2N x 2Nimages to be convolved

J ′ = I ′
1 ! I ′

2 = IFFT2N [FFT2N [I ′
1]⊗ FFT2N [I ′

2]] (22)

N x N image given by
J(i, j) = J ′(i, j); (N/2) + 1 ≤ i, j ≤ 3N/2 (23)

3
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Recap DFT-Based Linear 
Convolution

By multiplying zero-padded DFTs, then taking the IFFT, 
one obtains

The linear convolution is larger than NxM (in fact 
2Nx2M) but the interesting part is contained in NxM J.

To convolve an NxM image with a small filter (say PxQ), 
where P,Q < N,M: pad the filter with zeros to size NxM.

If P,Q << N,M, it may be faster to perform the linear 
convolution in the space domain.  
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Direct Linear Convolution 

Assume images I1, I2 are not periodically extended (not 
using the DFT!), and assume that

whenever i < 0 or j < 0 or i > N-1 or j > M-1.

In this case 

DFT computation of Linear Convolution

Let I ′1 , I ′2, J ′ be zero-padded 2N x 2Nimages to be convolved

J ′ = I ′1 ! I ′2 = IFFT2N [FFT2N [I ′1]⊗ FFT2N [I ′2]] (22)

N x N image given by
J(i, j) = J ′(i, j); (N/2) + 1 ≤ i, j ≤ 3N/2 (23)

DIRECT computation of linear convolution

I1[i, j] = I2[i, j] = 0

J [i, j] =
N−1∑

m,n=0

I1[m,n]I2[i−m, j − n)] (24)

3

DFT computation of Linear Convolution

Let I ′1 , I ′2, J ′ be zero-padded 2N x 2Nimages to be convolved

J ′ = I ′1 ! I ′2 = IFFT2N [FFT2N [I ′1]⊗ FFT2N [I ′2]] (22)

N x N image given by
J(i, j) = J ′(i, j); (N/2) + 1 ≤ i, j ≤ 3N/2 (23)

DIRECT computation of linear convolution

I1[i, j] = I2[i, j] = 0

J [i, j] =
N−1∑

m,n=0

I1[m,n]I2[i−m, j − n)] (24)

3
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LINEAR IMAGE FILTERING 

A process that transforms a signal or image I by linear 
convolution is a type of linear system. 
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Goals of Linear Image Filtering 

Process sampled, quantized images to transform them 
into

- images of better quality (by some criteria)

- images with certain features enhanced

- images with certain features de-emphasized or 
eradicated  
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Some Specific Goals 

smoothing - remove noise from bit errors, transmission, 
etc

deblurring - increase sharpness of blurred images

sharpening - emphasize significant features, such as 
edges

combinations of these 
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Variety of Image Distortions

impulse noisegaussian white noise

blur

JPEG compression

Albert
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A Tough One!

Try to undo (”engineering problem”) or, more 
interestingly, create this effect (creative application).
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Low-Pass, Band-Pass, and
High-Pass Filters 

The terms low-pass, band-pass, and high-pass are 
qualitative descriptions of a system's frequency 
response. 

"Low-pass" - attenuates all but the "lower" frequencies. 

"Band-pass" - attenuates all but an intermediate range of 
"middle" frequencies.

"High-pass" - attenuates all but the "higher" frequencies.  

We have seen examples of these: the zero-one 
frequency masking results. 
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Generic Uses of Filter Types 

Low-pass filters are typically used to

- smooth noise

- blur image details to emphasize gross features 

High-pass filters are typically used to 

- enhance image details and contrast

- remove image blur

Bandpass filters are usually special-purpose 
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Example Low-Pass Filter 
The Gaussian filter with frequency response

hence, sampling at 

which quickly falls at larger frequencies.

The Gaussian is an important low-pass filter.  

