15

Unusual Dynamics of
Nonlinear Systems

13.1 PROBLEM: VARIABILITY OF BUG POPULATIONS

The population of insects and the patterns of weather do not appear to follow
any simple laws.! At times they appear stable, at other times they vary
periodically, and at other times they appear chaotic, only to settle down to
something simple again. Your problem is to deduce if a simple law might be
producing such complicated behavior.

13.2 THEORY: NONLINEAR DYNAMICS

In ‘many ways nonlinear dynamics is the glory of computational science. The
- ‘computer helps us solve equations that are otherwise inaccessible, and because
it is rather painless, it encourages exploration. And it works! The computed
solutions have led to the discovery of new phenomena such as solitons, chaos,
and fractals. =
While volumes have been written on nonlinear dynamics, we will spend
only two short chapters studying some simple systems. Nevertheless, you will
uncover unusual properties on your.own, and in the process cannot help but -
getting convinced that simple systems can have very complicated behaviors.
In some cases these complicated behaviors will be chaotic, but unless you

1Other than in Oregon, where storm clouds come to spend their weekends.
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13.3 :
MODEL: NONLINEAR GROWTH, THE LOGISTIC MAP
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13.3.1 The Logistic Map

1 mathematically as the logistic map. It is usually

Equation (13.3) is know
form as an equation for the number of bugs in gen-

written in dimensionless
eration 7 + 1:

Niyx = N; + NAt(N, — N;)N;, (13.4)
— N;(1+NAtN.) |1- L TN (13.5)
ik & 1+ NAtN, | i

We define a dimensionless growth parameter j and a dimensionless population

variable x;:
p & 1+ NALN,, (13.6)
def MNAtL N;
T; = ———‘N-i = 13.7
Ny (13.7)

when the breeding rate A’ = 0, and
1. If the number of bugs born per
~ N;/N,. That is, =; is
Consequently, we

Observe that the growth rate p equals 1
is otherwise expected to be larger than
generation N At is large, then p = MNAtN, and z;

. essentially the fraction of the maximum population N..
consider z values in the range

0<z: <1, (13.8)

where the value z = 0 corresponds to no bugs and = 1 to the maximum

population.
Dressed in these natural variables, the difference equation

the standard form for the logistic map:

Tip1 = pxi(l — T;)- J (13.9)

o map one number in a sequence

(13.5) assumes

In general, a map may use any function f (z) t
to the next: s

- ' ziy1 = f(z:)- (13.10)
1—z). The quadratic dependence of f on

For the logistic map, f(z) = px(
(13.9) on only the one

z makes this a nonlinear map. The dependence. of
variable z makes it a one-dimensional map.

We have developed a discrete model for the bug population and have ex-
pressed it as a difference equation. We will study this equation and see that its
nonlinear dependence on z leads to some unusual behaviors. ‘Similar behav-
iors are found in nonlinear differential equations, as we will see in Chapter 14,
Differential Chaos in Phase ‘Space; Chapter 28, Solitons, the KdeV Equation;

and Chapter 29, Sine-Gordon Solitons.
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fig. 13.1 The insect population z,, versus
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1 period-four cycle; (D) y =

generation number n
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for various growth
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l3.4 THEORY: PROPERTIES OF N‘ONLINEAR MAPS
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3.4.1 Fixed Points
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If we now use the logistic map (13.9) to relate z;41 to z;, we obtain an
algebraic equation to solve

(13.12)

T+ (1 = I*) T

n—1

X Soaln . (13.13)

Ty

The nonzero fixed point . = (1 — 1)/u corresponds to a stable population
with an equilibrium between birth and death that is reached regardless of
the initial population. In contrast, the z. = 0 point is unstable and the
population remains static only as long as no bugs exist; if even a few bugs are
introduced, exponential growth occurs.

Further analysis [Rash 90] tells us that the stability of a population is
determined by the magnitude of the derivative of the mapping function f(z;)
at the fixed point:

df
—] <1 table). 13.14
[E|, <1 (o (13.14)
For the logistics map (13.9) this means that
df _ [w, _ stableatz,=0 if p<1,
dz L = =2, = {2 — 1, stable at z. = E;—l if p < 3. (13.15)

13.4.2 Period Doubling, Attractors

EQuation (13.15) tells us that while the equation for fixed points (13.13) may

be satisfied for all values of u, the points will not be stable if p > 3. For
u > 3, the system’s long-term population bifurcates into two populations
(period doubling). Because the system then acts as if it were attracted now to
two populations, these populations are called attractors or cycle points. We
can easily predict the z values for these two-cycle attractors by requiring that
generation ¢ + 2 have the same population as generation i:

T =T = ani— [,1):1:;+1(1 — Ziy1), (13.16)
TS ey

L e 2" = (13.17)
¢ i D e

We see that as long as p > 3, the sqﬁare root produces a real number and
thus physical solutions (complex or negative z, values are unphysical).

