Linear Image Filtering Monday 2 Oct 2006

- Wraparound and Linear Convolution
- Linear Image Filters
- Linear Image Denoising
- Linear Image Restoration (Deconvolution)

WRAPAROUND CONVOLUTION

- Modifying the DFT of an image changes its appearance. For example, multiplying a DFT by a zero-one mask predictably modifies image appearance:

Multiplying DFTs

- What if two arbitrary DFTs are (pointwise) multiplied together, or divided?

$$
\widetilde{J}[u, v]=\widetilde{I}_{1} \otimes \widetilde{I}_{2} \quad \widetilde{J}[u, v]=\widetilde{I}_{1} \Delta \widetilde{I}_{2}
$$

- The answer has profound consequences in image processing.
- Division is a special case which need special handling if contains near-zero or zero values.

Multiplying DFTs

- Consider the pointwise product of two DFT's

$$
\widetilde{J}[u, v]=\widetilde{I_{1}} \otimes \widetilde{I_{2}}
$$

- This has inverse DFT

$$
\begin{aligned}
J[i, j] & =\frac{1}{N^{2}} \sum_{u, v=0}^{N-1} \widetilde{J}[u, v] W_{N}^{-(u i+v j)} \\
& =\frac{1}{N^{2}} \sum_{u, v=0}^{N-1} \widetilde{I}_{1}[u, v] \cdot \widetilde{I}_{2}[u, v] W_{N}^{-(u i+v j)}
\end{aligned}
$$

Inverse of product of DFTs:

$$
\begin{aligned}
= & \frac{1}{N^{2}} \sum_{u, v=0}^{N-1}\left\{\sum_{m, n=0}^{N-1} I_{1}[m, n] W_{N}^{u m+v n}\right\} \\
& \cdot\left\{\sum_{p, q=0}^{N-1} I_{2}[p, q] W_{N}^{u p+v q}\right\} W_{N}^{-(u i+v j)} \\
= & \frac{1}{N^{2}} \sum_{m, n=0}^{N-1} I_{1}[m, n] \sum_{p, q=0}^{N-1} I_{2}[p, q] \sum_{u, v=0}^{N-1} W_{N}^{[u(p+m-i)+v(q+n-j)]}
\end{aligned}
$$

- From the impulse function:

$$
\begin{aligned}
& J[i, j]=\sum_{m, n=0}^{N-1} I_{1}[m, n] \sum_{p, q=0}^{N-1} I_{2}[p, q] \delta(p+m-i, q+n-k) \\
&\left.=\sum_{m, n=0}^{N-1} I_{1}[m, n] I_{2}\left[(i-m)_{N},(j-n)_{N}\right)\right] \\
&\left.=\sum_{p, q=0}^{N-1} I_{1}\left[(i-p)_{N},(j-q)_{N}\right)\right] I_{2}[p, q] \\
&=I_{1} \circledast I_{2} \quad \text { Where we periodically extend } \mathbf{I}_{1} \text { and } \mathbf{I}_{2} \\
& \text { And means } \mathrm{x} \bmod \mathrm{~N}
\end{aligned}
$$

Wraparound Convolution

- The summation

$$
\left.J[i, j]=\sum_{m, n=0}^{N-1} I_{1}[m, n] I_{2}\left[(i-m)_{N},(j-n)_{N}\right)\right]
$$

- is also called cyclic convolution and circular convolution.
- Like linear convolution, it is an inner product between one sequence and a (doubly) reversed, shifted version of the other - except with indices taken modulo-M, N ($M=N$ here for simplicity).

Wraparound Convolution

- It is a weighted sum of the elements $\mathbf{I I}_{1}(\mathrm{~m}, \mathrm{n})$ of the image \mathbf{I}_{1}, where the weights $I_{2}(i-m, j-n)$ are shifted elements of the image \mathbf{I}_{2}.

