Noncommutative Geometry and Transcendental
Physics

Jean Petitot

Abstract In our neo-transcendental approach, physical theories are built up from a
categorial structure that is mathematically interpreted (what Kant called the “math-
ematical construction of categories™). The interpretation of physical categories
provided by noncommutative geometry is presented in this perspective.

1 Introduction

In the early 1980s [ began a research program which developed a new transcendental
epistemology for modern theoretical physics. A synthetic summary of this approach
can be found (in French) in my book Lua Philosophie transcendantale et le probléme
de I'Objectivité (1991) and (in English) in my paper “Actuality of Transcendental
Aesthetics for Modern Physics™ (1992) for the international Conference 1830-1930:
Un siecle de géométrie, de C.F. Gauss et B. Riemann & H. Poincaré et E. Cartan :
épistémologie, histoire, et mathémariques held at the Institut Henri Poincaré in Paris
the 18-23 September 1989. Further developements can be found in other papers
cited in the bibliography.

The key idea is that, if physical thecries are conceptually construed on Lhe basis
of categorial concepts such as “system”, “state”, “observable”, etc. and geometro-
dynamical intuitions such as those of space, time or motion, these representations
have to be mathematically interpreted in a specific way (what Kant called the “math-
ematical construction of categories™) in order to constitute a well-behaved physical
objectivity. In this way, physical objectivity cannot be an ontology, and the departure
of objectivity from ontology is, I think, the basic justification for transcendentalism,

Even if objective categories remain fairly invariant in the history of physics, their
mathematical interpretation has changed tremendously as physical theories have
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evolved, but this is by no means an argument against transcendentalism. On the con-
trary, the by now classical criticisms of Reichenbach, Carnap and many others. are
perhaps valid against a rigid, narrow minded, dogmatic reading of Kant but‘certamiy
not against a more general and open conception of transcendentalism. Inm-dentally,
logical positivism is in great part a “grammatical” reinterpretation of classical tran-
scendentalism.

In fact, Kant was the first philosopher to discover the constitutive nature of ob-
jectivity — “discovery of the constitutive element” that Hans Reichenbach himself
called an “eminent philosophical result”: objective principles are prescriptive rathe?r
than descriptive, and they are constitutive of physical reality. But in Kant, the consti-
tutive components of objectivity were rooted in a cognitive representational th‘eory.
As Schlick pointed out, they were characteristic of our representational conscious-
ness. That is why a form of transcendental subjectivism became the foundational
basis for objectivity. Developments in physics (General Relativity and Quantum
Mechanics) created a conflict between the objective compoenents and their cognitive
basis. However the appropriate response to this situation is not provided by logi-
cal positivism, but rather by a renewed transcendentalism where the objective fmd
the cognitive components are methodologically separated. This tran.scendemal}sm
is no longer founded on cognitive universals but on procedures of mathematical
“construction”. )

In the previously cited papers I have shown how Hamiltonian (symglectlc) me-
chanics, general relativity, non abelian gauge theories, and even superstring th-eorit.es
can be transcendentally interpreted in a very natural way. I aim at presenting in
this perspective the deep and technical mathematical interpretation of physical cat-
egories provided by noncommutative geomerry.

2 Generalizing and “Historicizing” Transcendentalism

As we have seen in the Introduction of this volume, a generalized and “histori-
cized” transcendental perspective on modern physics can be based on very general
principles:

1. Physics deals only with phenomena. Phenomena are relational entities that‘are
inseparable from their conditions of observation: access conditions (observation,
measurement, gathering of information, etc.) are constitutive of the very con-
cept of physical object. In that sense, physical objectivity cannot be the ontology
of a mind-independent substantial reality and any ontological realism has to be
rejected.

2. But even if they lose ontological content, “categorial” concepts still have a the-
oretical function. In order to be transformed into scientific objects, phenomena
must be conceptually lawful, “legalized” according to a categorial structure. The
first philosophical thematization of this principle was Kant’s Metaphysische An-
fangsgriinde der Naturwissenschaft (MAN). Kant explained how the four groups
of categories and principles specialize in physics into Phoronomy (Kinematics),
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Dynamics, Mechanics, and Phenomenology, and how they are mathematically
interpreted in Newtonian Mechanics.

3. The essential feature of physics is the mathematical interpretation which trans-
forms the categorial concepts into algorithms for the mathematical reconstruction
of phenomena. This is a critical point. Physics has to solve an inverse problem,
namely the inverse problem of the abstraction problem. Conceptual analysis must
be supplemented by a computational synthesis of phenomena. In Kant, compu-

tational synthesis is first based on schematization and then on the “construction”
of categories.

The main difficulty with a generalized transcendentalism is to understand the
general meaning of Transcendental Aesthetics. The latter presents two aspects corre-
sponding to what Kant called two “expositions” (Erdrterung = “clear representation
of what belongs to a concept™) in the Kritik der reinen Vernunft (KRV): the meta-
physical and the transcendental. First, phenomena are observable and therefore must
appear to an observer. They appear in a specific medium of manifestation (space
and time for sensible phenomena) which provides “forms of intuition”. Second,
these “forms” can be mathematically determined and converted into what Kant
called “formal intuitions” (see the celebrated footnote to section 26 of KRV). To
determine phenomena objectively, we need therefore a link between mathemati-
cally determined forms of observability (what is “gegeben”) and categorial forms of
lawfulness (what is “gedacht”). In Kant this link is worked out af two levels, At the
level of KRV it is provided by transcendental schematism which converts the cate-
gories into principles (“Grundsdtze™). At the level of MAN, it is provided by what
Kant called the construction (“Konstruktion”™) of categories. The construction is a
mode of presentation (“Darstellung’™. It means that it is possible to interpret mathe-
matically the schematized categorial contents by using mathematics stemming from
the transcendental exposition of Transcendental Aesthetics. I think that it is in this
very special sort of “mathematical hermeneutics” — not only for the intuitive forms
of manifestation but also for the categorial forms of lawfulness themselves — that
the synthetic a priori finds its true and deep transcendental meaning,

In the Introduction of the volume, we also reminded (in modern terms) the
categorial moments of classical Mechanics according to the Metaphysische An-

fangsgriinde der Naturwissenschaft.

1. Phoronomy (Kinematics). “Mathematical” categories of quantity and “Axioms
of Intuition™ (“Axiomen der Anschauung”) governing “extensive” magnitudes:
the Euclidean metric of space is a background (a priori) geometrical structure
and physical motion complies with Galilean relativity.

2. Dynamies. “Mathematical” categories of quality and “Anticipations of Percep-
tion” (“Anticipationen der Wahrnehmung”) governing “intensive” magnitudes:
physical dynamics has to be described in terms of differential entities (veloc-
ities, accelerations, etc.) varying covariantly (link with Phoronomy). Physics
must therefore be a kind of differential geometry (not a “logic” in the traditional
Aristotelian sense).
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3. Mechanics. “Dynamical”, i.e. physical, categories of relation (substance =
Inhirenz und Subsistenz, causality = Causalitdt und Dependenz, community,
reciprocity and interaction = Gemeinschaft) and “Analogies of Experience”
(“Analogien der Erfahrung™): the category of substance is reinterpreted as the
transcendental principle of conservation laws, the category of causality as that of
forces, and the category of community as that of interactions.

4. Phenomenology. Categories of modality and “Postulates of empirical thought”

(“Postulate des empirischen Denkens itberhaupt”): because of relativity, motion
cannot be a real but only a “possible” predicate of matter (it is a purely rela-
tional phenomenon). Position and velocity are not observable properties whose
values could individuate dynamical states. The sentence “The body S “has” such
position and such velocity” (in the sense of “having a property”) is not a phys-
ical judgment. We find here the root of the transcendental ideality of space and
time, which has nothing to do with a subjective idealism 4 la Berkeley. But forces
(causality) are real and are governed by necessary laws. Necessity is not a logical
but a transcendental modality. It is conditional, relative to the radical contingency
of possible experience.

A striking modern example of such a transcendental structure is provided by
the constitutive role of symmetries. In general relativity and non abelian gauge
theories, the radical enlargment of the symmelry groups enables us to construct
mathematically on the basis of relativity principles not only the physical content of
the categories of substance, but also the physical content of the categories of force
and interaction. As far as I am concerned (a view shared by Daniel Bennequin,
a specialist of symplectic geometry and string theory) this is a far-reaching man-
ifestation of the “Galoisian” essence of modern physics: symmetries that express
entities which cannot be physical observables act as principles of determination for
the physical obervables themselves.

The evolution of modern physics displays fairly stable categorial structures, to-
gether with many changes in their successive mathematical interpretations. I think
that such a variability is by no means an argument against a transcendental ap-
proach. For instance, according to Kant, the a priori nature of space and time means
essentially that the Euclidean metric of space~time and the Galilean group act as a
background structure for Mechanics. This remains perfectly true. In GR, the met-
ric is no longer a background structure and becomes a dynamical feature of the
theory. The Diff{M)-invariance implies that localization becomes relational so that
points lack any physical content. But this background independence is no refutation
of transcendentalism. I have developped the thesis that the differentiable structure
of space—time and the associated cohomology of ditferential forms remain a back-
ground structure in GR.

In Petitot (1992a) I gave a transcendental approach to:

1. Hamiltonian (symplectic) mechanics, in particular Noether’s theorem and the
formalism of the momentum map worked out by B. Kostant, I.M. Souriau,
V. Arnold, A. Weinstein, R. Abraham, and J. Marsden (deep broadening of the
construction of the category of substance).
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2. General relativity and the a priori determination of Einstein equations proposed
by Wheeler, Misner, and Thorne in their Geometrodynamics (construction of the
category of force).