DFT computation of Linear Convolution

Let I ′1 , I ′2, J ′ be zero-padded 2N x 2Nimages to be convolved

J ′ = I ′1 ! I ′2 = IFFT2N [FFT2N [I ′1]⊗ FFT2N [I ′2]] (22)

N x N image given by
J(i, j) = J ′(i, j); (N/2) + 1 ≤ i, j ≤ 3N/2 (23)

DIRECT computation of linear convolution

I1[i, j] = I2[i, j] = 0

J [i, j] =
N−1∑

m,n=0

I1[m,n]I2[i−m, j − n)] (24)

Gaussian filter with frequency response

H̃continuous(ω1,ω2) = e−2π2σ2(ω2
1+ω2

2) (25)

so, sampling at u, v integer indices: ω1 = u
N , ω2 = v

N

H(ω1,ω2) = e−2π2σ2(ω2
1+ω2

2) (26)

3

DFT computation of Linear Convolution

Let I ′1 , I ′2, J ′ be zero-padded 2N x 2Nimages to be convolved

J ′ = I ′1 ! I ′2 = IFFT2N [FFT2N [I ′1]⊗ FFT2N [I ′2]] (22)

N x N image given by
J(i, j) = J ′(i, j); (N/2) + 1 ≤ i, j ≤ 3N/2 (23)

DIRECT computation of linear convolution

I1[i, j] = I2[i, j] = 0

J [i, j] =
N−1∑

m,n=0

I1[m,n]I2[i−m, j − n)] (24)

Gaussian filter with frequency response

H̃continuous(ω1,ω2) = e−2π2σ2(ω2
1+ω2

2) (25)

so, sampling at u, v integer indices: ω1 = u
N , ω2 = v

N

H(u, v) = e−2π2σ2(u2+v2)/N2
(26)

where 0 ≤ |u|, |v| ≤ N
2 − 1

3

DFT computation of Linear Convolution

Let I ′1 , I ′2, J ′ be zero-padded 2N x 2Nimages to be convolved

J ′ = I ′1 ! I ′2 = IFFT2N [FFT2N [I ′1]⊗ FFT2N [I ′2]] (22)

N x N image given by
J(i, j) = J ′(i, j); (N/2) + 1 ≤ i, j ≤ 3N/2 (23)

DIRECT computation of linear convolution

I1[i, j] = I2[i, j] = 0

J [i, j] =
N−1∑

m,n=0

I1[m,n]I2[i−m, j − n)] (24)

Gaussian filter with frequency response

H̃continuous(ω1,ω2) = e−2π2σ2(ω2
1+ω2

2) (25)

so, sampling at u, v integer indices: ω1 = u
N , ω2 = v

N

H(u, v) = e−2π2σ2(u2+v2)/N2
(26)

where 0 ≤ |u|, |v| ≤ N
2 − 1

3

DFT computation of Linear Convolution

Let I ′1 , I ′2, J ′ be zero-padded 2N x 2Nimages to be convolved

J ′ = I ′1 ! I ′2 = IFFT2N [FFT2N [I ′1]⊗ FFT2N [I ′2]] (22)

N x N image given by
J(i, j) = J ′(i, j); (N/2) + 1 ≤ i, j ≤ 3N/2 (23)

DIRECT computation of linear convolution

I1[i, j] = I2[i, j] = 0

J [i, j] =
N−1∑

m,n=0

I1[m,n]I2[i−m, j − n)] (24)

Gaussian filter with frequency response

H̃continuous(ω1,ω2) = e−2π2σ2(ω2
1+ω2

2) (25)

so, sampling at u, v integer indices: ω1 = u
N , ω2 = v

N

H̃(u, v) = e−2π2σ2(u2+v2)/N2
(26)

where 0 ≤ |u|, |v| ≤ N
2 − 1

3
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Gaussian Filter Profile
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Example Band-Pass Filter 

Can define a BP filter as the difference of two LPFs 
identical except for a scaling factor.

A common choice in image processing is the difference-of-
gaussians (DOG) filter, with frequency scaling factor K:

hence

Typically, K # 1.5.

DFT computation of Linear Convolution

Let I ′1 , I ′2, J ′ be zero-padded 2N x 2Nimages to be convolved

J ′ = I ′1 ! I ′2 = IFFT2N [FFT2N [I ′1]⊗ FFT2N [I ′2]] (22)

N x N image given by
J(i, j) = J ′(i, j); (N/2) + 1 ≤ i, j ≤ 3N/2 (23)

DIRECT computation of linear convolution

I1[i, j] = I2[i, j] = 0

J [i, j] =
N−1∑

m,n=0

I1[m,n]I2[i−m, j − n)] (24)