The amount of shift depends on (i, j).
(i, j) given, $\mathrm{J}(\mathrm{i}, \mathrm{j})$, the new image, is defined by:
superimposing \mathbf{I}_{2} directly "on top of" \mathbf{I}_{1}
reversing $\mathbf{I} 2$: [I2(-m, -n)]
shifting $\mathbf{I} 2$ by an amount (i, j)
computing $11(m, n) \cdot l_{2}\left[(i-m) N^{\prime}(j-n) N^{\prime}\right]$ for $0 \leq m, n \leq N-1$ adding the results
$J=I_{1} \circledast I_{2}=I F F T_{N}\left[F F T_{N}\left[I_{1}\right] \otimes F F T_{N}\left[I_{2}\right]\right]$

Depicting Wraparound Convolution

- Consider hypothetical images ant If

IU๙ถิต 1

IWตถิe T_{5}
at which we wish to compute the cyclic convolution at (i, j) in the spatial domain (without DFTs).

- Without wraparound:

- Modulo arithmetic defines the product for all $0<\mathrm{i}<$ $\mathrm{N}-1,0<\mathrm{j}<\mathrm{M}-1$.

N UIIllididull uccurs uver $\mathrm{U} \leq \mathrm{I} \leq \mathrm{N}-\mathrm{I}, \mathrm{U} \leq \mathrm{J} \leq \mathrm{IVI}-1$ Uverldy Ol perlucil extensiOn Ol snllted ${ }^{\prime} 2$

Computation of Wraparound Convolution

- Direct computation of

$$
\left.J[i, j]=\sum_{m, n=0}^{N-1} I_{1}[m, n] I_{2}\left[(i-m)_{N},(j-n)_{N}\right)\right]
$$

- is simple but expensive.
- For an NxM image:
- - for each of NM coordinates: NM additions and NM multiplies
- - or (NM)(NM) multiplies
- - for $N=M=512$, this $236=6.9 \times 10^{10}$ operations

DFT Computation of Wraparound Convolution

- Because of FFT, computing \# in the DFT domain is much faster, provided that $\mathrm{N}=$ a power of 2 .
- Simply

$$
J=I_{1} \circledast I_{2}=I F F T_{N}\left[F F T_{N}\left[I_{1}\right] \otimes F F T_{N}\left[I_{2}\right]\right]
$$

- Computing an ($\mathrm{N} x \mathrm{M}$) FFT is $\mathrm{O}[\mathrm{NM} \cdot \log (\mathrm{NM})]$, so computation of \# is as well.
- We now will discover that \# must be modified in order to make it useful.

LINEAR CONVOLUTION

- Wraparound convolution is a consequence of the periodic DFT.
- For continuous images, if two CFTs are multiplied together:

$$
\operatorname{CFT}[J](w x, w y)=
$$

CFT[IC1](wx, wy) • CFT[IC2](wx, wy)

- then we get a useful linear convolution:

$$
\mathrm{J}(\mathrm{x}, \mathrm{y})=\mathrm{IC} 1(\mathrm{x}, \mathrm{y}) * \operatorname{IC} 2(\mathrm{x}, \mathrm{y})
$$

- Wraparound convolution is an artifact of sampling the CFT which causes spatial periodicity.

About Linear Convolution

- Most of circuit theory, optics, and analog filter theory is based on linear convolution.
- And ... (linear) digital filter theory also requires the concept of digital linear convolution.
- Fortunately, wraparound convolution can be used to compute linear convolution.

Undesirability of Wraparound

- A very simple type of linear convolutions is the local average operation (or averaging filter).
- Each image pixel is replaced by the average of its neighbors within a window:

Depiction of Average Filtering

 Input image
 Output image

average of values within square window

Computation of Average Filtering

- The average filter operation may be expressed (at most points) as the wraparound convolution of the image with an image of a square with intensity $1 / M$, where M $=$ \# pixels in the square

Input image

Image of square

Opposite edges of image are being averaged together.