3. Non abelian gauge theories (construction of the category of interaction).

As it turns out, this perspective shares many theses with Friedman’s works
{Dynamics of Reason, 1999):

1. The developement of modern physics does not destroy the transcendental consti-
tutive perspective:

We still need superordinate and highly mathematical first principles in physics — principles
that must be injected into our experience of nature before such experience can teach us
anything at all. (p. ¥4

2. The conditions of possibility of physical theories (a priori synthetic principles of
coordination) are not logico-analytic judgements.
3. Kant's a priori principles can be generalized, relativized and historicisized:

What we end up with (...) is thus a relativized and dynamical conception of a priori
mathematical-physical principles, which change and develop along with the development
of the mathematical and physical sciences themselves, but which nevertheless retain the
characteristically Kantian constitutive function of making the empirical natural knowledge
thereby structured and framed by such principles first possible. {p. 31)

4. The central role of constitutive principles:

What characterizes the distinguished elements of our theories is rather their special consti-
tutive function: the function of making the precise mathematical formulation and empirical
application of the theories in question first possible. {p. 40)

3 Noncommutative Geometry as a New Framework

Let me now comment on a new technical example of mathematical reinterpretation
of the categorial structures of physics. This reinterpretation is achieved by using
John Baez’ requisite of background independence (less radical than Lee Smolin’s).
The problem is rather difficult, especially in Quantum Gravity. In GR general co-
variance implies that the metric is no longer a background structure and points of
space—time M lose any physical meaning: GR observables must be Difi M) invari-
ant and are therefore non-local. On the contrary (Carlip, 2001), in Quantum Field
Theory there exists a fixed background space—time M and points have a physical
meaning: the value @(x) of a field ¢ at a point x € M is in principle obervable. How
are we to eliminate the background geometry in QFT while maintaining at the same
time the computational efficiency of geometry? How are we to reconcile mathemat-
ically theories such as GR and QFT which are so heterogeneous to one another?
Remarkable suggestions exist — in particular loop quantum gravity developped by
Abhay Ashtekar, Lee Smolin, Carlo Rovelli, John Baez, etc. — for enlarging the
formal framework of Riemann and Cartan geometry and quantize some of their
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components, but it seems that the problem is not a technical problem to be reckoned
with only at the boundary of physical theories but a basic foundational difficulty.
This means that we need a change of paradigm, much like GR in the case of Rie-
mannian geometry.

It seems that the most interesting answer to this problem comes from Noncon-
nutative Geometry (NCG) which introduces from the outset quantum concepts in
the definition of the most fondamental geometrical concepts. I will present here
how Connes and Lott achieved the deduction in NCG of the coupling of grav-
ity (Einstein-Hilbert action!) with the Standard Model of Quantum Field Theory
(QFT), how metric can be reinterpreted in purely spectral terms using the formal-
ism of Clifford algebras and Dirac operators, and how a purely noncommutative
generalization yields a natural interpretation of the Higgs phenomenon.

Philosophically speaking, NCG is a new paradigm — or framework — in as muach
as it includes both GR and the standard model of QFT as commutative approxima-
tions and provides the first deep theoretical meaning to the Higgs phenomenon, The
breakihrough of NCG consists in starting from QM and “quantizing” all classical
geometrical concepts. The conflict between geometry and QM disappears from the
outset since quantum concepts are no longer subordinated to any prior background
geometrical structure.

4 Gelfand Theory

To understand Alain Connes’ NC Geometry we must first come back to Gelfand
theory for commutative C*-algebras.

4.1 C*-algebras

Recall that a C*-algebra A is a (unital) Banach algebra on C (ie. a C-algebra
which is normed and complete for its norm) endowed with an involution x — x*
s.t. ||x]|* = {x*x]. The norm (the metric structure) is then deducible from the alge-
braic structure. Indeed, [x|| is the spectral radius of the positive element x™x, that
is, the Sup of the modulus of the spectral values of b

HX“Z = Sup {|A| : x"x— AT is not invertible}

1t would be better to call this action the Hilbert-Einstein action since there is a priority of Hilbert
(1915). See e.g. Majer-Sauer (2004).

2 1 the infinite dimensional case, the spectral values (x — Al is not invertible) are not identical with
the eigenvalues {x — A has a non trivial kernel). Indeed non invertibility no longer implies non
injectivity (a linear operator can be injective and non surjective). For instance, if e, n € N, isa
countable basis, the shift ¥, Aner — L Azéa1 18 injective but not surjective and is not invertible.
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(where [ is the unit of A). In a C*-algebra the norm becomes therefore a purely
spectral concept.

An element x € A is called self-adjoint if x = x”, normal if xx* = x*x, and unitary
b= =i

In this classical setting, the mathematical interpretation of the fundamental (cat-
egorial) concepts of

I. Space of states
2. Observable
3. Measure

is the following:

1. The space of states is a smooth manifold: the phase space M (in Hamiltonian
mechanics, M = TN is the cotangent bundle of the space of configurations N
endowed with its canonical symplectic structure).

2. The observables are functions f : M — R (interpreted as f : M — C with f = f)
which measure some property of states and output a real number.

3. The measure of f in the state x € M is the evaluation f(x) of f atx; butas f(x) =
O, (f) (where & is the Dirac distribution at x) a state can be dually interpreted as
a continuous linear operator on observables.

The observables constitute a commutative C*-algebra A and Gelfand theory ex-
plains that the geometry of the manifold M can be completely recovered from the
algebraic structure of A.

4.2 Gelfand’s Theorem

Let M be a topological space and let A := C(M) be the C-algebra of continuous
functions f : M — C (the C-algebra structure being inherited from that of C itself
via pointwise addition and muitiplication). Under very general conditions (e.g. if M
is compact®), it is a C*-algebra for complex conjugation f* = 7,

The possible vatues of f — that is the possible results of a measure of f — can be
defined in a purely algebraic way as the spectrum of f that is

sp ()= {c: f—eclisnotinvertible in A}.

Indeed, if f(x) = ¢ then f— ¢l is not invertible in A. sp 4 (f) is the complementary
set of what is called the resolvent of f,

r(f):={c: f—cl is invertible in A} .

3 . .

‘ It M is non compact but only locally compact, then one take A = Co (M) the algebra of continuous
functions vanishing at infinity but .4 is no longer unital since the constant function I doesn’t vanish
at infinity.
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The main point is that the evaluation process f{x) — that is measure — can be
interpreted as a duality {f,x} between the space M and the algebra A. Indeed, to a
point x of M we can associate the maximal ideal of the f € A vanishing at x:

M= {f € A: f(x) =0}.

But the maximal ideals 93 of .A constitute themselves a space — called the spectrum
of the algebra .4. They can be considered as the kernels of the characters of A, that
is of the morphisms (multiplicative linear forms) ¥ : A — C,

M=x"1(0).

A character is by definition a coherent procedure for evaluating the elements f € A.
The evaluation ¥ (f) is also a duality (), f) and its results x(f) belong 10 sp 4(f).
Indeed, as distributions (continuous linear forms), the characters correspond to the
Dirac distributions §; and if ¥ = &,, then Y (f) = f(x) = c and ¢ € sp 4(f).

The spectrum of the C*-algebra A (not to be confused with the spectra sp 4(f)
of the single elements f of A) is by definition the space of characters Sp(A} := {x}
endowed with the topology of simple convergence: ¥, — x iff x.(f)— x(f) Vfe.A.
It is defined uniquely from .4 without any reference to the fact that A is of the
form A := C(M). It is also the space of irreducible representations of A (since A is
commutative, they are 1-dimensional).

Now, if f € A is an element of .4, using duality, we can associate to it canonically
a function f on the space Sp(.A)

FiSp(A) - C
x = f =2 =15

We get that way a map
T A = C(Sp(A)
=

which is called the Gelfand transform. For every f we have

F(Sp(A)) = spa(f)-

The key result is themn:

Gelfand-Neimark theorem. If A is a commutative C*-algebra, the Gelfand trans-
form ~ is an isometry between A and C{Sp(A4)).

i " 1
Indeed, the norm of f is the spectral radius of f, p(f) := nl}_r)ro\c (E]f”ﬂﬂ)

and we have || f H = p(f) = ||f|l. To see this, suppose first that f is self-adjoint
9-n

(f=F"=p. We have [[7I> = If-F2) = (/2] So, [IFll = ||/*

and as
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Hfz’I HZAR — p {f} by definition we have || f]| = p (f). Suppose now that f is any ele-
ment of A, Since f.f~ is self-adjoint, we have || 7> = | £.7*] = p (f.f*) = Hf—f*

ButHfﬁ = ”ff* = ”}—“2 and therefore ]!f”2 = “ﬂ)z and || f) = Hfll
Gelfand theory shows that, in the classical case of commutative C*-algebras A 1=

C(M) (M compact), there exists a complete equivalence between the geometric and
the algebraic perspectives.

4.3 Towards a New (Functional) “Phoronomy”

We think that Geltand theorem has a deep philosophical meaning. In classical me-
chanics “phoronomy” (kinematics) concerns the structure of the configuration space
N and the phase space M := T*N. Observables and measurements are defined in
terms of functions on these basic spaces directly construed from the geometry of
space—time (transcendental aesthetics). Gelfand theorem shows than we can ex-
change the primary geometrical background and the secondary algebraic moment of
measure, take measure as a primitive fact and reconstruct the geometric background
from it as a secondary moment. In one word, we can substitute a “functional” tran-
scendental aesthetics to a purely geometrical one.