Gaussian filter with frequency response

H̃continuous(ω1,ω2) = e−2π2σ2(ω2
1+ω2

2) (25)

so, sampling at u, v integer indices: ω1 = u
N , ω2 = v

N

H̃(u, v) = e−2π2σ2(u2+v2)/N2
(26)

where 0 ≤ |u|, |v| ≤ N
2 − 1

Band-Pass Filter frequency scaling factor K

H̃C(ω1,ω2) = e−2(σπ)2(ω2
1+ω2

2) − e−2(Kσπ)2(ω2
1+ω2

2) (27)

so,
H̃(u, v) = e−2(σπ)2(u2+v2)/N2 − e−2(Kσπ)2(u2+v2)/N2

(28)

where 0 ≤ |u|, |v| ≤ N
2 − 1

3

DFT computation of Linear Convolution

Let I ′1 , I ′2, J ′ be zero-padded 2N x 2Nimages to be convolved

J ′ = I ′1 ! I ′2 = IFFT2N [FFT2N [I ′1]⊗ FFT2N [I ′2]] (22)

N x N image given by
J(i, j) = J ′(i, j); (N/2) + 1 ≤ i, j ≤ 3N/2 (23)

DIRECT computation of linear convolution

I1[i, j] = I2[i, j] = 0

J [i, j] =
N−1∑

m,n=0

I1[m,n]I2[i−m, j − n)] (24)

Gaussian filter with frequency response

H̃continuous(ω1,ω2) = e−2π2σ2(ω2
1+ω2

2) (25)

so, sampling at u, v integer indices: ω1 = u
N , ω2 = v

N

H̃(u, v) = e−2π2σ2(u2+v2)/N2
(26)

where 0 ≤ |u|, |v| ≤ N
2 − 1

Band-Pass Filter frequency scaling factor K

H̃C(ω1,ω2) = e−2(σπ)2(ω2
1+ω2

2) − e−2(Kσπ)2(ω2
1+ω2

2) (27)

so,
H̃(u, v) = e−2(σπ)2(u2+v2)/N2 − e−2(Kσπ)2(u2+v2)/N2

(28)

where 0 ≤ |u|, |v| ≤ N
2 − 1

3
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DOG Filter Profile

DOG filters are very useful for image analysis – and in 
human visual modelling. 

 Take K=1.5, ! < 5

u

1.0

N=32
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Example High-Pass Filter 
The Laplacian filter is also important

hence

An approximation to the Fourier transform of the 
continuous Laplacian: 

(Heat equation ++!) 

DFT computation of Linear Convolution

Let I ′1 , I ′2, J ′ be zero-padded 2N x 2Nimages to be convolved

J ′ = I ′1 ! I ′2 = IFFT2N [FFT2N [I ′1]⊗ FFT2N [I ′2]] (22)

N x N image given by
J(i, j) = J ′(i, j); (N/2) + 1 ≤ i, j ≤ 3N/2 (23)

DIRECT computation of linear convolution

I1[i, j] = I2[i, j] = 0

J [i, j] =
N−1∑

m,n=0

I1[m,n]I2[i−m, j − n)] (24)

Gaussian filter with frequency response

H̃continuous(ω1,ω2) = e−2π2σ2(ω2
1+ω2

2) (25)

so, sampling at u, v integer indices: ω1 = u
N , ω2 = v

N

H̃(u, v) = e−2π2σ2(u2+v2)/N2
(26)

where 0 ≤ |u|, |v| ≤ N
2 − 1

Band-Pass Filter frequency scaling factor K

H̃C(ω1,ω2) = e−2(σπ)2(ω2
1+ω2

2) − e−2(Kσπ)2(ω2
1+ω2

2) (27)

so,
H̃(u, v) = e−2(σπ)2(u2+v2)/N2 − e−2(Kσπ)2(u2+v2)/N2

(28)

where 0 ≤ |u|, |v| ≤ N
2 − 1

LAPLACIAN High-Pass Filter
H̃C(ω1,ω2) = A(ω2

1 + ω2
2) (29)

so
H̃(u, v) = A(u2 + v2)/N2 (30)

3

DFT computation of Linear Convolution

Let I ′1 , I ′2, J ′ be zero-padded 2N x 2Nimages to be convolved

J ′ = I ′1 ! I ′2 = IFFT2N [FFT2N [I ′1]⊗ FFT2N [I ′2]] (22)

N x N image given by
J(i, j) = J ′(i, j); (N/2) + 1 ≤ i, j ≤ 3N/2 (23)

