
Computers and Mathematics 

bells ring and cursors blink. The questions are: How 
can we find the resources to make computers work 
for all who could profit from them? Failing that, how 
do we weigh conflicting demands for computational 
resources among different kinds of users? And how do 
we teach today's users how to put the computers that 
are available to the best possible uses? These questions 
do not have easy answers, but until we answer them, 
many of us will be like teachers without books, or 
teachers who have books but are barely literate.* 

This Month's Column 
This month's column is an interesting potpourri of 
items variously related to computers and mathematics. 
It contains three reviews of mathematical software: 
• a review by Raymond F. Smith of Math View 

Professional, a package of numerical routines for 
the Macintosh; 

• a review by Gustaf Gripenberg of MINPACJ-LIB, 
a collection of FORTRAN routines for solving 
nonlinear systems of equations and nonlinear least-
squares problems on the IBM-PC; and 

• a review by Mark Sand of ZG, a freeware program 
for data analysis, also for the IBM-PC. 
The column also contains two freeware offerings, 

a couple of letters reacting to previous articles in 
the column, and a very lovely proof of 
Incompleteness Theorem, probably the deepest smgle 
result about the relationship between computers and 
mathematics, as well as having played an important (if 
slightly ironic) role in the development of computers, 
as I have discussed earlier. I am pleased to be able to 
include in this column the most straightforward proof 
of this result that I have ever seen. 

If you have comments on or suggestions for this 
column, please get in touch. And if you have sug-
gestions for software you would like to see reviewed, 
send me the name and address of the distributor. 

Professor Jon Barwise 
Center for the Study of Language and Information 
Ventura Hall 
Stanford University 
Stanford, CA 94305 

* The slant of this editorial was influenced by many conversations 
over the years with Brian C. Smith of Xerox PARC on the nature 
of computation. 

A New Proof of the 
Godel Incompleteness Theorem 

George Boolos* 
Massachusetts Institute of Technology 

Many theorems have many proofs. After having given 
the fundamental theorem of algebra its first rigorous 
proof, Gauss gave it three more; a number of others 
have since been found. The Pythagorean theorem, 
older and easier than the FT A, has hundreds of proofs 
by now. Is there a great theorem with only one proof? 

In this note we shall give an easy new proof** of the 
Godel Incompleteness Theorem in the following form: 
There is no algorithm whose output contains all true 
statements of arithmetic and no false ones. Our proof 
is quite different in character from the usual ones and 
presupposes only a slight acquaintance with formal 
mathematical logic. It is perfectly complete, except for 
a certain technical fact whose demonstration we will 
outline. 

Our proof exploits Berry's paradox. In a number 
of writings Bertrand Russell attributed to G. G. Berry, 
a librarian at Oxford University, the paradox of the 
least integer not nameable in fewer than nineteen 
syllables. The paradox, of course, is that that integer 
has just been named in eighteen syllables. Berry's 
paradox, Russell once said, "It has the ment of not 
going outside finite numbers".*** 

Before we begin, we must say a word about al-
gorithms and "statements of arithmetic", and about 
what "true" and "false" mean in the present context. 
Let's begin with "statements of arithmetic". 

The language of arithmetic contains signs + and 
x for addition and multiplication, a name 0 for zero, 
and a sign s for successor (plus-one). It also contains 
the equals sign =, as well as the usual logical signs 
-, (not), 1\ (and), V (or), -+ (if ... then ... ), +-> ( ••• 
if and only if ... ), V (for all), and 3 (for some), 
and parentheses. The variables of the language of 
arithmetic are the expressions x, x', x", . . . built up 
from the symbols x and': they are assumed to have 

*George Boolos is Professor of Philosophy at MIT. His email 
address is Boolos@cogito.mit.edu. . 
** Saul Kripke has informed me that he noticed a proof somewhat 

similar to the present one in the early 1960s. . 
*** Bertrand Russell, "On 'lnsolubilia' and their solut10n by sym-
bolic logic," in Bertrand Russell, Essays in Analysis, ed. Douglas 
Lackey, George Braziller, New York, 1973, p. 210. 
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the natural numbers (0,1,2, ... ) as their values. We'll 
abbreviate variables by single letters: y, z, etc. 

We now understand sufficiently well what truth 
and falsity mean in the language of arithmetic; for 
example, \fx3yx = sy is a false statement, because 
it's not the case that every natural number x is 
the successor of a natural number y. (Zero is a 
counterexample: it is not the successor of a natural 
number.) On the other hand, \fx3y(x = (y + y) v x = 
s(y + y)) is a true statement: for every natural number 
x there is a natural number y such that either x = 2y 
or x = 2y + 1. We also see that many notions can be 
expressed in the language of arithmetic, e.g., less-than: 
x < y can be defined: 3z(sz +x) = y (for some natural 
number z, the successor of z plus x equals y). And, you 
now see that \fx\fy[(ssO x (x x x)) = (y x y)- x = 0] 
is - well, test yourself, is it true or false? (Big hint: J2 
is irrational.) 

For our purposes, it's not really necessary to be 
more formal than we have been about the syntax and 
semantics of the language of arithmetic. 