4.4 Towards Noncommutative Geomelry

In Quantum Mechanics, the basic structure is that of the roncommutative C*-
algebras 4 of observables. In Petitot (1992a) I suggested that “phoronomy” operates
at this level. It is challenging and natural to wonder if there could exist a geometric
correlate of this noncommutative algebraic setting. The deepest answer is Connes’
Noncommutative Geometry (NCG) also called Spectral Geometry or Quantum Ge-
ometry. In NCG the basic structure is the NC C*-algebra 4 of obervables: any
phenomenon is primarily something which is observable in the quantum sense, and
not an event in space-time. But observables must be defined for states and are there-
fore represented in the space of states of the system, which is an Hilbert space and
not the classical space. The associated NC space is then the space of irreducible
representations.

NCG is a fundamentally new step toward a geometrization of physics. Instead
of beginning with classical differential geometry and try to develop Quantum Me-
chanics on this backgrond, it begins with Quantum Mechanics and construct a new
quantum geometrical framework. In that sense, Connes is the Einstein of Quan-
tum Mechanics. The most fascinating aspect of his research program is how he
succeeded in reinterpreting all the basic structures of classical geometry inside
the framework of NC C*-algebras operating on Hilbert spaces. The basic concepts
(with their categorial content) remain almost the same but their mathematical in-
terpretation is significantly complexified, since their classical meaning becomes a
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commutative limit. We meet here a new very deep example of the conceptual trans-
formation of physical theeries through mathematical enlargements, as it is the case
in GR or QM. As explained by Daniel Kastler [NCG]:

Alain Connes’ noncommutative geometry (...) is a systematic quantization of mathematics
parallel to the quantization of physics effected in the twenties. (...) This theory widens the
scope of mathematics in a manner congenial to physics.

5 NCG and Differential Forms

Connes reinterpreted (in an extremely deep and technical way) the six classical
levels:

. Measure theory

. Algebraic topology and topology (K-theory)

. Differentiable structure

. Differential forms and De Rham cohomology

. Fiber bundles, connections, covariant derivations, Yang-Mills theories
Riemannian manifolds and metric structures.

D Lh B b —

Let us take as a first example the reinterpretation of the differential calculus.

5.1 A Universal and Formal Differential Calculus

How can we interpret differential calculus in the new NC paradigm? Connes wanted
first to define derivations D : A — &, that is C-linear maps satisfying the Leibniz rule
{which is the universal formal rule for derivations);

D(ab) = (Da)b +a(Db)

For that, £ must be endowed with a structure of .A-bimodule (right and left products
of elements of £ by elementis of 4). It is evident that D(c) = 0 for every scalare € C
since D(1.a) = D{1)a+ 1D{a) = D(a) and therefore D{1) = 0.

Let Der(.A, &) be the C-vector space of such derivations. In Der{A, £) there exist
very particular elements, the inner derivatives, associated with the elements m of £,
which express the difference between the right and left .A-module structures of £:

D(a) := ad(m)(a) = ma —am.
Indeed,

ad(m)(a).b+ a.ad(m)(b) = (ma—am)b + a{mb — bm)
= mab — abm
= ad(m)(ab).
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Inthe case where £ = A, ad(b)(a) = [b, a] expresses the non commutativity of A.
By the way, Der(A, A) is a Lie algebra since [Dy, D] is a derivation if Dy, D, are
derivations.

Now, the fact must be stressed that there exists a universal derivation depending
only upon the algebraic structure of A, and having therefore absolutely nothing to
do with the classical “infinitesimal” intuitions underlying the classical concepts of
differential and derivation. It is given by

d: A— A8cA
a—da=1Qa—a®1l.

Let Q! A be the sub-bimodule of ARcA generated by the elements adb '= g ®
b—ab@1, i.e. the kernel of the multiplication a ® b -+ ab.* Q' A is isomorphic to
the tensorial product A® 4.4, where A is the quotient A/C, with adb = a®b. It is
called the bimodule of universal 1-forms on A where “universality” means that

Der{A,€) ~ Hom 4 (QIA,S)

Le. that a derivation D : A — £ is the same thing as a morphism of algebras between
S}‘A and £, If D: A — & is an element of Der(A,£), the associated morphism
D: Q' A — & is defined by

a® b aD(b).
Soda=1®a—a® 1 1.D(a)—a.D{1) = D(a) (since D(1) = 0).

We can generalize this construction to universal n-forms, which have the sym-
bolic form?

apday...day.

IF QP A = (QLAY®" = A9 4 (A)®" with agday...day = ay @TT® ... @7, the dif-
ferential is then

d:0m4 —>.Q”+1.A
apday...day — dagda, .day
ARV .00 — 1{@RATR...Qa, .

Since dl =0, it is easy to verify the fundamental cohomological property d% = 0
of the graduate differential algebra QA := P,y Q"A. Some technical difficulties

must be overcome (existence of “junk” forms) to transform this framework into a
“good” formal differential calcuius.

“Fora@b—ab® | the multiplication gives ab — ab = 0. Reciprocally if ab = 0} then a® b =
a®b—ab®1and a® b belongs to Q! A,

3 day...da, is the exterior product of 1-forms, classically denoted da; A ... Ada,,.
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5.2 Noncommutative Differential Calculus or “‘Quantized”
Calculus

Connes wanted to represent this universal differential algebra in spaces of physical
states. Let us suppose therefore that the C*-algebra A acts upon an Hilbert space
H and we want to interpret in this representation the universal, formal, and purely
symbolic differential calculus of the previous section. For that, we must interpret the
differential df of the elements f € A, these f being now represented as operators
on H. Connes’ main idea was to use the well-known formula of QM

RN
dt =k
where F' is the Hamiltonian of the system and f any obervable.
Consequently, he interpreted the symbol 4f as ~

df :=[F,f]

for an appropriate self-adjoint operator . We want of course d*f =0, Butd*f =
[F2,f] and therefore F2 must commute with all observables.

The main constraint is that, once interpreted in #, the symbol df must cor-
respond to an infinitesimal. The classical concept of infinitesimal ought to be
reinterpreted in the NC framework. Connes’ definition is that an operator T is in-
finitesimal if it is compact, that is if the eigenvalues 1, (T) of its absolute value
|T| = (T”‘T}l/ 2 _ called the characteristic values of T ~ converge to 0, that is if
for every € > 0 the norm ||T|| of T is < € outside a subspace of finife dimension.
If 1, (T) = 0 as = then 7 is an infinitesimal of order & (e not necessarily an

7,1

integer).
If T is compact, let &, be a complete orthonormal basis of H associated to T,
T = U|T| the polar decomposition of T° and 7, = U&,. Then T is the sum

1= Z .Un(T)mn> (&nl -

n=0

If T is a positive infinitesimal of order 1, its trace Trace (T) = ¥, ta(7T) has a
logatithmic divergence. If 7 is of order >1, its trace is finite > 0. It is the basis for
NC integration which uses the Dixmier trace, a technical tool for constructing a new
trace extracting the logarithmic divergence of the classical trace. Dixmier trace is a
technical way for giving a sense to the formula ',\llﬂﬁ Y2281 1, (7). Tt vanishes
for infinitesimals of order >1.

Therefore, we interpret the differential calculus in the NC framework through
triples {A,H, F) where [F, f] is compact for every f € A. Such a structure is called
a Fredholm module.

& The polar decomposition T = U |T| is the equivalent for operators of the decomposition z = |z| '
for a complex number. In general U cannot be unitary but only a partial isometry.
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The differential forms agda, ...da, can now be interpreted as operators on H
apda)...da, 1= ag [F,a1] ... [F, a,]

and we see how the second transcendental moment of physical objectivity, namely
that of “dynamics”, becomes interpreted in the NC framework.
It must be emphasized that the NC generalization of differential calculus is a

wide and wild generalization since it enables us to extend differential calculus to
fractals!

6 NC Riemannian Geometry, Clifford Algebras,
and Dirac Operator

Another great achievement of Alain Connes was the complete and deep reinterpre-
tation of the ds® in Riemannian geometry. Classically, ds? = gyvdx*dx”. In the NC
framework, dx must be interpreted as dx = [F,x] (where {A, H,F) is a Fredholm
module), and the matrix (gyv) as an element of the n x n matrix algebra M, (A).
The ds® must therefore become a compact and positive operator of the form

G = [F, 2] guv[F,x"].

6.1 A Redefinition of Distance

Connes’ idea is to reinterpret the classical definition of distance d(p, g) between two
points p,¢ of a Riemannian manifold M as the Inf of the length L{y) of the paths
15 et )

d(p,q) = Inf L(Y)
Yp—y

q I
L(y) :-_/ ds:f!(g#vdx“dx")}/z.
P P

Using the equivalence between a point x of M and the pure state 8, on the commuta-
tive C*-algebra A 1= C (M), an elementary computation shows that this definition
of the distance is equivalent to the dual algebraic definition using only concepts
concerning the C*-algebra .A

d(p,q) = Sup{|f(q)— f(p)| : lgrad(f)fl.. < 1}

where ||...||., is the L™ norm, that is the Sup on x € M of the norms on the tangent
spaces T.M.”

TLety:I=1[0,1] — MbeaC curve in M from p to g. L(y) = Sy de = Jaglr) ) P ar.
If f e C*(M), using the duality between df and gradf induced by the metric, we find
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6.2 Clifford Algebras

Now the core of the NC definition of distance uses the Dirac operator. In order
to explain this key point, which makes distance a quantum concept, the so called
Clifford algebra of a Riemannian manifold must be introduced.