DIRECT computation of linear convolution

I1[i, j] = I2[i, j] = 0

J [i, j] =
N−1∑

m,n=0

I1[m,n]I2[i−m, j − n)] (24)

Gaussian filter with frequency response

H̃continuous(ω1,ω2) = e−2π2σ2(ω2
1+ω2

2) (25)

so, sampling at u, v integer indices: ω1 = u
N , ω2 = v

N

H̃(u, v) = e−2π2σ2(u2+v2)/N2
(26)

where 0 ≤ |u|, |v| ≤ N
2 − 1

Band-Pass Filter frequency scaling factor K

H̃C(ω1,ω2) = e−2(σπ)2(ω2
1+ω2

2) − e−2(Kσπ)2(ω2
1+ω2

2) (27)

so,
H̃(u, v) = e−2(σπ)2(u2+v2)/N2 − e−2(Kσπ)2(u2+v2)/N2

(28)

where 0 ≤ |u|, |v| ≤ N
2 − 1

LAPLACIAN High-Pass Filter
H̃C(ω1,ω2) = A(ω2

1 + ω2
2) (29)

so
H̃(u, v) = A(u2 + v2)/N2 (30)

3

DFT of Fourier transform of Laplacian

∆ =
∂2

∂x2
+

∂2

∂y2
(31)

4
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Laplacian Profile

A = 4.5, N = 32

1.0

u

DFT computation of Linear Convolution

Let I ′1 , I ′2, J ′ be zero-padded 2N x 2Nimages to be convolved

J ′ = I ′1 ! I ′2 = IFFT2N [FFT2N [I ′1]⊗ FFT2N [I ′2]] (22)

N x N image given by
J(i, j) = J ′(i, j); (N/2) + 1 ≤ i, j ≤ 3N/2 (23)

DIRECT computation of linear convolution

I1[i, j] = I2[i, j] = 0

J [i, j] =
N−1∑

m,n=0

I1[m,n]I2[i−m, j − n)] (24)

Gaussian filter with frequency response

H̃continuous(ω1,ω2) = e−2π2σ2(ω2
1+ω2

2) (25)

so, sampling at u, v integer indices: ω1 = u
N , ω2 = v

N

H̃(u, v) = e−2π2σ2(u2+v2)/N2
(26)

where 0 ≤ |u|, |v| ≤ N
2 − 1

Band-Pass Filter frequency scaling factor K

H̃C(ω1,ω2) = e−2(σπ)2(ω2
1+ω2

2) − e−2(Kσπ)2(ω2
1+ω2

2) (27)

so,
H̃(u, v) = e−2(σπ)2(u2+v2)/N2 − e−2(Kσπ)2(u2+v2)/N2

(28)

where 0 ≤ |u|, |v| ≤ N
2 − 1

LAPLACIAN High-Pass Filter
H̃C(ω1,ω2) = A(ω2

1 + ω2
2) (29)

so
H̃(u, v) = A(u2 + v2)/N2 (30)

3
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LINEAR IMAGE DENOISING 

Linear image denoising means a process that smooths 
noise without destroying the image information.

The noise is usually modeled as additive or 
multiplicative.

We consider additive noise now. 

Multiplicative noise is better handled by a 
homomorphic filtering that uses nonlinearity.



Additive White Noise Model 

• Model additive white noise as an image N with highly 
chaotic, unpredictable elements. 

• Can be thermal circuit noise, channel noise, sensor 
noise, etc.

• Noise may effect the continuous image before sampling:
JC(x, y) = IC(x, y) + NC(x, y)

where N is the white noise
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Zero-Mean White Noise

The white noise is zero-mean if the limit of the average 
of P arbitrary noise image NC(xi, yi) ; i = 1 ,..., P: 

vanishes as P " $:

On average, the noise falls around the value zero.*

*Strictly speaking, the noise is also "mean-ergodic."  

