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Preface

This volume covers approximately the amount of point-set topology that a
student who doesnot intend to specialize in the field should nevertheless know.
This is not a whole lot, and in condensed form would occupy perhaps only a
small booklet. Our aim, however, was not economy of words, but a lively
presentation of theideas involved, an appeal to intuition in both the immediate
and the higher meanings.

[ wish to thank all those who have helped me with useful remarks about
the German edition or the original manuscript, in particular, J. Bingener,
Guy Hirsch and B. Sagraloff. 1 thank Theodor Brocker for donating his
“Last Chapter on Set-Theory” to my book; and finally my thanks are due to
Silvio Levy, the translator. Usually, a foreign author is not very competent to
judge the merits of a translation of his work, but he may at least be allowed
to say: I like it.

Regensburg, May 1983 Kraus JANICH



Introduction

§1. What Is Point-Set Topology About?

It is sometimes said that a characteristic of modern science is its high—and
ever increasing—level of specialization; every one of us has heard the phrase
“only a handful of specialists . . .”. Now a general statement about so complex
a phenomenon as “modern science” always has the chance of containing a
certain amount of truth, but in the case of the above cliché about specializa-
tion the amount is fairly small. One might rather point to the great and ever
increasing interweaving of formerly separated disciplines as a mark of modern
science. What must be known today by, say, both a number theorist and a
differential geometer, is much more, even relatively speaking, than it was
fifty or a hundred years ago. This interweaving is a result of the fact that
scientific development again and again brings to light hidden analogies
whose further application represents such a great intellectual advance that
the theory based on them very soon permeates all fields involved, connecting
them together. Point-set topology is just such an analogy-based theory,
comprising all that can be said in general about concepts related, though

sometimes very loosely, to “closeness”, “vicinity” and “convergence”.
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Theorems of one theory can be instruments in another. When, for instance,
a differential geometer makes use of the fact that for each point and direction
there is exactly one geodesic (which he does just about every day), he is

taking advantage of the Existence and Uniqueness Theorem for systems of
second-order ordinary differential equations. On the other hand, the applica-
tion of point-set topology to everyday uses in other fields is based not so
much on deep theorems as on the unifying and simplifying power of its
system of notions and of its felicitous terminology. And this power stems, in
my understanding, from a very specific source, namely the fact that point-set
topology makes accessible to our spatial imagination a great number of prob-
lems which are entirely abstract and non-intuitive to begin wirh. Many situa-
tions in point-set topology can be visualized in a perfectly adequate way in
usual physical space, even when they do not actually take place there. Our
spatial imagination, which is thus made available for mathematical reasoning
about abstract things, is however a highly developed intellectual ability which
is independent from abstraction and logical thinking; and this strengthening
of our other mathematical talents is indeed the fundamental reason for the
effectiveness and simplicity of topological methods.

§2. Origin and Beginnings

The emergence of fundamental mathematical concepts is almost always a
long and intricate process. To be sure, one can point at a given moment and
say: Here this concept, as understood today, is first defined in a clear-cut and
plain way, from here on it “exists”—but by that time the concept had always
passed through numerous preliminary stages. it was already known in im-
portant special cases, variants of it had been considered and discarded, etc.,
and it is often difficult, and sometimes impossible, to determine which
mathematician supplied the decisive contribution and should be considered
the originator of the concept in question.

In this sense one might say that the system of concepts of point-set topology
“exists” since the appearance of Felix Hausdorfl’s book Grundziige der
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Mengenlehre (Leipzig, 1914). In its seventh chapter, “Point sets in g;neral
spaces”, are defined the most important fundamental concepts of point-set
topology. Maurice Fréchet, in his work “Sur quelques points du calcgl
fonctionnel” (Rend. Circ. Mat. Palermo 22), had already come close to this
mark, introducing the concept of metric spaces and attempting to grasp
that of topological spaces as well (by axiomatizing the notion of convergence).
Fréchet was primarily interested in function spaces and can perhaps be seen
as the founder of the function analytic branch of point-set topology.

But the roots of the matter go, of course, deeper than that. Point-set
topology, as so many other branches of mathematics, evolved out. of the
revolutionary changes undergone by the concept of geometry ‘durmg the
nineteenth century. In the beginning of the century the reigning view was the
classical one, according to which geometry was the mathematical theory of
the real physical space that surrounds us, and its axioms were seen as self-
evident elementary facts. By the end of the century mathematicians had
freed themselves from this narrow approach, and it had become clear that
geometry was henceforth to have much wider aims, and should accor@ingly
be made to work in abstract “spaces”, such as n-dimensional manifolds,
projective spaces, Riemann surfaces, function spaces etc. (Bolyal and
Lobachevski, Riemann, Poincaré “and so on”—I"m not so bold as to try to
delineate here this development process . ..). But now another contribution
of paramount importance to the emergence of point-set topology was to 'be
added to the rich variety of examples and the general ripeness to work with
abstract spaces: namely, the work of Cantor. The dedication of Hausdorff’s
book reads: “To the creator of set theory, Georg Cantor, in grateful admira-
tion.”

“A topological space is a pair consisting of a set and a set of subsets, such
that...”—it is indeed clear that the concept could never have been grasped
in such generality were it not for the introduction of abstract sets in rpathe-
matics, a development which we owe to Cantor. But long before establishing
his transfinite set theory Cantor had contributed to the genesis of point-set
in an entirely diverse way, about which I would like to add something. '

Cantor had shown in 1870 that two Fourier series that converge pointwise
to the same limit function have the same coefficients. In 1871 he improved
this theorem by proving that the coefficients have to be the same also wh;n
convergence and equality of the limits hold for all points outside a finite
exception set A < [0, 27]. In a work of 1872 he now dealt with th§ problem
of determining for which infinite exception sets uniqueness would still holq.

