
Q1. SMOOTH MANIFOLDS 

AND SMOOTH MAPS 

FIRST let us explain some of our terms. Rk denotes the k-dimensional 
euclidean space; thus a point x E Rk is an k-tuple x = (xi, . . . , xk) of 
real numbers. 

Let U C Rk and V C R' be open sets. A mapping f from U to V 
(written f : U .+ V )  is called smooth if all of the partial derivatives 
ay/ax,, . - - ax, exist and are continuous. 

More generally let X C Rk and Y C R' be arbitrary subsets of 
euclidean spaces. A map f : X ---f Y is called smooth if for each x E X 
there exist an open set U C Rk containing x and a smooth mapping 
F : U --f R 1  that coincides with f throughout U A X .  

If f : X + Y and g : Y -+ 2 are smooth, note that the composition 
g o f : X + 2 is also smooth. The identity map of any set X is auto- 
matically smooth. 

DEFINITION. A map f : X --f Y is called a di$eomorphisnz if f carries X 
homeomorphically onto Y and if both f and f-' are smooth. 

We can now indicate roughly what diferential topology is about by 
saying that it studies those properties of a set X C Rh which are invariant 
under diffeomorphism. 

We do not, however, want to look a t  completely arbitrary sets X .  
The following definition singles out a particularly attractive and useful 
class. 

DEFINITION. A subset ilf C Rk is called a smooth inanifold of dimension 
m if each x E Af has a neighborhood W A M that is diffeomorphic to 
an open subset U of the euclidean space R". 

Any particular diffeomorphism g : U --f W A Af is called a para- 
metrixation of the region W A M .  (The inverse diffeomorphism 
W A AI + U is called a system of coordinates on W A M . )  
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Figure 1 .  Parametrization of a region in I I f  

Sometimes we will need to look a t  manifolds of dimension zero. By 
definition, M is a manifold of dimension zero if each x E M has a neigh- 
borhood W n M consisting of x alone. 

EXAMPLES. The unit sphere S2, consisting of all (2, y ,  z )  E R3 with 
x2 + y2 + z2 = 1 is a smooth manifold of dimension 2. In  fact the 
diff eomorphism 

( x ,  Y )  + ( x ,  Y ,  d1 - x2 - Y", 
for x2 + y2 < 1, parametrizes the region z > 0 of S2. By iritcrchanging 
the roles of x, y ,  z, and changing the signs of the variables, we obtain 
similar parametrizations of the regions x > 0, y > 0,  x < 0,  y < 0, 
and z < 0. Since these cover S2, it follows that S2 is a smooth manifold. 

. , x,,) 
with x: = 1 is a smooth manifold of dimension n - 1. For example 
So C R' is a manifold consisting of just two points. 

A somewhat wilder example of a smooth manifold is given by the 
set of all (x ,  y )  E R2 with x # 0 and y = sin(l/x). 

More generally the sphere Sn-' C R" consisting of all (xl, 

TANGENT SPACES AND DERIVATIVES 

To define the notion of derivative df ,  for a smooth map f : M + N 
of smooth manifolds, we first associate with each x E M C Rk a linear 
subspace T M ,  c Rk of dimension m called the tangent space of dd a t  x. 
Then df ,  will be a linear mapping from T M ,  to TN,,  where y = f ( x ) .  
Elements of the vector space T M ,  are called tangent vectors to llil a t  x.  

Intuitively one thinks of the m-dimensional hyperplane in Rk which 
best approximates 114 near x; then T M ,  is the hyperplane through the 

origin that is parallel to  this. (Compare Figures 1 and 2.) Similarly 
one thinks of the nonhomogeneous linear mapping from the tangent 
hyperplane a t  x to  the tangent hyperplane a t  y which best approxi- 
mates f .  Translating both hyperplanes to the origin, one obtains dfz .  

Before giving the actual definition, we must study the special case 
of mappings between open sets. For any open set U C Rk the tangent 
space T U ,  is defined to be the entire vector space Rk. For any smooth 
map f :  U + V the derivatiue 

d f z  ; Rk + R' 

is defined by the formula 

df,(h) = lim ( f ( x  + th) - f ( x ) ) / t  

for x E U ,  h E Rk. Clearly df,(h) is a linear function of h. (In fact d f ,  
is just that linear mapping which corresponds to the 1 X k matrix 
(af J a x i > ,  of first partial derivatives, evaluated a t  2.) 

Here are two fundamental properties of the derivative operation: 

1 (Chain rule). I f  f : U + V and g : V + W are smooth maps, with 

t -0 

f(x) = y,  then 

d(g  0 f &  = dg ,  0 d f z .  

In  other words, to every commutative triangle 

rv\ 
r/\ 
U-w 

9 O f  

of smooth maps between open subsets of Rk, R', Rnk there corresponds 
a commutative triangle of linear maps 

Rf 

R d 2 R Y  
4 9  f)= 

2. If I i s  the identity map of U ,  then d I ,  i s  the identity map of Rk.  
More generally, if U C U' are open sets and 

i : U - - + U '  

I): 
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smooth map 
f : M + N  

with f(x) = y. The derivative 
dfz : T M ,  3 T N ,  

is defined as follows. Since J is smooth there exist an open set W con- 
taining x and a smooth map 

F : W 4 R 1  

that coincides with f on W (7 M. De&e df,(v) to be equal to dF,(v) 
for all v e TM,. 

To justify this definition we must prove that dF,(v) belongs to T N ,  
and that it does not depend on the particular choice of F .  