Recall that the formalism of Clifford algebras relates the differential forms and
the metric on Riemannian manifolds. In the classical case of the Euclidean space
R”, the main idea is Lo encode the isometries G(n) in an algebra structure. Since
every isometry is a product of reflections (Cartan), we can associate to any vector
v € R” the reflection ¥ relative to the orthogonal hyperplane v and introduce a
multiplication v.w which is nothing else than the composition ¥oW. We are then
naturally led to the anti-commutation relations

{v.w}i=vwtwy=-2(vw)

where (v, w) is the Euclidean scalar product,

More generally, let V be a R-vector space endowed with a quadratic form g. Its
Clifford algebra CI(V,g) is its tensor algebra 7 (V) = @{=5V* quotiented by the
relations

v@v=—g(nl, WweV

(where g(v) = g(1v) = ||v]|). In CI(V,g) the tensorial product v® v becomes a
product v.v = v, It must be stressed that there exists always in CI{V, g) the constants
R which correspond to the Oth tensorial power of V.

Using the scalar product

2g(v,w) = g(v+w) —g(v) —g{w)
one gets the anti-commutation relations
{nw}=—2g(v,w)

Elementary examples are given by the Cl, = CI(R”, 2 gyotia)-

e Clh=R

e Cl, =C(V=iR,=—1,Cl = RaiR)

o Clh=H(V =iR+/R, ij =k Clh = RGIREGRBAR)
¢ Chh=HeMH

o Cly = H[2] (2 x 2 matrices with entries in H)

o Cl; =C[4]

1la) = 1(p) = Ji iy (7)) dt = Ji gy (8radyyf, 7)) . This shows that |f(g) - f(p)]| <

1 [eradyn 1| 101 < gradsl. (). Therefore, i |[grad()l., < 1 we have |f(g) ~ f(p)] <
d(p,q). When we take the Sup we retreive d(p, q) using the special function f,(x) = d(p,x) since
[fp(@) = fo(o)l = d(p, ).

i R e i g .

i
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e Cls=R[g]
¢ Ch =R[B| DR[8]
o Clpig = Cl, ®R[16] (Bott periodicity theorem)

If g(v) # 0 (which would always be the case for v # 0 if g is non degenerate) v
is invertible in this algebra structure and

LA
g(v)’
‘The multiplicative Lie group CI*(V,g) of the invertible elements of Cl(V,g) act
through inner automorphisms on CI(V,g). This yields the adjoint representation

Ad: CI*(V,g) — Aut(CI(V,g))
vi— Ad, cw — vyl

But®
vy L = —w+ M
8(v)

As —Ad, is the reflection relative to v+, this means that reflections act through the
adjoint representation of the Clifford algebra. The derivative ad of the adjoint repre-
sentation enables to recover the Lie bracket of the Lie algebra c/* (V,g) =CI(V,g)
of the Lie group CI*(V, g)

= Ad,(w).

ad : cl*(V,g) = Cl(V,g) — Der(CI{V,g))
v oady tw e [y, w]

Now there exists a fundamental relation between the Clifford algebra CI(V,g) of
V and its exterior algebra A*V, If g = 0 and if we interpret v.w as v A w, the anti-
commutation relations become simply {v, w} = 0, that is the classical antisymmetry
wAv = —y Aw of differential 1-forms. Therefore

AV = CI(V,0),

In fact, CI(V,g) can be considered as a way of quantizing AV using the metric g
in order to get non trivial anti-commutation relations.

Due to the relations v2 = —g(v)1 which decrease the degree of a product by
2, Cl(V,g) is no longer a Z-graded algebra but only a Z/2-graded algebra, the
Z/2-gradation corresponding to the even/odd elements. But we can reconstruct a

k=co

Z-graded algebra C = @ C* associated to Cl(V,g), the C* being the homogeneous
k=0

terms of degree k: vy. -+ .y,

8 1

et o =0l 2 gl 2g(v,
Wt {(—wv—2g(v,w)) g(‘;) = W'I;TU+ E(\’; L= w4 ggg)v.

[ATA
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Theorem. The map of graded algebras C = @ Ck — AV = @ ) Ak given by
k=0
Vi.ooo Vg > VA Avg is a linear isomorphism (but not an algebra 1som0rphlsm)

We consider now 2 operations on the exterior algebra A*V:

I. The outer multiplication g(v) by v € V:

()0

We have £(v)? = 0 since vA v = 0.
2. The contraction (inner multiplication) 1(v) induced by the metric g:°

(/\u,) Z (=) glvu;y g Ao AT Ay

We have also 1(v)? = 0. The inner multiplication 1(v) is a supplementary struc-
ture involving the metric structure.

One shows that the following anti-commutations relations obtain:

{S(V)a I(W)} == “g(vsw)l z

Let now c(v)
algebra

= £(v) +1(v). We get the anti-commutation relations of the Clifford

{e(v),e(w)} = —2g(v,w)1
and Ci{V, g) is therefore generated in Endg (A*V) by the c{v) (identified with v).

6.3 Spin Groups

The isometry group O(n) is canonically embedded in CI(V, g) since every isometry
is a product of reflections. In fact Ci(V, g) contains also the pin group Pin{n) which
is a twofold covering of O(n). If we take into account the orientation and restrict to
SO(n), the twofold covering becomes the spin group Spin(n). Spin(n) is generated
by the even products of v s.t. g{v) = £1, SO(n) is generated by even products of
—Ad, and the covering Spin{r) — SO(n} is given by v — —Ad,. By restriction of
the Clitford multiplication and of the adjoint representation w — v.w.v~! to Spin(n),
we get therefore a representation y of Spin(a) into the spinor space S = CI(V, g).

9 1n the following formula it; means that the term u; is deleted.

Sk

N i B A o Ay ool e

B
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6.4 Dirac Equation

We can use the Clifford algebra, and therefore the metric, to change the classical
exterior derivative of differential forms given by

d

We then define the Dirac operator on spinor fields R” — S as

I :c(dx'”)gﬁ

=iy axf"

where ¢ is the Clifford multiplication, and D acts on the spinor space § = CI(V, g).
As {c(v),c(w)} = —2g(v,w)1, the ¥* satisfy standard Dirac relations of anticom-
mutation {y*, 7"} = —28*" in the Euclidean case.'” On can check that D? = A is
the Laplacian,

6.5 Dirac Operator

More generally, if M is a Riemannian manifold, the previous construction can be
done for every tangent space 7,M endowed with the quadratic form g,. In this way
we get a bundle of Clifford algebras CI(TM, g). If S is a spinor bundle, that is a bun-
dle of CI(TM) -modules s.t. CH{TM) ~ End(S), endowed with a covariant derivative
V, we associate to it the Dirac operator

D:8=T(S)=C"(M,S) — I(S)

which is a first order elliptic operator interpretable as the “square root” of the Lapla-
cian A, A interpreting itself the metric in operatorial terms. The Dirac operator D
establishes a coupling between the covariant derivation on § and the Clifford mul-
tiplication of 1-forms. It can be extended from the C**(M)-module S = I'(S) to the
Hilbert space H = L*(M, S).

In general, because of chirality, S will be the direct sum of an even and an odd
part, § = ST @S~ and D will have the characteristic form

1¢ The classical Dirac matrices are the —iy* for g =0,1,2,3.
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IS
o= (2 %)
Bt TESH) = E(ST)

B A e 5

DT and D~ being adjoint operators.

6.6 NC Distance and Dirac Operator

In this classical framework, it easy to compute the bracket [D, f] for f € C™(M).
First, there exists on M the Levi-Civita connection:

Q. ol ¥
Vel M) — Q (M)Cw?M)Q (M)

satisfying the Leibniz rule for & € Q' (M) and f € C*(M):
VE(af) = Vé{a)f +a@df
(as V¥(a) € Q'(M) © Q'M), Vé(a)feR' (M) ® Q'(M)andas aand
(M) c=(a)

df e QU M), a@df e Q' (M) ® Q'(M)). There exists also the spin connection
= ()

on the spinor bundle §

SR e Qi(M)Cw?M)F(S)

satisfying the Leibniz rule for y € I(S) and f € C*(M):

Viyf) = V(yf+yedf
V¥ (r(o)w) = ¥(VE(@) Y+ Y0V (Y)
where ¥ is the spin representation. The Dirac operator on 'H = L*(M,S) is then

defined as )
D:=7yoV>,

If y € T'(S), we have (making the f acting on the left in )

D(fv) = v(V*(wr)

=y (V(y)f + v®df)
v(V (W) f+Y{w@df)
D(WH?(df)

A e

P N SN

T S R R T
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and therefore |, f}(w) = fD(w) +y{df) ¥ — fD(y) = y(df) v, that is

[D,fl=7v(df).
In the standard case where M = R" and § = R" x V, V being a Cl,;-module of

spinors (Cl, = Cl(R", gguciig}), we have seen that D is a differential operator with
constant coefficients taking its values in V.

k=n n a
b= e
k;?’ dxH

with the constant matrices ¥* € £({V) satisfying the anti-commutation relations
{#, 7'} = —25t

The fundamental point is that the ¥ are associated with the basic 1-forms dx*
through the isomerphism

c:C=A(M)— gr(CITM))

D, fl=v(df} = cldf)

and ||[D, f]|| is the norm of the Clifford action of df on the space of spinors L2(M, ).
But

le(dp))” = Supgy" (dF(x),df(x))
xeM
= Supg, (grad, f,grad, f)
XeEM
= ||lgrad(£)I% .

Whence the definition:

d(p,q) = Sup{|f(p) - f(@)|: F € A D, fl £ 1} .

In this reinterpretation, ds corresponds to the propagator of the Dirac opera-
tor D. As an operator acting on the Hilbert space 7, D is an unbounded self-adjoint
operator such that [D, f] is bounded Vf € 4 and such that its resolvent (D — A1)~
is compact VA & Sp(D) (which corresponds to the fact that ds is infinitesimal) and
the trace Trace (e*“z) is finite. In terms of the operator G = [F,x*]*g,, [F,x"], we
have G = D2,
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7 Noncommutative Spectral Geometry

Basing himself on several examples, Alain Connes arrived at the following concept
of NC geometry.