An infinite subset of [0, 2] must of course have at least one cluster point:
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This is a very “innocent” example of an infinite subset of [0, 27]. A somewhat
“wilder” set would be one whose cluster points themselves cluster around
some point:

B HHA— Bt i+
wri R H+

I...TH Tt U 1
CP CP cp cp

Cluster point of cluster points

Cantor now showed that if the sequence of subsets of [0, 2z] defined in-
ductively by 4°:= 4 and 4""':= {x€[0, 2n]|x is a cluster point of A"}
breaks up after finitely many terms, that is if eventually we have A4* = ¢,
then uniqueness does hold with A as the exception set. In particular a
function that vanishes outside such a set (but not identically in the interval)
cannot be represented by a Fourier series. This result helps to understand
the strange convergence behavior of Fourier series, and the motivation for
Cantor’s investigation stems from classical analysis and ultimately from
physics. But because of it Cantor was led to the discovery of a new type of
subset A < R, which must have been felt to be quite exotic, especially when
the sequence A4, A, 4%, ... takes a long time to break off. Now the subsets of
R move to the fore as objects to be studied in themselves, and, what is more,
studied from what we would recognize today as being a topological view-
point. Cantor continued along this path when later, while investigating
general point sets in R and R", he introduced the point-set topological
approach, upon which Hausdorff could now base himself.

*

I do not want to give the impression that Cantor, Fréchet and Hausdorff
were the only mathematicians to take part in the development and clarification
of the fundamental ideas of point-set topology; but a more detailed treatment
of the subject would be out of the scope of this book. I just wanted to outline,
with a couple of sketchy but vivid lines, the starting point of the theory we are
about to study.

CHAPTER 1
Fundamental Concepts

§1. The Concept of a Topological Space

Definition. A topological space is a pair (X, ¢) consisting of a set X and a set
O of subsets of X (called “open sets ™), such that the following axioms hold:
Axiom 1. Any union of open sets is open. «

Axiom 2. The intersection of any two open sets is open.

Axiom 3. @f and X are open.

One also says that ¢ is the topology of the topological space'(X, ). In
general one drops the topology from the notation and speaks simply of a
topological space X, as we'll do from now on:

Definition. Let X be a topological space.

(1) A = X is called closed when X\ 4 is open. .
(2) U < X is called a neighborhood of x € X if there is an open set V with
xeVcU.
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(3) Let B = X be any subset. A point x € X is called an interior, exterior

or boundary (or frontier) point of B, respectively, according to whether B,
X\B or neither is a neighborhood of x.

(4) The set B of the interior points of B is called the interior of B.
(5) The set B of the points of X which are not exterior points of B is called
the closure of B.

These are then the basic concepts of point-set topology; and the reader
who is being introduced to them for the first time should at this point work
out a couple of exercises, in order to become famiiiar with them. Once, when
I'was still a student at Tiibingen, T was grading some exercises after a lecture
on these fundamental concepts. In the lecture it had already been established
that a set is open if and only if all of its points are interior, and one exercise
went like this: Show that the set of interior points of a set is always open. In
came a student asking why we had not accepted his reasoning: “The set of
interior points contains only interior points (an indisputable tautology);
hence, the problem is trivial.” There were a couple of other graders present
and we all zealously tried to convince him that in talking about interior
points you have to specify what set they are interior to, but in vain. When he
realized what we wanted, he left, calmly remarking that we were splitting
hairs. What could we answer?

Therefore, should among my readers be a complete newcomer to the
field, I would suggest him to verify right now that the interior of Bis the union
of all open sets contained in B, and that the closure of B is the intersection of
all closed sets containing B. And as food for thought during a peaceful after-
noon let me add the following remarks.

Each of the three concepts defined above using open sets, namely, “closed
sets”, “neighborhoods” and “closure ”,can in its turn be used to characterize
openness. In fact, a set B < X is open if and only if X\ B is closed, if and only
if B is a neighborhood of each of its points, and if and only if X\ B is equal to
its closure. Thus the system of axioms defining a topological space must be
expressible in terms of each one of these concepts, for instance:

Alternative Definition for Topological Spaces (Axioms for Closed Sets). A
topological space is a pair (X, «/) consisting of a set X and a set .o of subsets
of X (called “closed sets "), such that the following axioms hold:

Al. Any intersection of closed sets is closed.
A2. The union of any two closed sets is closed.
A3. Xand ¢ are closed.

This new definition is equivalent to the old in that (X, ©) is a topological
space in the sense of the old definition if and only if (X, /) is one in the sense
of the new, where .o = {X\V|V e }. Had we given the second definition
first, closedness would have become the primary concept, openness following

§2. Metric Spaces

by defining X\ V' to be open if and only if V' = X is closefi. But. the dte}flnslatllnolne
of concepts (2)-(5) would have been l@ft untougheq and leenbrlse to jstom_
system of concepts that we obtained in the beg%nnlng. It has. e:come.ctuitive
ary to start with open sets, but the idea of ne1ghb0rhoqd is m}(l)re in t.ons,
and indeed it was in terms of it that Hausdorfl defined these noti

originally:

Alternative Definition (Axioms for Neighborhopd). A topological space is
a pair (X, ) consisting of a set X and a family Wl = {U,}, y of sets U,
of subsets of X (called “neighborhoods of x”) such that:

N1. Each neighborhood of x contains x, and X is a neighborhood of each

of its points. ‘ ' .
N2. If V cp X contains a neighborhood of x, then V itself is a neighborhood
of x. ' _
N3. The intersection -of any two neighborhoods of x is a nelghborhqod of x.
N4. Each neighborhood of x contains a neighborhood of x that is also a

neighborhood of each of its points.

One can see that these axioms are a bit more complicated to state than
those for open sets. The characterization of topology by means of the closure
operation, however, is again quite elegant and has its own name:

Alternative Definition (The Kuratowski Closure Axioms} A topolc:gical
space is a pair (X, 7) consisting of a set X and a map BX) - B(X)
from the set of all subsets of X into itself such that:

Cl. 3 =g
C2. Ac Aforall 4 c X.
C3. A=Aforall 4 c X.
C4. AU B=AuBforall 4, Be X.

Formulating what exactly the equivalence of all these definitions means
and then proving it is, as we said, left as an exercise to the new reader. We
will stick to our first definition.

§2. Metric Spaces

As we know, a subset of R" is called open in tk_le uspal topology .when every
point in it is the center of some ball also contained in the set. This deﬁmtl.on
can be extended in a natural way if instead of R” we consider a set X for Whlch
the notion of distance is defined; in particular every such space gives rise to
a topological space. Let’s recall the following
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Definition (Metric Space). A metric space is a pair (X, d) consisting of a
set X and a real functiond: X x X — R (called the “metric™), such that:

M1. d(x, y) > 0 for all x, ye Xandd(x, y) = 0if and only if x = y.
M2. d(x, y) = d(y, x) for all x,ye X.

Ma3. (Triangle Inequality). d(x, z) < d(x, )+ d(y, z) for all x, vzeX.