DFT of Fourier transform of Laplacian

∆ =
∂2

∂x2
+

∂2

∂y2
(31)

Noise Smoothing with Gaussian Filter

H̃(u, v) = H̃(u2 + v2) = e−2(σπ)2(u2+v2)/N2
; 0 ≤ |u|, |v| ≤ N

2
− 1 (32)

√
u2 + v2 = Ucutoff solve for σ

e−2π2σ2U2
cutoff /N2

= 1/2 (33)

σ =
NUcutoff

π

√
log
√

2 (34)

Motion Blur Linear distortion

J̃C(ω1,ω2) = G̃C(ω1,ω2) · ĨC(ω1,ω2) (35)

J̃ = G̃⊗ Ĩ (36)

Inverse
G̃inverse(u, v) = 1/G̃(u, v); 0 ≤ |u|, |v| ≤ N

2
− 1 (37)

DFT of restored image K:
K̃ = G̃inverse ⊗ G̃⊗ Ĩ (38)

White Noise

meanP [NC ] =
1
P

P∑

i=1

NC(xi, yi) (39)

meanP [NC ]→ 0 as P →∞

4

DFT of Fourier transform of Laplacian

∆ =
∂2

∂x2
+

∂2

∂y2
(31)

Noise Smoothing with Gaussian Filter

H̃(u, v) = H̃(u2 + v2) = e−2(σπ)2(u2+v2)/N2
; 0 ≤ |u|, |v| ≤ N

2
− 1 (32)

√
u2 + v2 = Ucutoff solve for σ

e−2π2σ2U2
cutoff /N2

= 1/2 (33)

σ =
NUcutoff

π

√
log
√

2 (34)

Motion Blur Linear distortion

J̃C(ω1,ω2) = G̃C(ω1,ω2) · ĨC(ω1,ω2) (35)

J̃ = G̃⊗ Ĩ (36)

Inverse
G̃inverse(u, v) = 1/G̃(u, v); 0 ≤ |u|, |v| ≤ N

2
− 1 (37)

DFT of restored image K:
K̃ = G̃inverse ⊗ G̃⊗ Ĩ (38)

White Noise

meanP [NC ] =
1
P

P∑

i=1

NC(xi, yi) (39)

meanP [NC ]→ 0 as P →∞

4
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Spectrum of White Noise 

The noise energy spectrum is the Fourier transform of N

If the noise is white, then, on average, the energy 
spectrum will be flat (flat spectrum = ‘white’):

Note:     is called noise power.

DFT of Fourier transform of Laplacian

∆ =
∂2

∂x2
+

∂2

∂y2
(31)

Noise Smoothing with Gaussian Filter

H̃(u, v) = H̃(u2 + v2) = e−2(σπ)2(u2+v2)/N2
; 0 ≤ |u|, |v| ≤ N

2
− 1 (32)

√
u2 + v2 = Ucutoff solve for σ

e−2π2σ2U2
cutoff /N2

= 1/2 (33)

σ =
NUcutoff

π

√
log
√

2 (34)

Motion Blur Linear distortion

J̃C(ω1,ω2) = G̃C(ω1,ω2) · ĨC(ω1,ω2) (35)

J̃ = G̃⊗ Ĩ (36)

Inverse
G̃inverse(u, v) = 1/G̃(u, v); 0 ≤ |u|, |v| ≤ N

2
− 1 (37)

DFT of restored image K:
K̃ = G̃inverse ⊗ G̃⊗ Ĩ (38)

White Noise

meanP [NC ] =
1
P

P∑

i=1

NC(xi, yi) (39)

meanP [NC ]→ 0 as P →∞

Energy spectrum
Ñ(ω1,ω2) = FouriertransformofNC(x, y) (40)

meanP [|Ñ(ω1,ω2)|2]→ η;P →∞∀(ω1,ω2) (41)

4

DFT of Fourier transform of Laplacian

∆ =
∂2

∂x2
+

∂2

∂y2
(31)

Noise Smoothing with Gaussian Filter

H̃(u, v) = H̃(u2 + v2) = e−2(σπ)2(u2+v2)/N2
; 0 ≤ |u|, |v| ≤ N

2
− 1 (32)

√
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e−2π2σ2U2
cutoff /N2

= 1/2 (33)

σ =
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π

√
log
√

2 (34)

Motion Blur Linear distortion

J̃C(ω1,ω2) = G̃C(ω1,ω2) · ĨC(ω1,ω2) (35)

J̃ = G̃⊗ Ĩ (36)

Inverse
G̃inverse(u, v) = 1/G̃(u, v); 0 ≤ |u|, |v| ≤ N

2
− 1 (37)

DFT of restored image K:
K̃ = G̃inverse ⊗ G̃⊗ Ĩ (38)