In the classical commutative case, A = C™{M) is the commutative algebra of
“coordinates” on M represented in the Hilbert space H = 12(M,S) by pointwise
multiplication“ and ds is a symbol non commuting with the f € A and satisfying
the commutation relations [[f, a's*‘] ,g] ={0,¥f,gc A

Any specific geometry is defined through the representation ds = D~! of ds by
means of a Dirac operator D = y*V ;. The differential df = [D, f] is then the Clifford
multiplication by the gradient V£ and its norm in H is the Lipschitz norm of f:
12,11l = 4z 911,

These results can be taken as a definition in the general case. The geometry is
defined by a spectral triple (A, H, D) where A is a NC C*-algebra with a represen-
tation in an Hilbert H and D is an unbounded self-adjoint operator on H such that
ds = D~! and more generally the resolvent (D — A1)~!, & ¢ R, is compact, and at
the same time all [D, a] are bounded Va € A (there is a tension between these two

last conditions).'? As Connes (2000) emphasizes

It is precisely this lack of commutativity between the line element and the coordinates on a
space [between ds and the a € \A] that will provide the measurement of distance.

The new definition of differentials are then da = [D,a| Va € A.

8 Yang-Mills Theory of a NC Coupling Between Two Points
and Higgs Mechanism

A striking example of pure NC physics is given by Connes’ interpretation of the
Higgs phenomenon. In the Standard Model, the Higgs mechanism was an ad hoc
device used for confering a mass to gauge bosons. It lacked any geometrical inter-
pretation. One of the deepest achievement of the NC framework has been to show
that Higgs fields correspond effectively to gauge bosons, but for a discrete NC ge-
ometry.

8.1 Symmetry Breaking and Classical Higgs Mechanism

Let us first recall the classical Higgs mechanism. Consider e.g. a ¢* theory for two
scalar real fields ¢ and ¢,. The Lagrangian is

Iff e Aand £ € H, (F€) (x) = FNER).
12 et A, be the eigenvalues of D (A, & R since D is self-adjoint). |As| = tin (D) and as (D — M)fl
is compact, |A,| e

SEEE e
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1
= (Pu@10" 1+ 9 p20" @) —V (9 +3)

with the quartic potential

V(g2 +93) = —u 2 (g2 + 92) + Ir‘tl (07 +@3)’

It is by construction SO(2)-invariant.
For t? > 0 the minimum of V {(the quantum vacuum) is non degenerate: ¢y =

(0,0) and the Lagrangian L, of small oscillations in the neighborhood of @p is the
sum of 2 Lagrangians of the form:

1 1
Loy = 5 (au yot W) = 5#2‘#’2

describing particles of mass 2.

But for 42 < 0 the situation becomes completely different. Indeed the potential
V has a full circle (an SQ(2)-orbit) of minima

and the vacuum state is highly degenerate.
One must therefore break the symmetry to choose a vacuum state, Let us take for

. 1% g .
mstance @p = [O] and translate the situation to @q:

41 v &
o=[al=Lo]+ 3]
The oscillation Lagrangian at ¢y becomes

1
[:().s = 5 (Qpna‘“n '1"2}1, n ) +§ (aﬂéaﬁ’é)

and describes two particles:

1. A particle 7} of mass m = /2|1, which corresponds to radial oscillations.
2. A particule § of mass m = 0, which connects vacuum states. £ is the Goldstone
boson.

As is well known, the Higgs mechanism consists in using a cooperation between
gauge bosons and Goldstone bosons to confer a mass to gauge bosons. Let ¢ =
\/* (@1 +igy) be the scalar complex field associated to ¢ and @, Its Lagrangian is

=@t o — e~ 1| o|*.
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It is trivially invariant by the global internal symmetry @ — ¢ @. If we localize the
global symmetry using transformations @(x) — €“*® o(x) and take into account
the coupling with an electro-magnetic field deriving from the vector potential A,
we get
e 1
L=V @Ve—ulof" —A]|o]" = J FuyF"

where V is the covariant derivative

and F the force field
ijv = avA'u L a‘uAv.

The Lagrangian remains invariant if we balance the localization of the global inter-
nal symmetry with a change of gauge

Ay _"A:u =Ay Aa'ua(x).

For p? > 0, @y = 0 is a minimum of V (@), the vacuum is non degenerate, and
we get 2 scalar particles @ and P and a photon A,.
For 1 < 0, the vacuum is degenerate and there is a spontaneous symmetry break-

ing. We have |gg|° = ~§‘% = ~2*. If we take @n = ﬁ and write
¢=¢ +q= *"1—(V+7] +if) = —Lej%(v+n) for £ and 1 small

we get for the Lagrangian of oscillations:
; 3 1 2 2
Em=§(8pn8‘n+2u 1 )+ (9u§0"E) — S Fuv P +qvAy (9;L€)+ L7 pat.

1. The field 7 {radial oscillations) has mass m = v/2 |/ .
2. The boson A, acquires a mass due to the term A A* and interacts with the
Goldstone boson &.

The terms containing the gauge boson Ay, and the Goldstone boson & write

s -3

and are therefore generated by the gauge change

§

o = =
qv

A‘u HA'u'i‘aua.
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We see that we can use the gauge transformations
A= Al = Ay + - IE
# # # qv

for fixing the vacuum state. The transformation corresponds to the phase rotation of

the scalar field
14 v+ 1

(P il \/i Y
In this new gauge where the Goldstone boson & disappears, the vector particule
A;L acquires a mass gv. The Lagrangian writes now

Q@ =e

1 v
Loo= 5 (347 +20207) — 2 Fou P2 +q LA

The Goldstone boson connecting the degenerate vacuum states ig in some sense
“captured” by the gauge boson and transformed into mass.

8.2 NC Yang-Mills Theory of Two Points and Higgs Phenomenon

The NC equivalent of this description is the following. It shows that Higgs mecha-
nism is actually the standard Yang-Mills formalism applied to a purely discrete NC
geometry.

Let A=C(Y) = C@C be the C*-algebra of the space ¥ composed of two points

a and b. Its elements f = f E)a) f?b)] act through multiplication on the Hilbert
space H = H, & Hp. We take for Dirac operator an operator of the form
0 M
e [M — o R 0 }

and introduce the “chirality” y = 0 _OIJ (the ¥s of the standard Dirac theory). In

this discrete situation we define df as
0 M
with A f = f(b) — f(a). Therefore

D A1l = |Af| A

where A = ||M|| is the greatest eigenvalue of M.
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If we apply now the formula for the distance, we find:

d(a,b) = Sup{|f(a) - f(b)| : f € A [|[D,f]]| < 1}
= Sup{|f(a) - f(b)]: f € A|f(a) — F(D)IA < 1}
1
0
and we see that the distance —}‘1— between the two points a and b has a spectral content
and is measured by the Dirac operator.

To interpret differential calculus in this context, we consider the two idempotents
(projectors} e and 1 — e defined by

e(a) = l,e(b) =0
(l—ej{a)=0,(1-e)b)=1.

Every f € A writes f = f{a)e+ f(b)(1 —e), and therefore

df = fla)de+ f(b)d(1 —e)
= (f(a) - f(b))de
— —(Af)de
= —(Af)ede+ (Af){1 —e)d(1 —e)

This shows that ede and (1 —e)d(1 — ¢) = —(1 — e)de provide a natural basis of the
space of 1-forms Q' .A. Let

@ = Aede+ u(l —e)d(1—e)
= Aede— {1 —e)de

be a 1-form. @ is represented by

w={(Ae—p{l—e))[Del.

Buton H [D,¢] = — {(1)14 Ag

} and therefore

s 0 —AM*
| —uM 0 ;

Let us now construct the Yang-Mills theory corresponding to this situation. A
vector potential V - a connection in the sense of gauge theories — is a self-adjoint
i-form and has the form

EESESE TR RN

|t o aia i i
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V = —@ede+¢(1 —e)de

_| 0 oM
TleM 0|7
Its curvature is the 2-form
B=dV+VAV

and an easy computation gives

= | —-MM O

The Yang-Mills actiorn is the integral of the curvature 2-form, that is the trace
of 8:
YM(V) = Trace (6%) .

Butas ¢ +9 4 @@ = [go+1i2——1and

: 2
MM 0 3
Trace ({ 0 4MM*} ) = 2Trace ((M*M)")

we get

YM(V) =2 (itp+ i — 1)2Tmce ((M*M)?).

8.3 Higgs Mechanism

This Yang-Mills action manifests a pure Higgs phenomenon of symmetry breaking.
The minimum of YM (V) is reached everywhere on the circle |@ + 1> =1 (degen-
eracy) and the gauge group U = U{1) x U(1) of the unitary elements of A acts on
it by

V — uVu® + udu*

[£81 0
0 uy

The field ¢ is a Higgs bosonic field corresponding to a gauge connection on a
NC space of two points. If ¥ € ‘H represents a fermionic state, the fermionic action
is Ip (Va W) = (W’ (D+V) W) with

where i = { } with ay,uy € U(1).

0 (1+@)M

D+VE{(1+§0)M 0

The complete action coupling the fermion ¥ with the Higgs boson ¢ is therefore

YM(V) +1p (V. ).
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9 The NC Derivation of the Glashow-Weinberg-Salam
Standard Model (Connes-Lott)

A remarkable achievement of this NC approach of Yang-Mills theories is given
by Connes-Lott’s NC derivation of the Glashow-Weinberg-Salam Standard Model.
This derivation was possible because, as was emphasized by Martin et al. (1997,
p. 5), it ties

the properties of continuous spacetime with the intrinsic discreteness stemming from the
chiral structure of the Standard Model.