Definition (Topology of a Metric Space). Let (X, d) be a metric space. A
subset IV < X is called open if for every x € V there is an ¢ > 0 such that the
“e-ball” K (x):={yeX ld(x, y) < &} centered at x is still contained in V.

The set (O(d) of all open sets of X is called the topology of the metric space
(X, ).

Then (X, 0(d)) is really a topological space: and here again our hypo-
thetic novice has an opportunity to practice. But at this point even the more
experienced reader could well lean back on his chair, stare at the void and
think for a few seconds about what role is played here by the triangle in-
equality.

So? Well, absolutely none. But as soon as we want to start doing some-
thing with these topological spaces (X, (¢)(d)), the inequality will become very
useful. It allows us, for example, to draw the conclusion, familiar from R",

that around each point y such that d(x, ¥) < ¢ there is a small 5-ball entirely
contained in the ¢-ball around x:

radius &

radius ¢

and consequently that the “ open ball” {y[d(x, y) < ¢} is really open, whence
in particular a subset U < X is a neighborhood of x if and only if it contains
a ball centered at x.

Metrics which are very different can in certain circumstances induce the
same topology. If d and 4’ are metrics on X > and if every ball around x in the
d metric contains a ball around x in the d’ metric, we immediately have that
every d-open set is d’-open, that is O(d) = O(d). If furthermore the converse

§3. Subspaces, Disjoint Unions and Products

also holds, then the two topologies are the same: 0(d) = O(d’). An example is
the case X = R? and

a(x, y) = N (x; — yl)z +(x; — )’2)2

d'(x, y)=max{|x; = yi |, [x2 = yal}:

And here there is a simple but instructive trick that shoulq be no;ed trlftglh;
from the start, a veritable talisman against false.assumpﬁlons a (zﬁen Slo
relationship between metric and topology: If (X ,/d) isa metf1c> spacrf;,OVer *
is (X, d'), where d' is given by d'(x, y) = d(x., w1+ {I(X, DR mod, ¢ iess
can be readily verified, ¢(d) = €(d")! But since all distances in ;d joss
than 1, it follows in particular that if a metric happens to be bounde
property can by no means be traced back to its topology.

Definition (Metrizahle Spaces). A topological space (X, ) is called metrizable
if there is a metric d on X such that O(d) = €.

How can one determine whether or not a giYFn topolgglcal}lspace 13
metrizable? This question is answered by th'e metrization 't glore(t;;sis
of point-set topology. Are all but a few topologwaL spaces metriza neéither
metrizability, on the contrary, a rare special case? The answer t1)51 aces,
but rather the first than the second: there are a gregt many metrizable s?h the.
We will not deal with the metrization theorems in thlS' book,1 but.W1 ! the
material in Chapters I, VI and VIII the reader will be quite well equippe

the further pursuit of this question.

§3. Subspaces, Disjoint Unions and Products

It often happens that new topological spaces are constructed out of old 'ﬁni&
and the three simplest and most important such constructions will be

discussed now.
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Definition (Subspace). If (X, ) is a topological space and X, X a subset,
the topology €| X, :={U n X,|U € 0} on X is called the induced or, sub-
space topology, and the topological space (X 0, U1 X ) is called a subspace
of (X, 0).

Instead of “open with respect to the topology of X,” one says in short
“openin X,”, and a subset B = X, is then open in X, if and only if it is the
intersection of X, with a set open in X:

open in X
X,

open in X,

Thus such sets are not to be confused with sets “open and in X", since they
do not have to be open—open, that is, in the topology of X.

Definition (Disjoint Union of Sets). If X and Y are sets, their disjoint union
or sum is defined by means of some formal trick like for instance
X+Y=Xx{0juY x {1}

—but we immediately start treating X and Y as subsets of X + Y, in the
obvious way.

Intuitively this operation is nothing more than the disjoint Jjuxtaposition
of a copy of X and one of Y, and we obviously cannot write this as X U Y,

since X and Y do not have to be disjoint to begin with, as for example when
X =Yand X U X = X consists of only one copy of X.

X Y X X

y__—_\,__yx_—\/_&,/

X+Y X+ X

Definition (Disjoint Union of Topological Spaces). If (X, ¢’) and (Y, €) are
topological spaces, a new topology on X + Y is given by

{U+VIUeO, Vel

11
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and the set X + Y with this topology is called the topological disjoint union
of the topological spaces X and Y.

Definition (Product Topology). Let X and Y be topological spaces. A subset
W < X x Y iscalled open in the product topology if for each point (x, y)e W
there are neighborhoods U of x in X and V of y in Y such that U x V < w.
The set X x Y endowed with the above topology is called the (Cartesian)

product of the spaces X and Y.

= /J/X + Y
Ve —- - -
r - - 4 - —
y
.~ X
x/ U
The box is the usual mental image for the Cartesian product

of sets or topological spaces, and as long as we are dealing with nothing too
complicated, this image is perfectly adequate. I will call the products

UxVacXxY

ofopensets U « X and V < Y open boxes. Open boxes are obviously open in
the product topology, but they are not the only open sets: by.themselves
they do not form a topology, since the union of two boxes is not in general a
box:

This trivial observation would not have occurred to me if I had not often
come upon the opposite, erroneous, opinion, Wthh must possess some
peculiar attraction.— Well, that’s it for the time being.
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§4. Bases and Subbases
Definition (Basis). Let X be a topological space. A set B of open sets is called
a basis for the topology if every open set is a union of sets in 8.

For example, the open boxes form a basis for the product topology, and
the open balls in R" form a basis for the usual topology in R”; but notice that
the set of balls with rational radius and rational center coordinates (which is
countable!) is also a basis for the topology of R".

Definition (Subbasis). Let X be a topological space. A set & of open sets is
called a subbasis for the topology if every open set is a union of finite inter-
sections of sets in .

Of course the word “finite” here does not mean that the intersection
should be a finite set, but that it is the intersection of finitely many sets. This
includes the intersection of zero sets (that is, an empty family of sets), which
by a meaningful convention is defined to be equal to the whole space (since in
this way the formula [),.,S, N NuewrSe = NyenonS, still holds). An-
alogously, the union of an empty family of sets is suitably defined as the
empty set.