Choose parametri~ ,a t' ions 

g : U + M C R E  and h : V - + N C R '  

for neighborhoods g(U)  of x and h(V)  of y. Replacing U by a smaller 
set if necessary, we may assume that g ( U )  C W and that f maps g ( U )  
into h(V).  It follows that 

h-' o f o g : U -+ V 

is a well-defined smooth mapping. 
Consider the commutative diagram 

P 

9 f h-1 f o  g J h  
U V 

of smooth mappings between open sets. Taking derivatiws, we obtain 
a commutative diagram of linear mappings 

RE d F Z  >R1 

dha, 
>R" 

dgu T R m  d(h-' 0 f 0 g > u  

where U = g-'(x), v = h-'(y). 

It follows immediately that dF,  carries TAT, = Image (dg,) into 
TN,, = Image (dh,). Furthermore the resulting map df, does not 
depend on the particular choice of F,  for we can obtain the same linear 

Regular values 7 

transformation by going around the bottom of the diagram. That is: 

df, = dh, 0 d(h-' 0 f 0 g)u 0 (dgJ*. 

This completes the proof that 

df, : TM,  -+ T N ,  
is a well-defined linear mapping. 

*4s before, the derivative operation has two fundamental properties: 

1. (Chain rule). If f : M + N and g : N --+ P are smooth, with f(s) = y, 
then 

d(g 0 f>r = dgu 0 dfz. 
2. If I i s  the identity m a p  of M ,  then d I z  i s  the identity m a p  of TM,. 

More generally, if M C N with inclusion map  i, then T M ,  C Thrz with 
irrclusion mup  di,. (Compare Figure 2.) 

Figure 2. 7'he tangent space of a submanifold 

The proofs are straightforward. 
As before, these two properties lead to the following: 

ASSERTION. I f  f : M 7 N i s  a difleonzoyphism, then df, : TAT, -+ T N ,  
i s  an isomorphism of vector spaces. In payticular the dimension of ill 
must be equal to the dimension of N .  

REGULAR VALUES 

Let f : ill .+ N be a smooth map between manifolds of the same 
dimension.* We say that x e n/r is a regular point of j if the derivative 

* This restriction will be removed in $2. 
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df, is nonsingular. In this case it follows from the inverse function 
theorem that f maps a neighborhood of x in M diffeomorphically onto 
an open set in N .  The point y E N is called a regular value if f-'(y) 
contains only regular points. 

If df, is singular, then x is called a critical point of f ,  and the image 
f ( x )  is called a critical value. Thus each y E N is either a critical value or a 
regular value according as f - ' (y )  does or does not contain a critical point. 

Observe that if M i s  compact and ?J E N i s  a regular value, then f-'(y) 
is afini te  set (possibly empty). For f - ' (y )  is in any case compact, being 
a closed subset of the compact, space M ;  and f - ' (y )  is discrete, since f 
is one-one in a neighborhood of each x P f - ' (y ) .  

For a smooth f : M --$ N ,  with M compact, and a regular value y E N ,  
we define #f- ' (y)  to be the number of points in f - ' (y ) .  The first observation 
to be made about #f-'(y) is that it is locally constant as a function of y 
(where y ranges only through regular values!). I.e., there i s  a neighbor- 
hood V C N of y such that #f-'(y') = #f-'(y) for any  y' E V .  [Let x l ,  - . . , x k  
be the points of f - ' ( y ) ,  and choose pairwise disjoint neighborhoods 
U,, - - , Ur of these which are mapped diffeomorphically onto neighbor- 
hoods V,, . * -  , V ,  in N .  We may then take 

V = V ,  A V ,  A A V ,  - f ( M  - U ,  - - UiJ .I 

THE FUNDAMENTAL THEOREM OF ALGEBRA 

As an application of these notions, we prove the fundamental theorem 
of algebra: every nonconstant complex polynomial P(z)  must have a zero. 

For the proof it is first necessary to pass from the plane of complex 
numbers to a compact manifold. Consider the unit sphere X2 C R3 and 
the stereographic projection 

h+ : Sz - ((0, 0,  1)) -+ R2 X 0 C R3 
from the "north pole" (0, 0, 1) of S2. (See Figure 3.) We will identify 
R2 X 0 with the plane of complex numbers. The polynomial map P from 
R2 x 0 itself corresponds to a map f from S2 to itself; where 

f ( x )  = h;'Ph+(x) for x # (0, 0 ,  1) 

f ( 0 ,  0, 1) = (0, 0, 1). 
It is well known that this resulting map f is smooth, even in a neighbor- 
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Figure 3. Stereographic projection 

hood of the north pole. To see this we introduce the stereographic 
projection h- from the south pole (0, 0, -1) and set 

&(z) = h-fhI'(z). 
Kotc, by elementary geometry, that 

h,hI'(z) = z / 1 ~ 1 ~  = 1/Z. 

Sow  if P(z)  = a,$ + alzn-l + . . . + a., with a, # 0, then a short 
computation shows that 

&(z) = z"/(a0 + d,z + * * * + an?). 
Thus Q is smooth in a neighborhood of 0, and it follows that f = hI'Qh- 
is smooth in a neighborhood of (0, 0, 1). 

Next observe that f has only a finite number of critical points; for P 
fails to be a local diffeomorphism only a t  the zeros of the derivative 
polynomial P'(z) = a,-i jzl-', and there are only finitely many 
zeros since P' is not identically zero. The set of regular values of f ,  
being a sphere with finitely many points removed, is therefore connected. 
Hence the locally constant function #f- ' (y)  must actually be constant 
on this set. Since #f-'(y) can't be zero everywhere, we conclude that 
it is zero nowhere. Thus f is an onto mapping, and the polynomial P 
must have a zero. 


