Motion and Optical Flow

Monday i Nov 2006

video as spacetime block

- Set notation
Ω is a rectangle in R^{2}

$$
I: \Omega \times[0, \infty) \rightarrow R^{+}
$$

vector field $x \in \Omega$

$$
v(x)=<v_{1}(x), v_{2}(x)>
$$

variational formulation:

active contours

- We wish to define somefunctional that will allow us to partition the image I into region Rand its complement I - R.

Let $f()$ be a monotone decreasing function, then we seek:

$$
\min _{\gamma} \int_{\mathcal{R}_{\gamma}} f(\delta \boldsymbol{I}(\boldsymbol{x})) d \boldsymbol{x}+\lambda \int_{\gamma} d s
$$

Q. What does minimizing this functional favor?

variational approach ...

$$
\min _{\gamma} \int_{\mathcal{R}_{\gamma}} f(\delta \boldsymbol{I}(\boldsymbol{x})) d \boldsymbol{x}+\lambda \int_{\gamma} d s
$$

- minimizing favors regions of large gradient of I, and at the same time controls (minimizes) length of boundary

Minimizing not over real numbers, but over function spaces: eg over curves,
Apply calculus of variations.
Solving Euler-Lagrange equations for that functional yields this differential equation, called an evolution equation:

evolution equation

- Evolution equation for functional is an ODE to vary the boundary curve:

$$
\frac{\partial \gamma}{\partial \tau}=F \vec{\nu}=(f(\delta \boldsymbol{I}(\boldsymbol{x}))+\lambda \kappa) \vec{\nu}
$$

$\vec{\nu}$ inward normal to curve γ
κ geodesic curvature

$$
\text { As } \delta \boldsymbol{I} \rightarrow \infty, f(\delta \boldsymbol{I}) \rightarrow 0
$$

so the balloon force pushes contour to large gradient image areas

sphere inversion problem

- old and new approaches

Thurston proof \& video
Sullivan proof \& video using curvature-driven flow

motion estimation

- different criteria for
compression: motion-compemsated compressopn (MPEG)
vs
motion-based video segmentation
skip many apparent motion effects due to variations in illumination or camera characteristics
focus on object-induced motion

models of motion

- spatial models
temporal models
region of support
spatial model: assume that the movement of a dot at position x is modeled by some affine map

$$
v(x)=\binom{b 1}{b 2}+\left(\begin{array}{ll}
b 3 & b 4 \\
b 5 & b 6
\end{array}\right) x
$$

temporal model of motion

temporal model assuming velocity is constant between time t and $\tau>t$

$$
\boldsymbol{x}(\tau)=\boldsymbol{x}(t)+v_{t}(x)(\tau-t)=\boldsymbol{x}(t)+\boldsymbol{d}_{t, \tau}(x)
$$

- and ... region of support

observation models

- Key assumption: Image intensity of a (point) object does not change along motion trajectory, so , for every \mathbf{x} :

$$
I_{k}[\boldsymbol{n}]=I_{k-1}[\boldsymbol{n}-\boldsymbol{d}]
$$

Differentiating w/r s, where s is length along trajectory:

$$
\frac{d I}{d s}=0
$$

by chain rule: $\quad \frac{d I}{d x} \nu_{1}+\frac{d I}{d y} \nu_{2}+\frac{d I}{d t}=(\nabla I) \cdot \boldsymbol{\nu}+\frac{d I}{d t}=0$

regularization of image

- Underconstrained -- not enough conditions to yield a motion. Assume neighboring points move alike. One way: motion field is locally smooth, with low gradient. We minimize E[v] for a velocity field

$$
\int_{D}\left(\nabla I(x) \cdot \boldsymbol{v}(x)+\frac{\partial I(x)}{d t}\right)^{2}+\lambda\left(\left\|\nabla\left(v_{1}(x)\right)\right\|^{2}+\left\|\nabla\left(v_{2}(x)\right)\right\|^{2}\right)
$$

estimation criteria

- (Boldfaced are 2-vectors in \mathbb{Z}^{2})
$\mathbf{d}[\mathbf{n}]=$ displaced image of point \mathbf{n} under the vector field $\mathbf{v}[\mathbf{n}]=\mathbf{d}[\mathbf{n}]-\mathbf{n}$
estimated image intensity: $\tilde{I}_{k}[\boldsymbol{n}]$

$$
\tilde{I}_{k}[\boldsymbol{n}] \equiv I_{k-1}[n-d[n]]
$$

Find \mathbf{d} that minimizes an error function. A reasonable one is not quadratic (too many outliers) but simply:

$$
\mathcal{E}[d]=\sum_{n \in \mathcal{R}}\left|I_{k}[n]-\tilde{I}_{k}[\boldsymbol{n}]\right|
$$

examples

cv.jit.HSflow: Optical Flow

matrix_gradient_blur

$\theta \Theta$

matrix_gradient_blur

(c) 2006, Sha Xin Wei \& Topological Media Lab

feedback with switchable gain stage. mode 0 gain is applied to output(i.e. output is last_output*gain + input). mode 1 , gain is applied to input(i.e. output is last_output +
jit.expr @inputs 2 @expr "hypot(in[0].p[0]\in[1].p[0])"
\square

input*gain).

mode $\$ 1$
jit.normalize

matrix_gradient

(9) 2006, Sha Xin Wei \& Topological Media Lab

Movie to Texture Grid 3_test_jit.gl.render.grid_mesh

myshout

- start audio in startwindow stop

$\bigcirc \bigcirc$ render_grid

pool 3d nurbs example

modified sxw 10.06 live video texture
iit convolve is used to add neighboring pixel values in the fluid equation. clicking on the pwindow sends a single 'splash' to the simulation. try seeding the simulation using the "a" or "s" keys, or drawing in the window below. the "c"key resets the simulation. try loading a texture and setting the te \times-map to 2 (sphere map environment mapping). setting the nurbs dimensions to something larger like 80×80 produces smoother results, but runs slower.

loadbang
jit..gball @mode usurp

jude to smooth the geometry, and jit.slide to soften the rapid oscillation determined by our

jit.matrix liver 4 char 512512

