Video Segmentation

Wednesday 9 Nov 2006

overview

- scene change detection spatial-temporal change detection motion segmentation (optical flow) clustering in motion parameter space (k-meanstest)
semantic video object segmenation chroma-keying

scene change detection

- frame difference between k -th frame and reference frame at pixel location \mathbf{x} :

$$
F D_{k, r}[\boldsymbol{x}]=I_{k}[\boldsymbol{x}]-I_{r}[\boldsymbol{x}]
$$

Thresholded by T, segmentation label on each pixel

$$
z_{k, r}[\boldsymbol{x}]=\quad \begin{aligned}
& 1 \text { if }\left|F D_{k, r}[\boldsymbol{x}]\right|>T \\
& 0 \text { otherwise }
\end{aligned}
$$

Problems:

- a uniform intensity region may be interpreted as stationary
- FD is affected by spatial gradient in the direction of motion

Gaussian pyramid

- Multi-resolution representation of image r, Original (highest resolution) image at bottom level

2. Lowpass filter (e.g. Gaussian filter)
3. Subsample by factor 2
4. Place result in second level

Change Detection v. 0.2

- I. Gaussian pyramid, start at lowest resolution.

2. Compute at each pixel, normalized frame difference:

$$
F D N_{k, r}[\boldsymbol{x}]=\frac{\sum_{x \in \mathcal{N}}\left|I_{k}[\boldsymbol{x}]-I_{r}[\boldsymbol{x}] \| \nabla I_{r}[\boldsymbol{x}]\right|}{\sum_{x \in \mathcal{N}}\left|\nabla I_{r}[\boldsymbol{x}]\right|^{2}+c}
$$

where N is a local neighborhood of x , gradient of image, c is fudge addend to avoid divde by o .
3. If FDN is high (pixel is moving), then replace FDN from previous level with this one, else retain lower res value.
4. Repeat 2-3 for all resolution levels.

temporal integration I

- Warp map W[A,B]: warp image A toward B using motion model parameters estimated between A and B.

Compute internal representation image:
(*)

$$
\bar{I}_{k}[\boldsymbol{x}]=(1-\alpha) I_{k}[\boldsymbol{x}]+\alpha W\left[\bar{I}_{k-1}[\boldsymbol{x}], I_{k}[\boldsymbol{x}]\right] \quad 0 \leq \alpha \leq 1
$$

Result: unchanged regions retain sharpness (less noise), changed regions blur

temporal integration 2

- I. Compute motion parameters between internal representation $\bar{I}_{k}[\boldsymbol{x}]$ and new frame $I_{k}[\boldsymbol{x}]$ within support M_{k-1} of dominant object in previous frame.

2. Warp internal representation image at frame k-I towards new frame.
3. Detect stationary reqgions between registered images, using M_{k-1} as initial estiamte to compute new mask M_{k}.
4. Update internal representation using $\left(^{*}\right)$

$$
\bar{I}_{k}[\boldsymbol{x}]=(1-\alpha) I_{k}[\boldsymbol{x}]+\alpha W\left[\bar{I}_{k-1}[\boldsymbol{x}], I_{k}[\boldsymbol{x}]\right]
$$

temporal integration 3

- Advantages:

Comparing each frame with internal representaiton -- weighted by motion warp -rather than previoous frame, tracks (dominant) moving object.

- noise in tracked object is lower \&
- image gradients elsewhere are blurred (lower)

semantic video object

 segmentatighLow level features: motion

But what's "semantic" ??

Wittgenstein Philosophical Investigations 454: A pointing arrow: > "The arrow points only in the application that a liveng being make of it. This pointing is not a hocus-pocus which can be performed only by the venl."

examples

chroma-keying cv.jit.mean
blob tracking quennesson's conscious=camera

averaging over time

- cv.jit.mean

chroma-keying

- iojChromakey-x.pat

blob tracking

cv.jit.label
cv.jit.blobs.bounds
cr.jit.blobs.centroids
cv.jit.blobs.direcition
cv.jit.blobs.elongation
cv.jit.blobs.moments
cv.jit.blobs.orientation
cv.jit.blobs.recon

kevin quennesson

QuickTime ${ }^{\text {TM }}$ and a MPEG-4 Video decompressor are needed to see this picture.

QuickTime ${ }^{\text {TM }}$ and a MPEG-4 Video decompressor are needed to see this picture.

initial test

hands

conscious=camera

- Interactive video installation

Consciousness of "things"

- Static moments: shows face and hands
- Movement: shows body
- Motion: shows trail
- Memory: marks remain on background

Body-tracking technique

- Inspired from Pfinder
- Blob tracking (of face and hands) in YUV space
- Difference: we use skin tone database
- Technologies used
- Platform: MAC OS X Tiger
- Code: C, Objective-C (Cocoa framework).
- Graphics: vImage (CPU, altivec), Core Image (GPU).
- Other: Core Data, ...

Implications

- Different work for the programmer
- Does not know where he is going initially
- Different work for the "creator"
- Design a function, not an fixed output (ie. not y in $f(x)=y$, but f)
- Different relation of users with the piece
- What kind of consciousness does the users have of it?
- What kind of narrative is generated?

QuickTime ${ }^{\text {Th }}$ and a MPEG-4 Video decompressor are needed to see this picture.