9.1 Gauge Theory and NCG

It is easy to reinterpret in the NC framework classical gauge theories where M is a
spin manifold, A = C=(M), D is the Dirac operator and H = L2(M, $) is the space of
L? sections of the spinor bundle S. Diff(M) = Aut(A) = Aut (C=(M)) is the relativity
group (the gauge group) of the theory: a diffeomorphism @ € Diff(M) is identified
with the -automorphism o € Aut(A) s.t. & (f) (x) = f (p~' (x)). The main prob-
lem is to reconcile QFT with GR, that is non abelian gauge theories which are non
commutative al the level of their internal space of quantum variables with the geom-
etry of the external space~-time M with its group of diffeomorphism Dif{M). The
NC solution is an extraordinary principled one since it links the standard “inner”
non commutativity of quantum internal degrees of freedom with the new “outer”
non commutativity of the external space.

9.1.1 Inner Automorphisms and Internal Symmetries

The key fact is that, in the NC framework, there exists in Aut{.A) the normal sub-
group Inn(A) of inner automorphisms acting by conjugation a — uau™'. Inn(.A) is
trivial in the commutative case and constitutes one of the main feature of the NC
case. As Alain Connes (1996) emphasized:

Amazingly, in this description the group of gauge transformation of the matter fields arises
spontaneously as a normal subgroup of the generalized diffeomorphism group Auwr(A). It is
the non commutativiry of the algebra A which gives for free the group of gauge transforma-
tions of maiter fields as a {normal)} subgroup of the group of diffeomorphisms.

In Inn(.A) there exists in particular the unitary group U(.A) of unitary elements
u* = u~! acting by o, () = uau®.
9.1.2 Connections and Vector Potentials

In the NC framework we can easily reformulate standard Yang-Mills thecries. For
that we need the concepts of a connection and of a vector potential,

et e
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Let £ be a finite projective {right} .A-module. A connection V on £ is a collection
of morphisms (for every p)

ViERAQP(A) = E@ Q7T (A)

satisfying for every @ € £ @ 4 QOF (4) and every p € Q7(.A) the Leibniz rule in
£ @4 Qerqul (_A)

Viegp)=V(o)ep+(-1)’oodp

where we use Q7T (4) .4 Q9 (A) = QP (A) 24 Qi1 (A).
V is determined by its restriction to Q! (.4)

ViEQAQ (A =E = EQQ (A)

satisfying V (§a) = V(E)a+E@dafor £ € £ anda € A
The curvature 8 of V is given by V2 : £ - £@4 Q% (A). As

Vi(Ea) = V(V(E)a+E& @da)
=V2(E)a—V(E)Rda+V(E)@da+E®d%a
= V?(&)a,

V2 is A-linear. And as € is a projective A-module,
6 = V? € End 4£ @4 9% (A) = M (A) @4 Q% (A)

is a matrix with elements in Q7 (A),
Now, V defines a connection [V, ¢] on End 4&€ by

[V,e]: End & @ 0F (A) — EndAé'@AQPH {A)
o — [V,a]=Voa—aoV

and the curvature 0 satisfies the Bignchi identity [V, 8] = 0.
A vector potential A is a self-adjoint operator interpreting a 1-form

A=} ajlD,b)]
J

and the force is the curvature 2-form

0 = dA+ A%,
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The unitary group L/{A) acts by gauge transformations on A and its 2-form cur-
vature 6

A — wAu" +udu” = uAw® + u|D,u"|
6 — ubu”.

9.2 Axioms for Geometry

There are characteristic properties of classical (commutative) and NC gecmetries
which can be used to axtomatize them.

1. (Classical and NC geometry). ds = D~ is an infinitesimal of order IiE (n is the
dimension)'* and for any a € A integration is given by Trp;. {a|D|™") (which is
well defined and # O since |D|™" is an infinitesimal of order 1). One can normal-
ize the integral dividing by V = Trp, (|D] ).

2. (Classical geometry). Universal commutation relations: [[D,a],b] = 0, Va,b € A.
So (Jones and Moscovici, 1997)

while ds no lenger commutes with the coordinates, the algebra they generate does satisfy
non trivial commutation relations.

3. (Classical and NC geometry). a € A is “smooth” in the sense that & and [D,d]
belong to the intersection of the domains of the functionals 8™ where & (T') =
[ID|,T] for every operator T on H.

4. (Classical geometry). If the dimension n is even there exists a ¥ interpreting a
n-form ¢ € Z, (A, A) associated to orientation and chirality (the ¥ of Dirac), ¥
being of the form ag [D,a;]...[D,a,] and s.t. ¥ = ¥ (self-adjointness), 72 =1,
{7, D} = 0 {anti-commutation relation) and [¥,a] = 0, Va € A (commutation re-
lations). ¥ decomposes D into two parts D = DT + D~ where Dt = (1 — p)Dp
with p = i‘2|_'?! If e is a self-adjoint (e = ¢*) idempotent (¢2 = ¢) of A (i.e. a pro-
jector), eDe is a Fredholm operator from the subspace epH to the subspace
(1 — p)H. This can be extended to the projectors of ¢ € M, (A) defining finite
projective left A-modules € = ANe (if & € & then ¢ = &) with the A-valued
inner product (£,1) = L2V &n*. If n is odd we ask only that there exists such
an n-form c interpreted by 1: ag [D,ay]...[D,a,] = L.

5. (Classical and NC geometry). He.. = [Domain (D'™) is finite and projective as

m
A -module and (a8,n) = Trpia(&,n)ds” ((£,1) being the scalar product of

'3 In the NC framework, ds and dx are completely different sort of entities. dx is the differential of a
coordinate and ds doesn’t commute with it, In the classical case, the order of ds as an infinitesimal

is not lzbut the dimension of M. As we will see later, the Hilbert-Einstein action is the NC integral
of ds"~=.
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‘H and Trp;, the Dixmier trace of infinitesimals of order 1) define an Hermitian
structure on M.

6. (Classical geometry). One can define an index pairing of D with Ky (4) and an

intersection form on Ky (A4, If [€] € Ko (A) is defined by the projector e, we
consider the scalar product {IndD,e} which is an integer. We define therefore
{IndD,e) : Ko (A) — Z. As A is commutative, we can take the multiplication
m: A® A - A given by m(a®b) = ab which induces myg : Ko (A) @ Ko (A) —
Kp (A). Composing with IndD we get the intersection form

{IndD,mg} : Kp(A)®Kp(A)— Z
{e,a) — (IndD,mp(e®aq)).

Poincaré duality: the intersection form is invertible.

7. Real structure (Classical geometry). There exists an anti-linear isometry (charge
conjugation} J : H — H which combines charge conjugation and complex conju-
gation and gives the =-involution by algebraic conjugation: Ja/~! = a* Va € A,
and s.t. J2 = €, JD = ¢'DJ, and Jy = e"yJ with €, €', €' = £1 depending of the
dimension #n mod8:

nl0f1 (2134|5617
g1l 1 |—1{—=1]—=1]=1] 1 |1
gin—=tf1]1}1|=111]1
el —1 1 —1

In the classical case (M smooth compact manifold of dimension n), Connes
proved that these axioms define a unique Riemannian spin geometry whose geodesic
distance and the spin structure are those defined by D. Moreover, the value of the
Dixmier trace Trpids" 2 is the Einstein-Hilbert action functional:

Trpids®™* =cn/ R+/3 ”xzcnf Rdv
M M

i

with dy the volume form dv = \/gd"x and ¢, = ’-’—1-_52(471:)"’31‘(%4— 1)_12[7].
Trpirds”? is well defined and # O since ds is an infinitesimal of order % < 1).
Forn=4,¢4 = %(4;1;)*2[“(3)—122 S

In the NC case the characteristic pr(fsgrties (2), (6), (7) must be modified to take
into account the NC:

TNC . Real structure (NC geometry). In the noncommutative case, the axiom
JaJ=! = g* is transformed into the following axiom saying that the conjugation
by J of the involution defines the opposed multiplication of A. Let 5% = Jp*J !,

then [a,b°] =0, Va,b € A. By means of this real structure, the Hilbert space H

4 Remember that Ko (A) = 71 (GL. (A}) classifies the finite projective .4-modules and that
K (A) = mo (GL.. (A)) is the group of connected components of GL.. {A).
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becomes not only a (left) .A-module through the representation of A into £(H) but
also a A ® A°-module (where A° is the opposed algebra of A4) or a (left-right)
A-bimodule through (a®b°) & = alb™J 1€ or alb = alb*J 1 for every & € H.

2V€ The universal commutation relations [[D, f],g] =0, Vf, g € A become in the
NC case [[D,q],b°] =0, Va,b € A (which is equivalent to [[D, 5°] ,a] =0, Va,b € A
since @ and b° commute by 7V¢).

6"C. K-theory can be easily generalized to the NC case. We consider finite
projective A-modules &, that is direct factors of free .A-modules A, They are char-
acterized by a projection 7 ; AY — & admitting a section 5: £ — AY (mos = Ide).
Ky (A) classifies them. The structure of A4 @ A°-module induced by the real struc-
ture J allows to define the intersection form by (e,a) — (IndD,e® a°} with e ® a°
considered as an element of Ko { 4A® .A°).