With these conventions we then have that if X is a set and & an arbitrary
set of parts of X, there is exactly one topology ()(€) on X such that S is a
subbasis for G(E) (the topology “generated” by &). It consists exactly of the
unions of finite intersections of sets in S,

Thus a topology can be defined by prescribing a subbasis. But why should
one want to do it? Well, it often happens that one wants a topology satisfying
certain conditions. Usually one of these conditions refers to the fineness of
the topology. If ¢ and ¢ are topologies on X, and if ¢ = ¢ one says that ¢/
is finer than @ and that ¢ is coarser than ¢'; and often there are reasons to
look for a topology which is as fine or as coarse as possible. To be sure, there
18 a coarsest topology on X, the so-called trivial topology, which contains only
thesets X and ¢f; and there is a finest topology, the so-called discrete topology,
in which all subsets of X are open. But this is not enough, for one wishes to
impose other conditions as well. In a typical case, the desired topology
should on the one hand be as coarse as possible, and on the other contain at
least the sets of &. There is always such a topology: it is exactly our ((€).

§5. Continuous Maps

Definition (Continuous Map). Let X and Y be topological spaces. A map
J:X — Y is called continuous if the inverse image of open sets is always
open.

13
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Note. The identity map idy: X — X is continuous, and if X - Y and ¥ - Z
are continuous, sois g f: X - Z.

With this the most important has been said. If the concept is new to you,
I suggest two useful exercises for practice. The first con51its in sea.rchmgﬁfgr
the characterization of continuous maps in terms of ‘the alter'natwe ‘de ni-
tions” given in §1, that is, in verifying that a map f:X —>'Y is contln}lo}Llls
if and only if the inverse image of any closed set is closed, if and on.ly 1Yf .t e
inverse image of a neighborhood is a neighborhood (more exactly, if Uis g
neighborhood of f(x), then f~'(U) is a neighborhood of x), and ‘1f apd only
if f~Y(B) < fY(B) for all subsets B = X..Furthermore., con51der1.ng the
characterization of continuity in terms of neighborhoods in the special casj?
of metric spaces leads to the good old “For every ¢ >'() thereisa o > 0 T

The second recommended exercise has to do w1th‘ subspaces, disjoint
unions and products, and consists in proving the following three notes:

Note 1. If f: X — Y is continuous and X, =Y is a subspace, then the re-
striction {1 Xo: Xo — Y is also continuous. o

Note2. f: X + Y — Z is continuous if and only if f|X and f|Y are both
continuous. .

Note 3. (f1, f>):Z — X x Y is continuous if and only if f1:Z - X and
f2: Z > Y are both continuous.

By the way, the properties stated in Notes 2 and 3 characterize the direct
union and product topology.

Definition (Homeomorphism). A bijective map [ : X - Y is called a homeo-
morphism when both f and f ! are continuous, that is when U < X is open
if and only if f(U) = Y is.

Suppose a topological property (i.e. one that can be fon.nula‘ted in terms
of open sets) holds for X or some subset 4 = X. Then, if [ is a homeo-
morphism, the same property must hold for Y or thq corresponc%mg subset
f(A). For instance: 4 = X is closed < f(4) = Y is closgd; U < Xisa
neighborhood of x < f(U) is a neighborhood of f(x); B is a basis for the
topology on X < { f(B)|B € B} is a basis for the topology of Y an(.i SO on.
Thus homeomorphisms play the same role in topqlogy that lme_ar isomor-
phisms play in linear algebra, or that biho]omorphlc maps p!ay in functl.on
theory, or group isomorphisms in group theory, or .1sometrlei in Riemannian
geometry. For this reason we also use the notation f:X = Y for homeo-
morphisms, as well as X = Y for homeomorphic spaces (i.e. spaces such that
there is a homeomorphism from one to the other.) ‘ '

Until now we have named very few topological properties of tqpologlcal
spaces. From the great many that there are, I have pllcked for this cha_pter
on “fundamental concepts” three that are particularly important and widely
different in character: connectedness, Hausdorffness and compactness.
They will be discussed in the next three paragraphs.
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§6. Connectedness

Definition (Connectedness). A topological space is called connected if it is
not the union of two non-empty, open, disjoint subspaces: or, in other
words, the whole space and the empty set are the only subsets which are at
the same time open and closed.

20 0¢

disconnected space connected space

Example. An (open, half-open, closed) interval I < R is always connected.
Although simple, this example presents a special interest, since in many cases
the connectedness of complicated spaces ultimately derives from that of the
interval. We will thus repeat the proof succinctly: Suppose that I = 4 U B
and 4 n B = J, Aand B both non-empty and open in the subspace topology
of I = R. Choose points a € A, b € B (we can assume a < b). Let s be equal
to inf{x € Bla < x}. Then every neighborhood of s contains points in B
(by definition of infimum), but also points in A, for if s is not equal to a, then
a < s and («, s) = A. Thus s cannot be a point of either A4 or B, which is a
contradiction, since s € A U B and A and B are both open. qed.

Example. The subspace X = [0, 1] U (2, 3) < R is not connected, because
we can split it into the two non-empty open sets A = [0, 1] and B = (2, 3).
(Objection: It is clear that X = 4 U B and A and B are disjoint: but open?
After all, 4 is a closed interval!! It may indeed be painful to have to call a
closed interval open; but remember, folks, we're dealing with the topology
of X and not that of R!...)

What is this notion good for? Well, for one thing, it affords a crude way of
distinguishing between topological spaces: if a space is connected and a
second one is not, the two cannot be homeomorphic. Moreover, the following
is also true: If X is a connected space, Y is a set and /:X — Y is locally
constant (i.e. for each x € X there is a neighborhood U, such that [ |U._ is
constant), then f is constant over the whole domain. In fact, if y is a point in
the image of f, A = {x|f(x) = y} and B = {x|f(x) # y} are both open,
hence X' = A because X is connected, qed. This conclusion is often applied
to the case Y = {yes, no} or {true, falsc}, as follows: Let X be connected and
let P be a property that points of X may or may not have, and suppose we
want to prove that all points of X have property P. Then it is enough to prove
the following three assertions:

§6. Connectedness 15

(1) There is at least one point with property P;

(2) If x has property P, the same applies to all points in a sufficiently small
neighborhood;

(3) If x does not have property P, then the same applies to all points in a small
neighborhood.