White Noise

meanP [NC ] =
1
P

P∑

i=1

NC(xi, yi) (39)

meanP [NC ]→ 0 as P →∞

Energy spectrum
Ñ(ω1,ω2) = FouriertransformofNC(x, y) (40)

meanP [|Ñ(ω1,ω2)|2]→ ηP →∞∀(ω1,ω2) (41)

4

DFT of Fourier transform of Laplacian

∆ =
∂2

∂x2
+

∂2

∂y2
(31)

Noise Smoothing with Gaussian Filter

H̃(u, v) = H̃(u2 + v2) = e−2(σπ)2(u2+v2)/N2
; 0 ≤ |u|, |v| ≤ N

2
− 1 (32)

√
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= 1/2 (33)
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Motion Blur Linear distortion

J̃C(ω1,ω2) = G̃C(ω1,ω2) · ĨC(ω1,ω2) (35)

J̃ = G̃⊗ Ĩ (36)

Inverse
G̃inverse(u, v) = 1/G̃(u, v); 0 ≤ |u|, |v| ≤ N

2
− 1 (37)

DFT of restored image K:
K̃ = G̃inverse ⊗ G̃⊗ Ĩ (38)

White Noise

meanP [NC ] =
1
P

P∑

i=1

NC(xi, yi) (39)

meanP [NC ]→ 0 as P →∞

Energy spectrum
Ñ(ω1,ω2) = FouriertransformofNC(x, y) (40)

meanP [|Ñ(ω1,ω2)|2]→ ηP →∞∀(ω1,ω2) (41)

4

DFT of Fourier transform of Laplacian

∆ =
∂2

∂x2
+

∂2

∂y2
(31)

Noise Smoothing with Gaussian Filter

H̃(u, v) = H̃(u2 + v2) = e−2(σπ)2(u2+v2)/N2
; 0 ≤ |u|, |v| ≤ N

2
− 1 (32)

√
u2 + v2 = Ucutoff solve for σ

e−2π2σ2U2
cutoff /N2

= 1/2 (33)

σ =
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π

√
log
√

2 (34)

Motion Blur Linear distortion

J̃C(ω1,ω2) = G̃C(ω1,ω2) · ĨC(ω1,ω2) (35)

J̃ = G̃⊗ Ĩ (36)

Inverse
G̃inverse(u, v) = 1/G̃(u, v); 0 ≤ |u|, |v| ≤ N

2
− 1 (37)

DFT of restored image K:
K̃ = G̃inverse ⊗ G̃⊗ Ĩ (38)

White Noise

meanP [NC ] =
1
P

P∑

i=1

NC(xi, yi) (39)

meanP [NC ]→ 0 as P →∞

Energy spectrum
Ñ(ω1,ω2) = FouriertransformofNC(x, y) (40)

meanP [|Ñ(ω1,ω2)|2]→ ηP →∞∀(ω1,ω2) (41)

4

DFT of Fourier transform of Laplacian

∆ =
∂2

∂x2
+

∂2

∂y2
(31)

Noise Smoothing with Gaussian Filter

H̃(u, v) = H̃(u2 + v2) = e−2(σπ)2(u2+v2)/N2
; 0 ≤ |u|, |v| ≤ N

2
− 1 (32)

√
u2 + v2 = Ucutoff solve for σ

e−2π2σ2U2
cutoff /N2

= 1/2 (33)

σ =
NUcutoff

π

√
log
√

2 (34)

Motion Blur Linear distortion

J̃C(ω1,ω2) = G̃C(ω1,ω2) · ĨC(ω1,ω2) (35)

J̃ = G̃⊗ Ĩ (36)

Inverse
G̃inverse(u, v) = 1/G̃(u, v); 0 ≤ |u|, |v| ≤ N

2
− 1 (37)

DFT of restored image K:
K̃ = G̃inverse ⊗ G̃⊗ Ĩ (38)

White Noise

meanP [NC ] =
1
P

P∑

i=1

NC(xi, yi) (39)

meanP [NC ]→ 0 as P →∞

Energy spectrum
Ñ(ω1,ω2) = FouriertransformofNC(x, y) (40)

meanP [|Ñ(ω1,ω2)|2]→ ηP →∞∀(ω1,ω2) (41)

4
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White Noise Model
White noise is an approximate model of additive 
broadband noise:

 J’C(!x, !y) = I’C(!x, !y) + N’C(!x, !y)

‘ denotes transform

x
x+

I  (x)C N  (x)C

+
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Linear Denoising

Objective: Remove as much of the high-frequency noise 
as possible while preserving as much of the image 
spectrum as possible. 