One of the fundamental aspects of the NC case is that inner automorphisms
0y (a) = uau™, u € U (A) act upon the Dirac operator D via NC gauge connections
{(vector potentials) A

D = D+A+JAT ! with
A =ulD,u¥] .

the equivalence between D and D being given by D=UDU ! withU = uus~! =
()",

9.3 The Crucial Discovery of a Structural Link Between
“External” Metric and “Internal” Gauge Transformations

One can generalize these transformations of metrics to gauge connections 4 of the
form A = ¥, a; [D, b;] which can be interpreted as internal perturbations of the metric
or as internal fluctuations of the spectral geometry induced by the internal degrees of
freedom of gauge transformations. This coupling between metric and gauge trans-
formations is what is needed for coupling graviry with QFT. In the commutative
case, this coupling vanishes since U = uu* = 1 and therefore D = D. The vanishing
A+JAJ™! = 0 comes from the fact that A is self-adjoint and that, due to its special
form A = a[D, b], we have JAJ~! = —A*, Indeed, since (D, 5] = — [D,b]"

JAT™ = Ja[D,b]J™" = Jas "\ I[D, 61U = a* [D, "]
= gt (DA — = (a[Db])" = —A*

So the coupling between the “external” metric afforded by the Dirac operator and
the internal quantum degrees of freedom is a purely NC effect which constitutes a
breakthrough for the unification of GR and QFT in a “good” theory of Quantum
Gravity (QG).

R
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9.4 Generating the Standard Model (Connes-Lott)

Before concluding this paper with some remarks on QG, let us recall that the first
main interest of NC geometry in physics was generated by the possibility of cou-
pling classical gauge theories with purely NC such theories. This led to the NC
interpretation of Higgs fields. Connes’ main result is:

Connes’ theorem. The Glashow-Weinberg-Salam Standard Model (SM) can be en-
tirely reconstructed from the NC C*-algebra

A=C"(M)®(CoHdM(T))

where the “internal” algebra € & H & M3 (C) has for unitary group the symmetry
group
U(1) x SU(2) » SU(3).

The first step is to construct the toy model which is the product C* (M) @ (Ca C)
of the classical Dirac fermionic model (A;,H1,D1,75) and the previously ex-

plained, purely NC, 2-points model (Aa, Ha, D, y) with Dy = LS[ ﬂ/(l) } :
A= A1 @4
H=H ®H

D=D1®1+¥%BaD.

The second step is to complexify the model and to show thal it enables to derive
the complete GWS Lagrangian,

The key idea is to take the product of a 4-dimensional spin manifold M with a
finite NC geomewy (Ap, Hp,Dr) of dimension 0 where Hy is the Hilbert space
with basis the generations of fermions: quarks, leptons. The particule/antiparticule
duality decomposes Hy into Hyp = Hj @ Hj, each HF decomposes into Hi =
Hi @ Hg (I = lepton and g = quark), and chirality decomposes the M3 (p = par-
ticule) into HfL @ij (L = left, R = right). The four quarks are uz,ug,dy,dp (4 =
up, d = down) with three colours (12 quarks for each generation) and the three lep-
tons are er, Vi, €x, the total being of 2 (12 4+ 3) = 30 fermions for each generation.

The real structure J is given for Hp = H} @ Hy, by J (%) = (g) that is, if
S=Y;Apand N =}; Py,

J (Zj:lip;-i-;ﬂjp_j) - (;ﬂ?pw);i?ﬁf) .
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The action of the internal algebra Ar = C@H & M*(C) is defined '1!'.1 the fol-
lowing way. Let @ = (A,g,m) € Ap, A € C being a complex scalar acting upon

A0 5 ; : ;
C? as the diagonal quaternion ( 0 1—), g = o+ pj € H being a quaternion writ-
a

The element @ = (A,q,m) acts on quarks, independently of color, via aug = Aug,
aiy, = Oy — ﬁd[,, adp = ;LdR, adp, = ﬁu[, -+ Td;, that is as

ten as ( (%_B), j= ( 01 (1)) and m € M>(C) being a 3 x 3 complex matrix.

Iy, (04 —B 00 745 auL*ﬁdL

dr B @ 0o dr - Buy, +0dg
(4,q,m) | =, S T &uk

dr 0 0 04/ \de Ady

(the pair (ug,dg) can be considered as an element of C @ C, while (g, dr) can be
considered as an element of €2). It acts on leptons via aeg = Aeg, aer = Vi + ey,
avy = CEVL—ﬁBL, that is as

€Rr I 0 Q._“ ER IER_
Agm)\ v | =1 0a-B || VL |=|av—Pe
eL 0 @ €L Bvy +Tey,

It acts on anti-particules via af = Al for antileptons and via ag = mg for antiquarks
where m acts upon color.
The internal Dirac operator Dy is given by the matrix of Yukawa coupling Dr =
Yo
0Y
fermions) with

where Y = (¥, ® 13) @Y (the ®13 comes from the three generations of

ur, dL Ug dR
Uy, 0 0 M, O
Y,=d. | 0 0 0 My
Ug M;: 0 0 0

de \o0 M D 0

and
ex Vi ép
eR 0 0 M[
S
ef, M,* 0 0

where (Connes, 1996) M,,, My, and M; are matrices “which encode both the masses
of the Fermions and their mixing properties”.

SRR e ]
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Chirality is given by Y- {pr) = pr and ¥r (p1) = —pz (p being any particule or
anti-particule).

Connes and Lott then take the product of this internal model of the fermionic
sector with a classical gauge model for the bosonic sector:

A=C"(M)QAp = (C(M)@C) & (C” (M) H) @ (C (M) @ M°(C))
H=L*(MS)@Hr = L*(M,S®@Hy)
D=(Dy®1)®(%®D).

The extraordinary “tour de force” is that this model, which is rather simple at
the conceptual level (a product of two models, respectively fermionic and bosonic,
which takes into account only the known fundamental properties of these two
sectors), is in fact exiremely complex and generates SM in a principled way. Com-
putations are very intricate (see Kastler papers in the bibliography). One has to
compute first vector potentials of the form A = };4;[D,4]], a;,d; € A which in-
duce fluctuations of the metric. As D is a sum of two terms, it is also the case
for A. Its discrete part comes from ¥ ® Dy and generates the Higgs bosons. Let
a; (x) = (A (x),¢; (x) ,m; (x)). The term ¥ a; [y5s ® Dp, a]] yields ys tensored by ma-
trices of the form:

e Quark sector:

0 0 MyQr M@
0 0 M,z M;pr
Myo, Mg, 0 0
~Mig, Mgl 0 0
with
¢ =LA (0 —4)
= Ei;{‘iﬁ;

@ = Ziai(;ti’“af)"i“ﬁiﬁ_{
0, =Y B (I’*E,’) — o3

s Lepton sector:
0 -M;® M;¢1
M;(pi 0 0
Mie; 0 0

Let g = @ + @/ and ¢’ = @] + @} be the quaternionic fields so defined. As
A = A", we have ' = ¢". The H-valued field g(x) is the Higgs doublet.

The second part of the vector potential A comes from Dy, ® 1 and generates the
gauge bosons. The terms }; a; [Dy ® 1,a]] yield

s The U(1) gauge field A = ¥; LidA/.

e The SU(2) gauge field Q = ¥, gidq].
» The U(3) gauge field V = ¥; m;dml.
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The computation of the fluctuations of the metric A +JAJ ™! gives:

e Quark sector:

iy dL Up dR
L [ Cula+V  Qnls 0 0
dr ils  Omlz+V 0 0
e 0 0 Alz+V 0
dg 0] 0 0 ~Al34+V

which is a 12 x 12 matrix since V s 3 x 3.

¢ Lepton sector:
€r v er,
4] —2A 0] 0]
VL 0 QOu-A QOnp
er 0 O  QPn-—A

One can suppose moreover that TraceV = A, thatis V = v+ %A with V' race-
less, which gives the correct hypercharges.
The crowning of the computation is that the total (bosenic + fermionic) action

Trpix0%ds® + {((D+A+JAI ™ Y w,y) = YM (A)+ (Daw, )

(where 8 = dA + A? is the curvature of the connection A) enables to derive the
complete GWS Lagrangian

L=Lo+Ly+ Lo+ Ly +Ly.

1. L is the Lagrangian of the gauge bosons

1 1
£‘G = Z (G'(LVGG#V) '“l" Z (FﬁvF”v)
Guva = a,qua i avW;.ta + gEape Wi W,
with Wy, a SU(2) gauge field (weakisospin)
Fuv = a}J.BV = a\}BM, with B# a SU(I) gauge field.

2. Ly is the fermionic kinetic term

e i S
Lr=—Y i (3;1 + 18— Wisa + 1&”—5%) Jot

L /Y
ﬁW(%+@§%)h

with fr, = [:‘L] left fermion fields of hypercharge ¥;, = —1 and fr = (eg) right
L

fermion fields of hypercharge Yp = —2.

i
)
i
:
i
i
; 3
3
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3. Ly is the Higgs kinetic term

T, ! 2
Oy i (ay +ig 2 Wia +i%3ﬂ) ¢

with ¢ = H;;] a SU(2) pair of scalar complex fields of hypercharge Yy = 1.

4, Ly is a Yukawa coupling between the Higgs fields and the fermions

Ly ==Y (Hyy (Fo0) fit Hip B (97-12))

where Hp is a coupling matrix.
5. Ly is the Lagrangian of the self-interaction of the Higgs fields

Ly =y* (T o) — %/1 (q)*cp)2 with A > 0.