Wraparound Effect

- Near the image borders, however, wraparound effects occur.
- Usually, it is desirable to average only neighboring elements ...
- ... and convolution should superimpose and weight images according to their spatial ordering rather than DFT-induced periodic ordering.
- The effect is much worse if the filter is large.
- If the filter is small, then the effect can (perhaps) be trimmed from along borders

Linear Convolution by Zero Padding

- Adapting wraparound convolution to do linear convolution is conceptually simple.
- Accomplished by padding the two image arrays with zero values.
- Typically, both image arrays are doubled in size:

$2 \mathrm{~N} \times 2 \mathrm{M}$ zero padded images
 (zerv jaduea) IIIlage $I 1$
 (zeru paunea)
 mmage n^{2}

- Wraparound eliminated, since the "moving" image is weighted by zero values outside the image domain.
- Can be seen by looking at the overlaps when computing the convolution at a point (i, j) :

Wraparound Cancelling Visualized

- Remember, the summations take place only within the blue shaded square $(0 \leq i, i \leq 2 N-1)$.

Instead of summing over the periodic extension of the "moving image," zero values are summed with the weighted interior values.

DFT Computation of Linear Convolution

- Let $\mathbf{I}_{1}{ }^{\prime}, \mathbf{I}_{2}{ }^{\prime}$, and J^{\prime} be the $2 \mathrm{~N} \times 2 \mathrm{~N}$ zero-padded versions of the images, and apply the FFT
$J^{\prime}=I_{1}^{\prime} * I_{2}^{\prime}=I F F T_{2 N}\left[F F T_{2 N}\left[I_{1}^{\prime}\right] \otimes F F T_{2 N}\left[I_{2}^{\prime}\right]\right]$
- then the NxN sub-image with elements

$$
J(i, j)=J^{\prime}(i, j) ;(N / 2)+1 \leq i, j \leq 3 N / 2
$$

contains the linear convolution result.

Recap DFT-Based Linear Convolution

- By multiplying zero-padded DFTs, then taking the IFFT, one obtains
- The linear convolution is larger than NxM (in fact 2 Nx 2 M) but the interesting part is contained in NxM J.
- To convolve an NxM image with a small filter (say PxQ), where $P, Q<N, M$: pad the filter with zeros to size $N x M$.
- If $P, Q \ll N, M$, it may be faster to perform the linear convolution in the space domain.

Direct Linear Convolution

- Assume images I1, I2 are not periodically extended (not using the DFT!), and assume that

$$
I_{1}[i, j]=I_{2}[i, j]=0
$$

- whenever $\mathrm{i}<0$ or $\mathrm{j}<0$ or $\mathrm{i}>\mathrm{N}-1$ or $\mathrm{j}>\mathrm{M}-1$.
- In this case

$$
\left.J[i, j]=\sum_{m, n=0}^{N-1} I_{1}[m, n] I_{2}[i-m, j-n)\right]
$$

LINEAR IMAGE FILTERING

- A process that transforms a signal or image I by linear convolution is a type of linear system.

Goals of Linear Image Filtering

- Process sampled, quantized images to transform them into
- - images of better quality (by some criteria)
- - images with certain features enhanced
- - images with certain features de-emphasized or eradicated

Some Specific Goals

- smoothing - remove noise from bit errors, transmission, etc
- deblurring - increase sharpness of blurred images
- sharpening - emphasize significant features, such as edges
- combinations of these
- Variety of Image Distortions

blur

Albert

JPEG compression

- A Tough One!
- Try to undo ("engineering problem") or, more interestingly, create this effect (creative application).

Low-Pass, Band-Pass, and High-Pass Filters

- The terms low-pass, band-pass, and high-pass are qualitative descriptions of a system's frequency response.
- "Low-pass" - attenuates all but the "lower" frequencies.
- "Band-pass" - attenuates all but an intermediate range of "middle" frequencies.
- "High-pass" - attenuates all but the "higher" frequencies.
- We have seen examples of these: the zero-one frequency masking results.