The following stronger concept is often of interest:

Definition (Path-Connectedness). X is said to be path-connected if every two
pointsa, b € X are connected by a path, thatis,a continnousmap o: [0, 1] - X
such that 2(0) = a and (1) = b:

a

One sees immediately that a path-connected space X is connected:
If X = A U B, with 4 and B open, non-empty and disjoint, there can be no
path from a € A to b € B, due to the connectedness of [0, 1] (otherwise we
would have [0, 1] = = (4) U «~ {(B) and so on).

A4

The converse is not true, though: a space can be connected and still
manage to be “impassable™ between two points. The subspace of R? given
by {(x, sin In x)|x > 0} U (0 x [—1, 1]) is an example:

and so on!

To conclude let me add three remarks concerning the behavior of con-
nectedness under different operations. Topological properties such as
Connectedness tend to acquire, upon closer acquaintance, emotional over-
tones: some appear friendly and helpful, after we have seen several times how
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they make proofs easy or even possible in the first place; others, on the
contrary, we come to dread, for the exactly opposite reason. True enough, a
property of good repute can on occasion be an obstacle, and many properties
are entirely ambivalent. But I can assure you that connectedness, Hausdorff-
ness and compactness are predominantly “good” properties, and one would
naturally like toknow if such good properties are transferred from the building
blocks to the final products by the usual topological constructions and
processes. Thus:

Note 1. Continuous images of (path-)connected spaces are (path-)connected.
In other words, if' X is (path-)connected and f: X — Y is continuous, then the
subspace f(X) of Y is also (path-)connected. For a decomposition of f(X)
as A U B would imply the same for X = f~Y(4) u f~Y(B), etc.

L —

X

Note 2. Non-disjoint unions of (path-)connected spaces are (path-)connected,
that is if X and X, are (path-)connected subspaces of X with X = X, u X,
and Xo N X, # &, then X is (path-)connected.

Xo

X,
Xon X, #J

Note 3. A Cartesian product X x Y of non-empty topological spaces X and Y
is (path-)connected if and only if both factors are.

X x Y connected
Y connected @

X connected

Facetious question: How about the disjoint union X and Y?
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§7. The Hausdorff Separation Axiom

Definition (Hausdorff Separation Axiom). A topological space is called
Hausdorff if for any two different points there exist disjoint neighborhoods.

U,

For example, every metric space is Hausdorff, for if d is a metric and
d(x, y) = ¢ > 0, then the sets

U, = {z]d(x, z) < &2} and U, = {z]d(y, z) < &2},

for instance, are disjoint neighborhoods.

The property “non-Hausdorff” is quite counterintuitive and at first
glance even unreasonable, sceming to go against our intuition of the neighbor-
hood concept. For this reason Hausdorff included the above separation
axiom in his original definition of “topological space™ (1914). But later it
was found that non-Hausdorff topologies too can be very useful, e.g. the
“Zariski topology” in algebraic geometry. In any case one can step fairly
deep into topology without really feeling a need for non-Hausdorff spaces,
though here and there it ismore convenientnot to have to watch for Hausdorfi-
ness. For those who want to see such an exotic thing once, take a set X
with more than one element and consider on it the trivial topology {X, &}.

One of the advantages offered by the separation axiom is the uniqueness
of convergence:

Definition (Convergent Sequence). Let X be a topological space, (X,),cn @
sequence in X. A point a € X is called limit of the sequence if for every
neighborhood U of a there is an n, such that x, € U for alln > n,.

Note. In a Hausdorff space a sequence can have at most one limit.

In a trivial topological space, on the other hand, every sequence converges
to every point.
As for behavior under operations, we note the following easily proved fact :

Note. Every subspace of a Hausdorff space is Hausdorff, and two non-empty
topological spaces X and Y are Hausdorff if and only if their disjoint union
X + Y is and if and only if their product X x Y is.

*
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The Hausdorff separation axiom is also called T,. This sounds like there
isa Ty, doesn’t it? Well, how about this: Ty, T, T, T3, T4, Ts, not to méntion
T,; and Ty, ! The Hausdorff axiom, however, is by far the most important of
these, and deserves most to be kept in mind. Shall I say what T, stands for . . .?
But no. We can wait for it.

§8. Compactness

Ah, compactness! A wonderful property. This is true especially in differential
and algebraic topology, as a rule, because everything works much more
smoothly,easily and fully when we are dealing with compact spaces, manifolds,
CW-complexes, groups etc. Now not everything in the world can be compact,
but even for “non-compact” problems the compact case is often a good
first step: We must first master the “compact terrain”, which is easier to
conquer, and then work our way into the non-compact case with modified
techniques. Exceptions confirm the rule: Occasionally non-compactness also
offers advantages, there is more “room” for certain constructions... .
But now:

Definition (Compactness). A topological space is called compact if every
open cover possesses a finite subcover. This means that X is compact if the
following holds: If Ml = {U,},., is an arbitrary open cover of X, ie. U, c X
openand | J,., U; = X, then there are a finite number of A,,..., 4, € Asuch
that U; v ---0u U, =X.

(Remark. Many authors call such spaces “quasicompact” and save the word
“compact” for “quasicompact and Hausdorff”.)

In compact spaces the following type of generalization from “local” to
“global” properties is possible: Let X be a compact space and P a property
that the open subsets of X may or may not have, and also such that if U and V
have it, then so does U u V. (Examples below.) Then if X has this property
locally, i.e. every point has a neighborhood with property P, then X itself
has property P. In fact, such open neighborhoods form an open cover
{U,}xex of X but, choosing the x; appropriately, we have

. .
X=U,u--uU,,

and by assumption the property is inductively transferred to finite unions,
ged.

Example 1. Let X be compact and f:X — R locally bounded (continuous,
for example). Then f is bounded.

§8. Compactness 19

Example 2. Let X be compact and (f,),»; a locally uniformly convergent
sequence of functions on X. Then the sequence converges uniformly over the

whole of X.

Example 3. Let X be compact and {4,},., a locally finite cover (i.e. each
point has a neighborhood that intersects A, for only finitely many );
then the cover is finite.

Example 4. Let X be compact and 4 < X a locally finite subset (supply
definition). Then A4 is finite. Or, conversely, if 4 < X is infinite, there is a
point x € X all of whose neighborhoods contain infinitely many points of A.