By an algorithm, we mean a computational (auto-
matic, effective, mechanical) procedure or routine of 
the usual sort, e.g., a program in a computer language 
like C, Basic, Lisp, ... , a Turing machine, register 
machine, Markov algorithm, . . . a formal system like 
Peano or Robinson Arithmetic, ... , or whatever. We 
assume that an algorithm has an output, the set of 
things it "prints out" in the course of computation. 
(Of course an algorithm might have a null output.) 
If the algorithm is a formal system, then its output 
is just the set of statements that are provable in the 
system. 

Although the language of arithmetic contains only 
the operation symbols s, +, and x, it turns out that 
many statements of mathematics can be reformulated 
as statements in the language of arithmetic, including 
such famous unproved propositions as Fermat's last 
theorem, Goldbach's conjecture, the Riemann hypoth-
esis, and the widely held belief that P f. N P. Thus 
if there were an algorithm that printed out all and 
only the true statements of arithmetic-as Godel's 
theorem tells us there is not-we would have a way 
of finding out whether each of these as yet unproved 
propositions is true or not, and indeed a way of 
finding out whether or not any statement that can 
be formulated as a statement S of arithmetic is true: 
start the algorithm, and simply wait to see which of 
S and its negation .s the algorithm prints out. (It 
must eventually print out exactly one of S and .s if it 
prints out all truths and no falsehoods, for, certainly, 
exactly one of S and .s is true.) But alas, there is no 
worry that the algorithm might take too long to come 

up with an answer to a question that interests us, for 
there is, as we shall now show, no algorithm to do the 
job, not even an infeasibly slow one. 

To show that there is no algorithm whose output 
contains all true statements of arithmetic and no false 
ones, we suppose that M is an algorithm whose output 
contains no false statements of arithmetic. We shall 
show how to find a true statement of arithmetic that 
is not in M's output, which will prove the theorem. 

For any natural number n, we let [n] be the 
expression consisting of 0 preceded by n successor 
symbols s. For example, [3] is sssO. Notice that the 
expression [n] stands for the number n. 

We need one further definition: we say that a 
formula F(x) names the (natural) number n if the 
following statement is in the output of M: \f(F(x) +-+ 

x = [n]). (Observe that the definition of 'names' 
contains a reference to the algorithm M.) Thus, for 
example, if \fx(x + x = ssssO +-+ x = ssO) is in the 
output of M, then the formula x + x = sssO names 
the number 2. 

No formula can name two different numbers. For 
if both of \fx(F(x) +-+ x = [n]) and \fx(F(x) +-+ x = 
(p]) are true, then so are \fx(x = [n] +-+ x = (p]) 
and [ n] = (p ], and the number n must equal the 
number p. Moreover, for each number i, there are 
only finitely many different formulas that contain i 
symbols. (Since there are 16 primitive symbols of 
the language of arithmetic, there are at most 16i 
formulas containing i symbols.) Thus for each i, there 
are only finitely many numbers named by formulas 
containing i symbols. For every m, then, only finitely 
many 16m-!+···+ 161 + 16°) numbers are 
named by formulas containing fewer than m symbols; 
some number is not named by any formula containing 
fewer than m symbols; and therefore there is a least 
number not named by any formula containing fewer 
than m symbols. 

Let C(x, z) be a formula of the language of 
arithmetic that says that x is a number that is 
named by some formula containing z symbols. The 
technical fact mentioned above that we need is that 
whatever sort of algorithm M may be, there is some 
such formula C(x, z). We sketch the construction of 
C(x, z) below, in 3). 

Now let B(x ,y) be the formula 3z(z < yAC(x, z)). 
B(x,y) says that xis named by some formula con-
taining fewer than y symbols. 

Let A(x ,y) be the formula (•B(x ,y) A \fa( a< x-
B(a,y))). A(x,y) says that x is the least number 
not named by any formula containing fewer than y 
symbols. 
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Let k be the number of symbols in A(x,y). k > 3. 
Finally, let F(x) be the formula 3y(y = ([10] x 

[k]) A A(x,y)). F(x) says x is the least number not 
named by any formula containing fewer than 1 Ok 
symbols. 

How many symbols does F contain? Well, [10] 
contains 11 symbols, [k] contains k + 1, A(x,y) 
contains k, and there are 12 others (since y is x'): so 
2k + 24 in all. Since k > 3, 2k + 24 < 10k, and F(x) 
contains fewer than 1 Ok symbols. 

We saw above that for every m, there is a least 
number not named by any formula containing fewer 
than m symbols. Let n be the least such number for 
m = 10k. Then n is not named by F(x); in other 
words, Vx(F(x) +-+ x = [n]) is not in the output of M. 

But Vx(F(x) +-+ x = [n]) is a true statement, since 
n is the least number not named by any formula 
containing fewer than 1 Ok symbols! Thus we have 
found a true statement that is not in the output of M, 
namely, Vx(F(x) +-+ x = [n]). Q.E.D. 