Generic Uses of Filter Types

- Low-pass filters are typically used to
- - smooth noise
- - blur image details to emphasize gross features
- High-pass filters are typically used to
- - enhance image details and contrast
- - remove image blur
- Bandpass filters are usually special-purpose

Example Low-Pass Filter

- The Gaussian filter with frequency response

$$
\widetilde{H}_{\text {continuous }}\left(\omega_{1}, \omega_{2}\right)=e^{-2 \pi^{2} \sigma^{2}\left(\omega_{1}^{2}+\omega_{2}^{2}\right)}
$$

hence, sampling at $\omega_{1}=\frac{u}{N}, \omega_{2}=\frac{v}{N} \quad 0 \leq|u|,|v| \leq \frac{N}{2}-1$

$$
\tilde{H}(u, v)=e^{-2 \pi^{2} \sigma^{2}\left(u^{2}+v^{2}\right) / N^{2}}
$$

- which quickly falls at larger frequencies.
- The Gaussian is an important low-pass filter.

Gaussian Filter Profile

$\mathrm{N}=32 . \sigma=1$

$\mathrm{N}=32 . \sigma=1.5$

Plots of one matrix row ($\mathrm{y}=0$)

Example Band-Pass Filter

- Can define a BP filter as the difference of two LPFs identical except for a scaling factor.
- A common choice in image processing is the difference-ofgaussians (DOG) filter, with frequency scaling factor K :

$$
\widetilde{H}_{C}\left(\omega_{1}, \omega_{2}\right)=e^{-2(\sigma \pi)^{2}\left(\omega_{1}^{2}+\omega_{2}^{2}\right)}-e^{-2(K \sigma \pi)^{2}\left(\omega_{1}^{2}+\omega_{2}^{2}\right)}
$$

hence

$$
\tilde{H}(u, v)=e^{-2(\sigma \pi)^{2}\left(u^{2}+v^{2}\right) / N^{2}}-e^{-2(K \sigma \pi)^{2}\left(u^{2}+v^{2}\right) / N^{2}}
$$

- Typically, $K \approx 1.5$.

DOG Filter Profile

- DOG filters are very useful for image analysis - and in human visual modelling.
- Take K=1.5, $\sigma<5$

Example High-Pass Filter

- The Laplacian filter is also important
- hence

$$
\widetilde{H}_{C}\left(\omega_{1}, \omega_{2}\right)=A\left(\omega_{1}^{2}+\omega_{2}^{2}\right)
$$

$$
\widetilde{H}(u, v)=A\left(u^{2}+v^{2}\right) / N^{2}
$$

- An approximation to the Fourier transform of the continuous Laplacian:

$$
\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}
$$

(Heat equation ++ !)

Laplacian Profile

$$
\mathrm{A}=4.5, \mathrm{~N}=32 \quad \tilde{H}(u, v)=A\left(u^{2}+v^{2}\right) / N^{2}
$$

LINEAR IMAGE DENOISING

- Linear image denoising means a process that smooths noise without destroying the image information.
- The noise is usually modeled as additive or multiplicative.
- We consider additive noise now.
- Multiplicative noise is better handled by a homomorphic filtering that uses nonlinearity.

Additive White Noise Model

- Model additive white noise as an image N with highly chaotic, unpredictable elements.
- Can be thermal circuit noise, channel noise, sensor noise, etc.
- Noise may effect the continuous image before sampling:

$$
\mathrm{J}_{\mathrm{C}}(\mathrm{x}, \mathrm{y})=\mathrm{IC}(\mathrm{x}, \mathrm{y})+\mathrm{NC}(\mathrm{x}, \mathrm{y})
$$

where N is the white noise

Zero-Mean White Noise

- The white noise is zero-mean if the limit of the average of P arbitrary noise image $\mathrm{NC}\left(\mathrm{xi}_{\mathrm{i}}, \mathrm{yi}\right) ; \mathrm{i}=1, \ldots, \mathrm{P}$: vanishes as $\mathrm{P} \rightarrow \infty$:

$$
\begin{aligned}
& P \rightarrow \infty: \\
& \text { mean }_{P}\left[N_{C}\right]=\frac{1}{P} \sum_{i=1}^{P} N_{C}\left(x_{i}, y_{i}\right) \\
& \text { mean }_{P}\left[N_{C}\right] \rightarrow 0 \text { as } P \rightarrow \infty
\end{aligned}
$$

- On average, the noise falls around the value zero.*
- *Strictly speaking, the noise is also "mean-ergodic."