Generally accomplished by a Low Pass Filter of fairly 
wide bandwidth (images are fairly wideband): 



Denoising - Gaussian Filter 
• The isotropic Gaussian filter is an effective :

• It gives more weight to “closer” neighbors.

• DFT design: Set the half-peak bandwidth
Solve for !:   

DFT of Fourier transform of Laplacian

∆ =
∂2

∂x2
+

∂2

∂y2
(31)

Noise Smoothing with Gaussian Filter

H̃(u, v) = H̃(u2 + v2) = e−2(σπ)2(u2+v2)/N2
; 0 ≤ |u|, |v| ≤ N

2
− 1 (32)

√
u2 + v2 = Ucutoff solve for σ

e−2π2σ2U2
cutoff /N2

= 1/2 (33)

σ =
NUcutoff

π

√
log
√

2 (34)

4

DFT of Fourier transform of Laplacian

∆ =
∂2

∂x2
+

∂2

∂y2
(31)

Noise Smoothing with Gaussian Filter

H̃(u, v) = H̃(u2 + v2) = e−2(σπ)2(u2+v2)/N2
; 0 ≤ |u|, |v| ≤ N

2
− 1 (32)

√
u2 + v2 = Ucutoff solve for σ

e−2π2σ2U2
cutoff /N2

= 1/2 (33)

σ =
NUcutoff

π

√
log
√

2 (34)

4

DFT of Fourier transform of Laplacian

∆ =
∂2

∂x2
+

∂2

∂y2
(31)

Noise Smoothing with Gaussian Filter

H̃(u, v) = H̃(u2 + v2) = e−2(σπ)2(u2+v2)/N2
; 0 ≤ |u|, |v| ≤ N

2
− 1 (32)

√
u2 + v2 = Ucutoff solve for σ

e−2π2σ2U2
cutoff /N2

= 1/2 (33)

σ =
NUcutoff

π

√
log
√

2 (34)

4

DFT of Fourier transform of Laplacian

∆ =
∂2

∂x2
+

∂2

∂y2
(31)

Noise Smoothing with Gaussian Filter

H̃(u, v) = H̃(u2 + v2) = e−2(σπ)2(u2+v2)/N2
; 0 ≤ |u|, |v| ≤ N

2
− 1 (32)

√
u2 + v2 = Ucutoff solve for σ

e−2π2σ2U2
cutoff /N2

= 1/2 (33)

σ =
NUcutoff

π

√
log
√

2 (34)

4
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LINEAR IMAGE DEBLURRING 

Often an image that is obtained digitally has already 
been corrupted by a linear process. 

This may be due to motion blur, blurring due to 
defocusing, etc.

We can model such an observed image as the result of a 
linear convolution:

JC(x, y) = GC(x, y)*IC(x, y)

so the FFT
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Noise Smoothing with Gaussian Filter
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Motion Blur Linear distortion

J̃C(ω1,ω2) = G̃C(ω1,ω2) · ĨC(ω1,ω2) (35)
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Digital Blur Function

The sampled image will then be of the form (assuming 
sufficient sampling rate

J = G * I

with DFT

The distortion G is almost always low-pass (blurring).

Our goal is to use digital filtering to reduce blur – a 
VERY hard problem!  
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Motion Blur Linear distortion
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J̃ = G̃⊗ Ĩ (36)
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Deblur - Inverse Filter 

Often it is possible to make an estimate of the distortion 
G. 

This may be possible by examining the physics of the 
situation. 

For example, motion blur (relative camera movement) is 
usually along one direction. If this can be determined, 
then a filter can be designed. 

The effect of a camera can often be determined – and 
hence, a digital deblur filter designed.
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Deconvolution
Reversing the linear blur G is deconvolution. It is done 
using the inverse filter of the distortion:

Then the DFT of the restored image is:

The challenge, of course, is to model G
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Motion Blur Linear distortion

J̃C(ω1,ω2) = G̃C(ω1,ω2) · ĨC(ω1,ω2) (35)

J̃ = G̃⊗ Ĩ (36)

Inverse
G̃inverse(u, v) = 1/G̃(u, v); 0 ≤ |u|, |v| ≤ N

2
− 1 (37)

DFT of restored image K:
K̃ = G̃inverse ⊗ G̃⊗ Ĩ (38)
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Blur Estimation

An estimate of blur G might be obtainable. 