Example 5. Let v be a differentiable vector field on a manifold M, for instance
an open set of R". Denote by o,:(a,, b,) > M the maximal integral curve
with «(0) = x and, reasonably enough, call b, the (remaining) life expectancy
and —a, > 0 the age of x under v. From the local theory of ordinary dif-
ferential equations it follows that locally there are positive lower bounds for
life expectancy and age. Thus—and here comes in the compactness—there
are such lower bounds for any compact set X = M as well. Now as a point
moves forward alongits solution curve, its age increases and its life expectancy
decreases:

time ¢ elapses along this arc

a(t)

life expectancy = b, — ¢

x,(0)
life expectancy = b,

If the life expectancy were finite, b, < oo, then it would eventually become
as small as desired, and we obtain the well-known and useful lemma: If a
point in a compact subspace X = M has finite life expectancy, it must use it
before it is over to abandon X forever. What then if there is no possibility for a
point to abandon X —whether because the boundary of X is barricaded with
vectors that point inwards all the time, or because the whole universe M is
compact and X = M?
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Then every point of X must move forever; and in particular a vector field on a
compact manifold without boundary is always globally integrable. '

But back to our subject! The consequences of this possibility of passing
from local to global cannot, of course, be exhausted in a few pages, but I
wanted to illustrate a bit, and not only to state, the usefulness of the notion of
compactness.

Examples of compact spaces? The closed interval [0, 1]is an unpretentious
but important example, because from it many others derive. It is well known
that for every open cover of [0, 1] there is a “Lebesgue number”,i.e.aé > 0
such that every subinterval of length & lies in one of the sets of the cover.
(If there were not such a number, one could choose a sequence (I,),» of
subintervals I, = [0, 1] with length 1/n none of which is contained in any of
the sets of the cover. There must be a subsequence of the sequence of mid-
points of the I, converging to an x € [0, 1]; but since x is in some set of the
cover, we get a contradiction for n large.) Now since [0, 1] can be covered by
finitely many intervals of length &, it can also be covered by finitely many
sets of the open cover.

Proposition 1. Continuous images of compact spaces are compact, or in other
words, if X is a compact space and f:X — Y is continuous, then f(X) is a
compact subspace of Y.

PrOOF. Let {U,}, . be an open cover of £(X). Then { f ~1(U )}, is an open
cover of X, hence X = f~Y(U,)u---u f '(U,) with an appropriate
choice of indices, hence f(X) = U, v --- v U, , qed. O

Proposition 2. Closed subspaces of compact spaces are compact.

PRrOOF. Let X be compact, A < X closed, {U,},., an open cover of A. By the
definition of subspace topology there is then a family {V,}, ., of sets open in X
suchthat U, =4 n V,:

X
»--"4-38‘:

U, openin 4

A

d

Now since 4 is closed, { X\ 4, {Vl}/ <aJ 1s an open cover for X, hence there are
A, A with XNV, v--ul, =X, ie, U u---ulU,; =4,
ged. 0
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Proposition 3. Two non-empty spaces X and Y are both compact if and only if
their disjoint union is, and if and only iftheir product is.

Proor. (We'll prove only that the product of compact spaces is compact,
which is the most interesting and relatively more difficult assertion. The
converse follows from Proposition 1, and the statement about the disjoint
union is trivial.) Let X and Y be compact and {W,},., an open cover of
X x Y.

S

i
-
3
3
=

3
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X st St Ny St
Ux —— [
U,
Step 1 Step 2 Step 3

Step 1. We can choose for each (x, y) a A(x, y) such that (x, y) € Wy,
and because W, ,, is open it contains an open box U, ,, x V. » around

(x, y)-

Step 2. For a fixed x the family {V, )}, .y is an open cover of Y, hence there
are y;(x), ..., y,(x) such that

Viowen V9 Vg o =Y
Now put
Utypap O e 0 U(x,yrx(x)) =U,.
Step 3. Since X is compact, there are x,...,x, with U, u--- U U,

and consequently X x Y is covered by the (finitely many) W(xl Vi)
Il<i<nl<j<r,qed.

From the compactness of the closed interval and these three propositions we
Can prove the compactness of many other spaces, e.g. all closed subspaces of
the n-dimensional cube and hence all closed and bounded subsets of R”.
This is one half of the famous Heine-Borel theorem, which states that a
subset of R" is compact if and only if it is closed and bounded. Why is every
compact subset X, of R" closed and bounded? Well, we have already
observed that continuous functions on compact sets are bounded, and this
applies in particular to the norm function, hence X, is bounded. As for
closedness, it follows from the following simple but useful

Lemma. If X is a Hausdorff space and X, < X a compact subspace, then X,
1s closed in X.
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PrOoOF. We must show that X\ X is open, hence that every point p has a
neighborhood U that does not intersect X,. For each x € X, choose disjoint
neighborhoods U, of p and V; of x. It may happen that U, intersects X,

(N
AR e

but at least it does not intersect the subsct ¥, n X, and if we now choose
finitely many points x,, . ... x, € X, such that

VanXou v, nXy =X,

(which is always possible because of compactness), then U = Uy U,
is a neighborhood of p with the desired property of not intersecting X, ged.
O

*

Last but not least, I will present a nice little theorem about homeo-
morphisms, but first a few words to put it in the proper light. The first notions
of isomorphism are introduced to us in linear algebra, and to prove that a
linear map f:V — W is an isomorphism, it is enough to verify bijectivity,
because j~!:W — V is then automatically linear. The same applies for
instance to groups and group homomorphisms. Having got accustomed to
that, it is with a certain chagrin that we realize that there arc other nice
properties of bijections which are not transferred to the inverse: for instance,
x+— x> defines a differentiable bijection from R into R, but the inverse map
is not differentiable at the origin:

v
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Unfortunately it is no better with continuity: take for instanc; the identity
map from a set X with the discrete topology to X with the trivial topology.
Nor does one have to resort to such extreme examples: Just wrap the half—
open interval [0, 27) once around the unit circle, using the function ¢ — ",

and we have a continuous bijection which cannot be a homeomorphism,
because the circle is compact and the half-open interval is not. But even when
f~1 is continuous, establishing this fact can turn out to be quite troub_lq-
some, especially when the continuity of f itself is obtained from an explicit
formula y = f(x), and there seems to be no way to write out a corresponding
formula x = f~?(y). For this reason it is useful to have a condition, general in
character and often satisfied, under which the inverse of a continuous bi-
jection is always continuous:

Theorem. A continuous bijection f:X — Y from a compact space X into a
Hausdorff space Y is always a homeomorphism.