10 Quantum Gravity, Fluctuating Background Geometry,
and Spectral Invariance (Connes-Chamseddine)

10.1 Quantum Field Theory and General Relativity

As we have already emphasized, Alain Connes realized a new breakthrough in
Quantum Gravity by coupling such models with General Relativity. In NCG, QG
can be thought of in a principled way because it becomes possible to introduce in
the model of QFT the gravitational Einstein-Hilbert action as a direct consequence
of the specific invariance of spectral geometry, namely spectral invariance. As Alain
Connes (1996) explains:

However this [the previous NC deduction of the SM] requires the definition of the curva-
ture and is sill in the spirit of gauge theories. {...) One should consider the internal gauge
symmetries as part of the diffeomorphism group of the non commutative geometry, and
the gauge bosons as the internal fluctuations of the metric. It follows then that the action
functional should be of a purely gravitational nature, We state the principle of spectral in-
variance, stronger than the invariance under diffeomorphisms, which requires that the action
functional only depends on the spectral properties of D = ds~! in H.

The general strategy for coupling a Yang-Mills-Higgs gauge theory with the
Einstein-Hilbert action is to find a C*-algebra A s.t. the normal subgroup Inn(.A)
of inner automorphisms is the gauge group and the quotient group Our(A) =
Aut(A)/Inn{A) of “external” automorphisms plays the role of Diff(M) in a grav-
itational theory. Indeed, in the classical setting we have principal bundles P — M
with a structural group G acting upon the fibers and an exact sequence
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1d — G — Aut(P) — Diff(M) — Id

where § = C* (M, G) is the gauge group. The non abelian character of these gauge
theories comes solely from the non commutativity of the group of infernal symme-
tries G. The total symmetry group Aut (P) of the theory is the semidirect product ®
of DYF(M) and G = C* (M, G). If we want to geometrize the theory completely, we
would have to find a generalized space X s.t. Aut (X} = &.

If such a space would exist, then we would have some chance to actually geometrize com-
pletely the theory, namely to be able to say that it’s pure gravity on the space X. (Connes,
2000y

But this is impossible if X is a manifold since a theorem of John Mather proves
that in that case the group Diff{X) would be simple (without normal subgroup)
and could’ nt therefore be a semidirect product. But it is possible with a NC space
(A, H,D). For then (Iochum et al., 1996)

the metric ‘fluctuates’, that is, it picks up additional degrees of freedom from the internal
space, the Yang-Mills connection and the Higgs scalar, (...} In physicist’s language, the
spectral triplet is the Dirac action of a multiplet of dynamical fermions in a backgreund
field, This background field is a fluctuating metric, consisting of so far adynamical bosons
of spin 0,1 and 2.

If we find a NC geometry A with Inn(A) ~ G, a correct spectral triple and apply
the spectral action, then gravity will correspond to Out(A) = Aut(A)/Inn(A). As
was emphasized by Martin et al. (1997);

The strength of Connes’ conception is that gauge theories are thereby deeply connected
to the underlying geometry, on the same footing as gravity. The distinction between
gravitational and gauge theories boils down to the difference between outer and inner auto-
morphisms.

Jones and Moscovici (1997) add that this implies that

Connes” speciral approach gains the ability to reach below the Planck scale and attempt to
decipher the fine structure of space—time.

So, just as GR extends the Galilean or Minkowskian invariance into diffeomorphism
invariance, NCG extends both diffeomorphism invariance and gauge invariance into
a farger invariance, the spectral invariance.

The philosophically significant content of the NC point of view musi be em-
phasized. We already saw that in GR the metric of M is no longer a background
structure (but the differentiable structure of M remains a background) while in QFT
the metric of M is still a background structure. In the NC framework the metric is no
longer a background structure, as in GR, but in addition it is a quantum fluctuating
structure.

ol
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10.2 The Spectral Action and the Eigenvalues of the Dirac
Operator as Dynamical Variables for General Relativity

The key device is the bosonic speciral action

e () = (¢ (X))

where A is a cut-off of the order of the inverse of Planck length and ¢ a
smooth approximation of the characteristic function o) of the unit interval.
D? =(Dy &1 + 15 ® Dp)” is computed using Lichnerowicz’ formula D? = A+ LR
As this action counts the number N (A) of eigenvalues of D in the interval [—A, Al
the key idea is, as formulated by Giovanni Landi and Carlo Rovelli (1997),

to consider the eigenvalues of the Dirac operator as dynamical variables for general
relativity.

This formulation highlights the physical and transcendental significance of the
NC framework: since the distance is defined through the Dirac operator D, the
spectral properties of D can be used in order to medify the metric. The eigenvalues
are spectral invariants and are therefore, in the classical case, automatically Diff{M)
invariant,

Thus the general idea is to describe spacetime geometry by giving the eigen-frequencies
of the spinors that can live on that spacetime. {...] The Dirac operator D encodes the full
information about the spacetime geometry in a way usable for describing gravitational dy-
namics. (Landi-Rovelli (1997): the quotation concerns Dy acting on the Hilbert space of
spinor fields on M.)

This crucial point has also been well explained by Steven Carlip (2001, p. 47).
As we have seen in the Introduction, in GR peints of space—time lose any physical
meaning so that GR obervables must be radically non-local. This is the case with
the eingenvalues of D which

provide a nice set of non local, diffeomorphism-invariant obervables,
They yield

the first good candidates for a (nearly) complete set of diffeomorphism-invariant observ-
ables.

Let us look at N (A) for A — oo, N {A) is a step function which encodes a lot of in-
formation and can be written as a sum of a mean value and a ftuctuation (oscillatory)
term N (A) = (N (A}) + Nog: (A) where the oscillatory part Ny (A) is random. The
mean part { (A}) can be computed using a semi-classical approximation and a heat
equation expansion. A wonderful computation shows that for n = 4 the asymptotic
expansion of the spectral action is
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2
Trace (4’ (%)) = A*foao (D) + A fraz (D7) + faas (D7) + O (A7)

where

o fo= a0 (wWudu, fr = jp¢(u)du, f1=0(0)
e a;(D?) = [a; (x,D%)dv (dv = V&d*x)
o ag(x,D?) = —(4—;)5Tmcex(1)

o ay(x,D%) = E#Tracex (;s1—E)

%
a4 (x,D?) = Wﬂacex (5571 ~2r*1 +2R*1 — 60sE + 180E? +30R ], R¥)

R is the curvature tensor of M and R? = Ruvng"”"xﬁ
r is the Ricci tensor of M and ## = ry, r*¥

s i8 the scalar curvature of M

E and Rﬁv come from Lichnerowicz’ formula.

U B e T

Let
E=C"(M,S®Hp)=C"(M,S) @ (u) C™ (M, HF).

The connection on £ is
M= VS ®IdC"°(M,H;r) il ]dC“’(M,S) & VF

and REV is the curvature 2-tensor of this total connection V. If D = ic* V), + ¢ with
oM = 7* ® Idew(ag 34, then D* = A+ E, with

A=—gh (V,Vy ~T§,Va)
E=qsl—5c(R) +ick [Vy, 0] +02
& (RFA) = -1y ®R),y (RF = curvature of V).

The asymptotic expansion of the spectral action is dominated by the first two
terms which identify with the Einstein-Hilbert action with a cosmological term. The
later can be eliminated by a change of ¢@.

11 <Conclusion

We have seen how NCG reformulated on a new basis the mathematical interpretation
of the categories of physical objectivity. Let us summarize its main steps.

1. The primitive fact, namely how phenomena are given, is constituted by the NC
C*-algebra A of observables. What is physically observable and measurable are the
spectral properties of the observables of A interpreted as operators on an Hilbert
space H. Spectral data are physically more primitive than geometrical ones and
physical geometry must be reconstructed from the outset as a spectral geometry.
Classical geomeirical transcendental aesthetics determines the first transcendental
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moment of “Phoronomy”. As was already shown in Petitot (1991a), this was already
converted into a spectral moment in Quantum Mechanics. Now in NCG this moment
becomes a geometrical-spectral moment. We can speak of a “spectral phoronomy”.

2. Differential calculus and infinitesimals, which determine the second transcen-
dental moment, namely that of “Dynamics”, are entirely interpreted anew from the
formula da = [D,q].

3. As in GR. metric is “promoted” from the “Phoronomy” moment (where it acts
as a background structure) to the “Mechanics” moment (where it becomes a physical
field) while, conversely, the “Mechanics” moment is “demoted” to the “Phoronomy”
moment (forces are absorbed in a larger relativity principle). This transcendental
chiasm provides the philosophical interpretation for the elimination of metric as
background structure. In NCG this is expressed by the constitutive role of the Dirac
operator D in the definition of metric. D is a physical operator and in that sense
metric is “physicalized”, But at the same time, differentials are defined by da =
[D, 4] and in the classical case the eigenvalues of D are Diff(M) invariant, that is, the
metric stilf belongs to the moments of “Phoronmy’™ and “Dynamics”.

4, This deep recasting of the mathematical “construction” of transcendental mo-
ments of physical cbjectivity has many important consequences. Let me focus here
on two of them.

1. The possibility of deriving the whole complexity of the Standard Model from an
empirical nucleus via the product of a classical spin geometry with a NC discrete
geometry generating Higgs fields.

2. The possibility of defining a spectral action unifying a QFT 2 la Yang-Mills with
GR via the eigenvalues of the Dirac operator used as dynamical variables for the
metric.

We see that, after having been applied to symplectic mechanics, general relativity,
non-abelian gauge theories and string theories, a correctly generalized and “histori-
cized” transcendentalism is able to support the conceptual breakthrough brought
about by Noncommutative Geometry.

Addendum. In a forthcoming book, Alain Connes, Ali Chamseddine and
Matilde Marcolli show how their previous results can be strongly improved and
yield a derivation of the standard model minimally coupled to gravity (Einstein-
Hiibert action) with massive neutrinos, neutrino mixing, Weinberg angle, and Higgs
mass (of the order of 170 GeV). This new achievement is quite astonishing,
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