The inverse of low-pass blur is high-pass:

Gaussian 

distortion 

Inverse filter 



Other Results



  52

Hubble Telescope

Wide Field Planetary Camera

Galaxy M100
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Hubble Telescope

Wide Field Planetary Camera

Galaxy M100

after repairing spherical aberration
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Average Filtering

Eggs + Gaussian noise:
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Average Filtering

Eggs + Gaussian noise:

AVE[eggs, SQUARE (9)]
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Average Filtering

Eggs + Gaussian noise:

AVE[eggs, SQUARE (25)]
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Average Filtering

Eggs + Gaussian noise:

AVE[eggs, SQUARE (81)]



  58

Optical Serial Sectioning 
Microscopy

Sequence of sections of pollen grains

Inverse filtering:
High frequencies suppressed
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Optical Serial Sectioning 
Microscopy

Sequence of sections of pollen grains

Wiener filtering:
good for blur + noise



more blur

• Deblurring

• Pseudo-inverse

• Wiener filter
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Deblur - Missing Frequencies 

Unfortunately, things are not always so "ideal" in the 
real world.

Sometimes the blur frequency response takes zero value
(s). 

If

which is meaningless.
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Zeroed Frequencies

The reality: any frequencies that are zeroed by a linear 
distortion are unrecoverable in practice (at least by 
linear means) - lost forever!

The best that can be done is to reverse the distortion at 
the non-zero values. 

Sometimes much of the frequency plane is lost. Some 
optical systems remove a large angular spread of 
frequencies:  unrecoverable "zeroed" frequencies
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Pseudo-Inverse Filter 

The pseudo-inverse filter is defined

Thus no attempt is made to recover lost frequencies.

The pseudo-inverse is set to zero in the known region of 
missing frequencies – a conservative approach.

In this way spurious (noise) frequencies will be 
eradicated.    
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Deblur in the Presence of Noise 

A worse case is when the image I is distorted both by 
linear blur G and additive noise N:

This may occur, e.g., if an image is linearly distorted   
then sent over a noisy channel.

The DFT:  
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Filtering a Blurred, Noisy Image

Filtering with a linear filter H will produce the result

or

The problem is that neither a low-pass filter (to smooth 
noise, but won't correct the blur) nor a high-pass filter 
(the inverse filter, which will amplify the noise) will 
work.  
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Failure of Inverse Filter

If the inverse filter were used, then

or

In this case the blur is corrected, but the restored image 
has horribly amplified high-frequency noise added to it.  
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Wiener Filter

The Wiener filter (after Norbert Wiener) or minimum-
mean-square-error (MMSE) filter is a “best” linear 
approach.

The Wiener filter for blur G and white noise N is

Often the noise factor # is unknown or unobtainable. 
The designer will usually experiment with heuristic 
values for #.

In fact, better visual results may often be obtained by 
using values for # in the Wiener filter.  
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Wiener Filter Rationale

We won’t derive the Wiener filter here. But:

If # = 0 (no noise), the Wiener filter reduces to the 
inverse filter:

which is highly desirable.
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Wiener Filter Rationale

If                                     (no blur) the Wiener filter 
reduces to:

which does nothing except scale the variance so 
that the MSE is minimized.

So, the Wiener filter is not useful unless there is blur.
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Pseudo-Wiener Filter

Obviously, if there are frequencies zeroed by the linear 
distortion G then it is best to define a pseudo-Wiener 
filter:

Noise in the "missing region" of frequencies will be 
eradicated.

DEMO (!blur < 4, # << 1, !noise < 10)  
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Shroud of Turin Image

An intensely enhanced, denoised, deblurred, etc etc 
etc and debated image



Making Noise

• Gaussian Additive Noise

• Laplacian Additive White Noise

• Exponential Multiplicative White Noise

• Salt and Pepper Noise 

• What Is Noise?
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Additive White Noise

Gaussian                               Laplacian
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More Noise

Exponential Multiplicative 
White Noise

Salt and Pepper



Comments

• Non-linear filtering methods include 

• weighted median filters,

• image zooming,

• sharpening,

• edge detection



What is noise?
Source of synthesis texture

• Signal vs. Noise

• Attention,  John Cage, music as organized sound