PROOF. We have to show that the images of open sets are open, or, equivalently,
that the images of closed sets are closed. Let then A = X be closed. Then 4
is compact, since it is a closed subspace of a compact space; this means f(A4)
is compact (continuous image of a compact space) and hence closed (compact
subspace of the Hausdorff space Y), qed. O



CHAPTER 1I
Topological Vector Spaces

A large number of elements which intervene in mathematics are each

completely determined by an infinite series of real or complex numbers:

For example, a Taylor series is determined by the sequence of its coefficients . . .

One can thus consider the numbers of the sequence which determine each of

the elements as the coordinates of this element seen as a point of a space (E,,)

having a countably infinite number of dimensions. There are several advantages to working
thus. First, the advantage that always appears when we use geometrical language, which
favors intuition because of the analogies that it gives rise to . . .

MAURICE FRECHET
On Some Points of Functional Calculus (1906)
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§1. The Notion of a Topological Vector Space

The present short chapter aims at nothing higher than presenting a certain
class of examples of topological spaces, which really occur within the range of
application of topology (in this case in functional analysis), and which is in
fact of great significance: the topological vector spaces. It is only fair to
place these examples right in the beginning, as they have played an important
role in the formation of the notion of topological spaces (Fréchet 1906).

Definition (Topological Vector Space). Let I€ == R or C. A K-vector space E
with a topological space structure is called a topological vector space if its
topological and linear structure are compatible in the following sense:

Axiom 1. The subtraction E x E - E is continuous.
Axiom 2. Multiplication by scalars K x E — E is continuous.
Remark. Some authors impose an additional

Axiom 3. E is Hausdorff (e.g. Dunford-Schwartz [7]; but not Bourbaki [1]).
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Instead of the subtraction we might as well have required the addition to
be continuous, because it follows from Axiom 2 that themap E — E, x— —Xx
is continuous, hence so is E x E — E x E, (x, y)— (x, —y). But there is
one reason to phrase Axiom 1 with “subtraction” instead of “addition”,
and this reason, which I'll presently explain, is none the worse for being purely
esthetic.

In the same way that there is a connection here between the notions of
«“vector space” and “topological space”, so also many other interesting and
useful concepts arise from a connection between the topology and the algebraic
structure. In particular a group G which is also a topological space will be
called a ropological group if the group structure and the topology are “com-
patible”. And what will be meant by that? Well, that the composition

G x G- G, (a, by — ab

and the inverse map G — G, a — a~ ! are continuous. But these two con-
ditions can be merged into one, the axiom for topological groups: The map
G x G - G, (a, ) ab™ ! is continuous.

Thus Axiom 1 says exactly that the additive group (E, +) together with
the topology of E forms a topological group.

In the next four paragraphs we will introduce the most common classes
of topological vector space, in order of increasing generality.

§2. Finite-Dimensional Vector Spaces

IK", with the usual topology, is a topological vector space, and every iso-
morphism K" — K" is also a homeomorphism. Thus every n-dimensional
vector space V has exactly one topology for which some (and consequently
any) isomorphism ¥V = K" is a homeomorphism, and with this topology V
becomes a topological vector space. This is all trivial, and undoubtedly the
“usual” topology defined in this way is the most obvious one could find
for V. But this topology is in fact more than just “obvious”, for we have the
following

Theorem (no proof given here, see, for instance, Bourbaki [1], Th. 2, p. 18).
The usual topology on a finite-dimensional vector space V' is the only one that
makes it into a Hausdorff topological vector space.

The theorem shows that finite-dimensional topological vector spaces as
such are not interesting, and the notion has been introduced because of the
infinite-dimensional case. But even for these the theorem has an important
consequence: namely, if V is a finite-dimensional vector subspace of any
Hausdorff topological vector space E, then the topology on V' induced from
E is exactly the usual topology—even if E is one of the wilder specimens of
its category.
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§3. Hilbert Spaces

Let’s recall that an inner product space is a real (resp. complex) vector space E
together with a symmetric (resp. Hermitian) positive definite bilinear form

(.., ..». Then for v € E the scalar [lv| := \/?LTLS is called the norm of v.

Note. If (E, <.., ..)) is an inner product space, d(v, w):= |lv — w| defines a
metric whose topology makes E into a topological vector space.

Definition (Hilbert space). An inner product space is called a Hilbert space
when it is complete relative to its metric, i.e. when every Cauchy sequence
converges.

Hilbert spaces are surely, after finite-dimensional spaces, the most innocent
topological vector spaces, and they can be completely classified, as follows:
A family {e;},., of pairwise orthogonal unit vectors in a Hilbert space is
called a Hilbert basis for H if the only vector orthogonal to all the ¢, is the
zero vector. It can be proved that every Hilbert space has such a basis, any
two bases of the same Hilbert space have the same cardinality, and finally
two Hilbert spaces with equipotent bases are isometrically isomorphic.

§4. Banach Spaces

Definition (Normed Spaces). Let E be a [K-vector space. A map ||..||: E > R
is called a norm if the following three axioms hold:

N1. |ix|l = Ofor all x € E, and |[x|| = 0 if and only if x = 0.
N2. |ax|| = |a]||x| forallae K, x € E.
N3. (Triangle Inequality). |x + y[| < x| + |yl forall x, y € E.

A pair (E, | ..]) consisting of a vector space and a norm on it is called a
normed space.

Note. If (E, [|.. ) is a normed space, d(x, y) := ||x — y|| defines a metric whose
topology makes E into a topological vector space.

Definition (Banach Space). A normed vector space is called a Banach space
if it is complete, i.e. if every Cauchy sequence converges.

Hilbert and Banach spaces are, in particular, examples of topological
vector spaces, but they have more structure than that: The scalar product
.., ..y or the norm | ..|| obviously cannot be recovered from the topology.
Already for finite n > 2, a vector space V of dimension 1 can be endowed with
many different norms which—in contrast with scalar products—cannot be
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obtained from one another by linear isomorphisms of the space into itself.
Of course, all these norms define the same (i.e. the “usual”) topology on V.
Now, in infinite dimensions, even if one is only interested in the topological
vector space structure (as often happens in functional analysis), Bangch
spaces define a very rich class of which it is difficult and perhaps impossible

to get a complete overview.

§5. Fréchet Spaces
Definition (Seminorm). Let E be a K-vector space. A map |..|: E— R is
called a seminorm if the following hold:

SN1. |x]=Oforall xe E.

N2. |ax| = |al|x],
N3. Triangle inequality, as for norms.