Spectrum of White Noise

- The noise energy spectrum is the Fourier transform of N

$$
\tilde{N}\left(\omega_{1}, \omega_{2}\right)
$$

- If the noise is white, then, on average, the energy spectrum will be flat (flat spectrum = 'white'):

$$
\operatorname{mean}_{P \rightarrow \infty^{\prime}}\left[\left|\tilde{N}\left(\omega_{1}, \omega_{2}\right)\right|^{2}\right] \rightarrow \eta \quad, \forall\left(\omega_{1}, \omega_{2}\right)
$$

- Note: η is called noise power.

White Noise Model

- White noise is an approximate model of additive broadband noise:

$$
J^{\prime} \mathrm{C}\left(\omega_{\mathrm{x}}, \omega_{\mathrm{y}}\right)=\mathrm{I}^{\prime} \mathrm{C}\left(\omega_{\mathrm{x}}, \omega_{\mathrm{y}}\right)+\mathrm{N}^{\prime} \mathrm{C}\left(\omega_{\mathrm{x}}, \omega_{\mathrm{y}}\right)
$$

' denotes transform

Linear Denoising

- Objective: Remove as much of the high-frequency noise as possible while preserving as much of the image spectrum as possible.
- Generally accomplished by a Low Pass Filter of fairly wide bandwidth (images are fairly wideband):

Denoising - Gaussian Filter

- The isotropic Gaussian filter is an effective :
$\widetilde{H}(u, v)=\widetilde{H}\left(u^{2}+v^{2}\right)=e^{-2(\sigma \pi)^{2}\left(u^{2}+v^{2}\right) / N^{2}}$
- It gives more weight to "closer" neighbors.
- DFT design: Set the half-peak bandwidth $\sqrt{u^{2}+v^{2}}=U_{\text {cutoff }}$ Solve for σ :

$$
\begin{gathered}
e^{-2 \pi^{2} \sigma^{2} U_{c u t o f f}^{2} / N^{2}}=1 / 2 \\
\sigma=\frac{N U_{\text {cutoff }}}{\pi} \sqrt{\log \sqrt{2}}
\end{gathered}
$$

LINEAR IMAGE DEBLURRING

- Often an image that is obtained digitally has already been corrupted by a linear process.
- This may be due to motion blur, blurring due to defocusing, etc.
- We can model such an observed image as the result of a linear convolution:
-

$$
\operatorname{JC}(x, y)=\operatorname{GC}(x, y) * \operatorname{IC}(x, y)
$$

so the FFT

$$
\widetilde{J}_{C}\left(\omega_{1}, \omega_{2}\right)=\widetilde{G}_{C}\left(\omega_{1}, \omega_{2}\right) \cdot \widetilde{I}_{C}\left(\omega_{1}, \omega_{2}\right)
$$

Digital Blur Function

- The sampled image will then be of the form (assuming sufficient sampling rate

$$
J=G * I
$$

- with DFT

$$
\widetilde{J}=\widetilde{G} \otimes \widetilde{I}
$$

- The distortion G is almost always low-pass (blurring).
- Our goal is to use digital filtering to reduce blur - a VERY hard problem!

Deblur - Inverse Filter

- Often it is possible to make an estimate of the distortion G.
- This may be possible by examining the physics of the situation.
- For example, motion blur (relative camera movement) is usually along one direction. If this can be determined, then a filter can be designed.
- The effect of a camera can often be determined - and hence, a digital deblur filter designed.

Deconvolution

- Reversing the linear blur G is deconvolution. It is done using the inverse filter of the distortion:

$$
\widetilde{G}^{\text {inverse }}(u, v)=1 / \widetilde{G}(u, v) \quad 0 \leq|u|,|v| \leq \frac{N}{2}-1
$$

- Then the DFT of the restored image is:

$$
\widetilde{K}=\widetilde{G}^{\text {inverse }} \otimes \widetilde{G} \otimes \widetilde{I}
$$

The challenge, of course, is to model G

Blur Estimation

- An estimate of blur G might be obtainable.
- The inverse of low-pass blur is high-pass:

distortion

Other Results

Hubble Telescope

- Wide Field Planetary Camera
- Galaxy M100

Hubble Telescope

- Wide Field Planetary Camera
- Galaxy M100

- after repairing spherical aberration

Average Filtering

- Eggs + Gaussian noise:

Average Filtering

- Eggs + Gaussian noise:

AVE[eggs, SQUARE (9)5

Average Filtering

- Eggs + Gaussian noise:

AVE[eggs, SQUARE (25)]

Average Filtering

- Eggs + Gaussian noise:

AVE[eggs, SQUARE (81)]

Optical Serial Sectioning Microscopy

- Sequence of sections of pollen grains

Inverse filtering:
High frequencies suppresseed

Optical Serial Sectioning Microscopy

- Sequence of sections of pollen grains

Wiener filtering:
good for blur + noise

more blur

- Deblurring
- Pseudo-inverse
- Wiener filter

Deblur - Missing Frequencies

- Unfortunately, things are not always so "ideal" in the real world.
- Sometimes the blur frequency response takes zero value (s).
- If

- which is meaningless.

Zeroed Frequencies

- The reality: any frequencies that are zeroed by a linear distortion are unrecoverable in practice (at least by linear means) - lost forever!
- The best that can be done is to reverse the distortion at the non-zero values.
- Sometimes much of the frequency plane is lost. Some optical systems remove a large angular spread of frequencies:

Pseudo-Inverse Filter

- The pseudo-inverse filter is defined
- Thus no attempt is made to recover lost frequencies.
- The pseudo-inverse is set to zero in the known region of missing frequencies - a conservative approach.
- In this way spurious (noise) frequencies will be eradicated.

Deblur in the Presence of Noise

- A worse case is when the image I is distorted both by linear blur G and additive noise N :

\% $=$ C It

- This may occur, e.g., if an image is linearly distorted then sent over a noisy channel.
- The DFT:

(1) C It K

Filtering a Blurred, Noisy Image

- Filtering with a linear filter H will produce the result
- or

- The problem is that neither a low-pass filter (to smooth noise, but won't correct the blur) nor a high-pass filter (the inverse filter, which will amplify the noise) will work.

Failure of Inverse Filter

- If the inverse filter were used, then

tane

- or

faire
 (凶) A घinarce
 * K

- In this case the blur is corrected, but the restored image has horribly amplified high-frequency noise added to it.

Wiener Filter

- The Wiener filter (after Norbert Wiener) or minimum-mean-square-error (MMSE) filter is a "best" linear approach.
- The Wiener filter forblyrG and white noise N is
- Often the noise factor η is unknown or unobtainable. The designer will usually experiment with heuristic values for η.
- In fact, better visual results may often be obtained by

Wiener Filter Rationale

- We won't derive the Wiener filter here. But:
- If $\boldsymbol{\eta}=0$ (no noise), the Wiener filter reduces to the inverse filter:

$=$

- which is highly desirable.

Wiener Filter Rationale

- If $Q\left(\Pi^{\circ} \wedge\right)=$ I toI. SII ((I' (flo blur) the Wiener filter reduces to:
- which does nothing except scale the variance so that the MSE is minimized.
- So, the Wiener filter is not useful unless there is blur.

Pseudo-Wiener Filter

- Obviously, if there are frequencies zeroed by the linear distortion G then it is best to define a pseudo-Wiener filter:
QWMएM,
- Noise in the "missing region" of frequencies will be eradicated.
- DEMO (σ blur $<4, \eta \ll 1$, onoise <10)

Shroud of Turin Image

An intensely enhanced, denoised, deblurred, etc etc etc and debated image

Making Noise

- Gaussian Additive Noise
- Laplacian Additive White Noise
- Exponential Multiplicative White Noise
- Salt and Pepper Noise
- What Is Noise?

Additive White Noise

- Gaussian

Laplacian

More Noise

- Exponential Multiplicative White Noise

Salt and Pepper

Comments

- Non-linear filtering methods include
- weighted median filters,
- image zooming,
- sharpening,
- edge detection

What is noise?
 Source of synthesis texture

- Signal vs. Noise
- Attention, John Cage, music as organized sound