Some comments about the proof: 
1. In our proof, symbols are the "syllables", -and just 

as 'nineteen' contains 2 < < 19 syllables, so the 
term ([10]x[k]) contains k + 15 << 10k symbols. 

2. In his memoir of Kurt Godel, * Georg Kreisel 
reports that Godel attributed his success not so 
much to mathematical invention as to attention to 
philosophical distinctions. Gregory Chaitin once 
commented that one of his own incompleteness 
proofs resembled Berry's paradox rather than Epi-
menides' paradox of the liar ("What I am now 
saying is not true").** Chaitin's proofs make use 
of the riotion of the complexity of a natural num-
ber, i.e., the minimum number of instructions 
in the machine table of any Turing machine that 
prints out that number, and of various information-
theoretic notions. None of these notions are found 
in our proof, for which the remarks of Kreisel and 
Chaitin, which the author read at more or less the 
same time, provided the impetus. 

3. Let us now sketch the construction of a formula 
C(x, z) that says that x is a number named by a 
formula containing z symbols. The main points are 

* Georg Kreisel, "Kurt GOdel, 28 April 1906-14 January 1978." 
Biographical memoirs of Fellows of the Royal Society 26 ( 1980), p. 
150. 
** Cf. Martin Davis, "What is a computation?" in Mathematics 

Today, ed. Lynn Arthur Steen, Vintage Books, New York, 1980, 
pp. 241-267, especially pp. 263-267, for an exposition of Chaitin's 
proof of incompleteness. Chaitin's observation is found in Chaitin, 
Gregory, "Computational complexity and Gtidel's incompleteness 
theorem," (Abstract) AMS Notices 17 (1970), p. 672. 

that algorithms like M can be regarded as operating 
on "expressions", i.e., finite sequences of symbols; 
that, in a manner reminiscent of ASCII codes, 
symbols can be assigned code numbers (logicians 
often call these code numbers Godel numbers); 
that certain tricks of number theory enable- one 
to code expressions as numbers and operations on 
expressions as operations on the numbers that code 
them; and that these numerical operations can all 
be defined in terms of addition, multiplication, and 
the notions of logic. Discussion of symbols, expres-
sions (and finite sequences of expressions, etc.) can 
therefore be coded in the language of arithmetic 
as discussion of the natural numbers that code 
them. To construct a formula saying that n is 
named by some formula containing i symbols, one 
writes a formula saying that there is a sequence of 
operations of the algorithm M (which operates on 
expressions) that generates the expression consist-
ing of V, x, (, the i symbols of some formula F (x) 
of the language of arithmetic, +-+, x, =, n consecu-

-- -t-ive successer S¥mbels-sTQ,and). Godel numbering 
and tricks of number theory then allow all such 
talk of symbols, sequences, and the operations of 
M to be coded into formulas of arithmetic. 

I 

4. Both our proof and the standard one make use of 
Godel numbering. Moreover, the unprovable truths 
in our proof and in the standard one can both be 
seen as obtained by the substitution of a name 
for a number in a certain crucial formula. There 
is, however, an important distinction between the 
two proofs. In the usual proof, the number whose 
name is substituted is the code for the formula 
into which it is substituted; in ours it is the unique 
number of which the formula is true. In view 
of this distinction, it seems justified to say that 
our proof, unlike the usual one, does not involve 
diagonalization. 

Correspondence 

Letter from Bob Fisch and David Gri:ffeath 
As the authors of Graphical Aids for Stochastic Pro-
cesses (GASP), we were delighted to see our software 
product reviewed in your column (February 1989). 
However, there is one point the reviewer brought up 
which we would like to clarify. 
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359 National Science Foundation Budget Request for Fiscal 1990 

This article is the 17th in an annual series of reports outlining the 
President's request to Congress for the NSF budget. 

376 Richard S. Nicholson Moves to AAAS 
Richard S. Nicholson, who this month will become Executive Officer 
of the American Association for the Advancement of Science, is 
interviewed by Allyn Jackson. 

380 NCTM School Mathematics Standards 
Allyn Jackson examines The National Council of Teachers of 
Mathematics' report, Curriculum and Evaluation Standards for School 
Mathematics. 

383 Annual AMS-MAA SuNey: Doctoral Degrees Conferred 1987-1988 
(Supplementary List) 
A list of names and thesis titles for members of the 1987-1988 Ph.D. 
class is featured. 

FEATURE COLUMNS 
386 Computers and Mathematics Jon Barwise 

This month's column includes three reviews of mathematical software, 
as well as a proof of Godel's Incompleteness Theorem, which has 
played ah important role in the relationship between computers and 
mathematics. 

401 Inside the AMS Robert M. Fossum and Kenneth A. Ross 
Robert M. Fossum, the Secretary of the AMS, and Kenneth A. Ross, the 
Secretary of the MAA, explain how the scientific portions of the Joint 
Mathematics Meetings are scheduled. 

402 Washington Outlook Kenneth M. Hoffman 
In this month's column, Hans J. Oser reports on the first hearings of the 
House Subcommittee on Science, Research, and Technology, which 
oversees the National Science Foundation and other technical agencies 
of the government. 
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