For example, |..|;: R" = R, x | x;] i8 a seminorm on R".

We can talk about “open balls” for seminorms as well as for norms, and we
will denote them by B,(x):= {ye E||x — y| < ¢}; but in general there isn’t
anything “round” about them anymore.

T,

B,(x)

Definition. Let E be a vector space and {|..|;}, 4 a family of seminorms on E.
A subset U c E is called open in the topology generated by the family of
seminorms if every point of U belongs to a finite intersection of seminorm
open balls which is contained in U in other words, for every x € U there are
A4, ..., A, € Aand an ¢ > 0such that B#(x) n -+ n B¥(x) = U.

///—\(U
/Wl J
“seminorm boxes,”

(for the example R, {|..|;, |..[,})
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In the terminology of I, §4 these open balls of the seminorms |..|,, A € A
form a subbasis of, or generate, the topology. ’

Note. With the topology given by the family of seminorms {|..|,}, . », E becomes
a topological vector space, which moreover is Hausdorff if and only if 0 is the
only vector for which all seminorms |..|, are zero.

Definition (Pre-Fréchet Space). A Hausdorff topological vector space whose
topology can be defined by an at most countable family of seminorms is
called a pre-Fréchet space.

Fréchet spaces will be the “complete” pre-Fréchet spaces. To be sure,
completeness is a metric motion, but there is an obvious topological version
of it for topological vector spaces:

Definition (Complete Topological Vector Spaces). A sequence (x,),s, in a
topological vector space is called a Cauchy sequence if for every neighborhood
U of 0 there is an n, such that x, — x,, € U for alln, m > n,. If every Cauchy

sequence converges, the space is called (sequentially) complete.

In normed spaces this concept of completeness is of course equivalent to
the old one, obtained from the metric given by the norm.

Definition (Fréchet Space). A Fréchet space is a complete pre-Fréchet space.

Notice that pre-Fréchet spaces are always metrizable: If the topology is
given by a sequence of seminorms |..|, , , then

< 1 x =y,
d(x7 y) = Z g_]h_L

defines a metric which generates the same topology and for which the Cauchy
sequences are the same.

§6. Locally Convex Topological Vector Spaces

Finally, let us define locally convex spaces, which are the most general class

of topological vector spaces for which there exists a theory with decent
theorems.

Definition. A topological vector space is called locally convex if every
neighborhood of 0 contains a convex neighborhood of 0.
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We mention the following facts to illustrate to what extent these spaces
are more general than the preceding ones (no proof I_lere; cf. [13] §18): A
topological vector space is locally convex if and only if its t.opology can be
given by a family of seminorms; and a locally convex topological vector space
is a pre-Fréchet space if and only if it is metrizable.

§7. A Couple of Examples

Example 1. We consider the Lebesgue-integrable real functions f on [ —n, 7]
which satisfy

J:Tf(x)z dx < 0.

Two such functions will be called equivalent if they coincide outside a set of
measure zero. The equivalence classes are called, somewhat loosely, square-
integrable functions. Let H be the set of such functions. H has a cax_lomcal
real vector space structure and can be made into a Hilbert space using, for
instance, the following inner product:

{fhgy= % f"f(x)g(x) dx.

The trigonometric functions e, := cos kx, e_; = sin kx, k > 1, form, together

with e, := \/5/2, a Hilbert basis {e,},., for H, and the rep.resenta}tion of
clements fe Has f = Y,z {f, enve, is exactly the Fourier series of f.

Example 2. Let X be a topological space, C(X) the vector space of bounded
continuous functions on X, and || f| = sup,ex |f(x)|. Then (C(X), |..[) is
a Banach space.

Example 3. Let X = C be a domain and O(X) the vector space of hol.o-
morphic functions on X, endowed with the topology given by the family

{i IK}KCXiscompact

of seminorms | f | := sup,.x | f(z)| (topology of "‘compact Convergencg”).
Then ¢(X) is a Fréchet space (we just have to consider a countable cqllechon
of K, which “exhaust”™ X; completeness follows from the Weierstrass

convergence theorem . . .).

These are three out of a great number of “ function spaces” which effectively
come up in analysis. As mere vector spaces they did not hav; to be .invente?d,
they just are there and one can’t miss them. And that the linear d1ﬂerenf[1al
and integral operators behave as linear maps L: E; — E, between function
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spaces also follows immediately from the nature of things. But mere linear
algebra will lead us only to trivialities here; to understand the propérties
of these operators, we must study their continuity behavior under different
topologies, and exploit our knowledge about the structure of abstract
topological vector spaces. And while point-set topology, in whose praise I'm
saying all this, does not exactly represent the cutting edge of research in the
area of partial differential equations, it is nevertheless an indispensable
instrument in it, to the point of being taken for granted.

I haven’t yet given any examples of locally convex but non-metrizable,
and hence non-pre-Fréchet, topological vector spaces. Well, such spaces also
come up in a completely natural way in function analysis. For instance, it is
sometimes necessary to consider the “weak topology” on a given topological
vector space, that is, the coarsest topology for which all the old continuous
linear maps E — R (the “linear functionals”) remain continuous, or in other
words, the topology generated by {f~Y(U)|U = R is open, [ E - R is
linear and continuous}. With this topology E is still a topological vector
space, but much more complicated than before. Even if we start with some-
thing as simple as an infinite-dimensional Hilbert space, we end up with a
locally convex, Hausdorff, but non-metrizable topological vector space

(cf. [4], p. 76).

CHAPTER 111
The Quotient Topology

§1. The Notion of a Quotient Space

Notation. If X is a set and ~ an equivalence relation on X , then X/~ will
denote the set of equivalence classes, [x] € X/~ the equivalence class of
xe X, and n: X > X/~ the canonical projection, so that n(x) := [x].

Definition (Quotient Space). Let X be a topological space and ~ an equiva-
lence relation on X. A set U = X/~ is called open in the quotient topolog.y
if 77 1(U) is open in X. X/~, endowed with the topology thus defined, is

called the quotient of X by ~.

Note. The quotient topology is obviously the finest topology on X/~ such that
T iS a continuous map.

Just as we have, for the notions of subspace, disjoil}t_ uni.0n and pr.odgct,
a simple mental image on which we can base our intuition in the beginning,
I would like to suggest a mental image for quoti.ent spaces as well. In Qrder to
depict an equivalence relation, the best thing is to imagine the equivalence