We leave it for your computer explorations to discover how the system
continhies to donble neriods as the value of u eets larger. In all cases the
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13.5 IMPLEMENTATION AND ASSESSMENT: EXPLICIT MAPPING

Program the logistic map to produce a sequence of
a function of the generation number i. These are called map orbits, The
assessment consists of confirmation of Feigenbaum’s observations [Feig 79] of .

the different behavior patterns shown in parts A, B, C, and D of Fig. 13.1. ;
4) and seeq

These occur for growth parameter n = (0.4, 24, 3.2, 3.6, 3.830

population z = 0.75. Notice the following on your graphs of z; versug j-

1. Transients: Each map undergoes a transient behavior before reachihé
a steady state. These transients differ for different seeds. s

2. Asymptotes: In Some cases the steady state is reached after only 270‘ A

generations, while for larger values, hundreds of generations may he 7
needed. These steady-state populations are independent of the seed. ‘= .

3. Extinction:  As shown in Fig. 13.1A, if the growth rate is too low, ==

the population dies off.

4. Stable states: The single-population stable states attained for i < 3 2
agree with the prediction ( 13.13). :

6. Intermittency: Try to find solutions for 3.8264 < i < 3.8304. Here L

the system appears stable for a while but then jumps all around, only
to become stable again. ‘ s

P

7. Chaos:  The chaotic region is critically dependent on the value of ;7
with the z; values obtained critically dependent, on Ig. %

(a) Verify this by running the logistics map with y = 4 and what
should essentially be two identical seeds:

Zo = 0.75, and z = 0.75(1 + ) (13.18)

Here € should be 3 number very close to machine

Precision, for
example; € ~ 2 x 10~ for double Pprecision.

(b) Now repeat the experiment with z, = 0.75 but with what should
essentially be two identica] growth parameters: . e

H=40, and W' =401-¢, (13.19)

population values z; as
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13.7 IMPLEMENTATION: BIFURCATION DIAGRAM, BUGS.F (-C)

You should reproduce Fig. 13.2.3
of this sort would be with a visu
the intensity of each individual point on the screen
which you control the density at each point in your plot by varying the numbe
of pixels plotted.

Notice that your screen resolution may be ~100 dots per inch and yoy

laser printer resolution ~300 dots per inch. This means that you need to plot :
~3000 x 3000 = 10 million elements. But beware for this can take some timj;
to print and enough memory space on your hard disk and printer to choke -

them.

1. Break up the range 1 < # < 4 into a 1000 steps and loop through them:
2. To be complete, loop through a range of z, values as well.

3. Wait at least 200 generations for the transients to die and then print
out the next several hundred values of (1, ) to a file.

4. Print out your z, values to no more than 3—4 decimal places (you will
not be able to resolve more places on your plot). :

5. Sort* your (u, z,) file to remove any duplicate points (this may be a slow
process, but it takes much less time than waiting for a choked printer

6. Plot up your file of z, versus #. Use small symbols for the points and
do not connect them.

7. Enlarge sections of your plot and notice that a similar bifurcation dia-*
gram tends to be contained within portions of the original (self similar-

8. Notice the series of bifurcations at

2

He = 3,3.449,3.544, 3.5644, 3.5688, 3.560602, 3.56080, ... (13.20
The end of this series is chaotic behavior., ;

9. Notice that after the sequence ends, others begin, only to end in chao

again. (The changes are rather quick, and plots with an enlarged x scal
are illuminating.)

10. Close examination of Fig. 13.2 shows regions cohtajning very few popu-
lations (which are not artifacts of the video display). These are windows

i .

3You can listen to a sonification of it on the Web.
4For example, with the Unix command sort ‘u,
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Fig. 13.3 A bifurcation plot for the tent map showing fixed points versus growth rate.

in which a slight increase in the growth rate p ch:ixnges a chaoti;:1 pop;
ulation into one with a finite number of fixed points. Check that a

u = 3.828427 chaos turns into a three-cycle population.

IN: F ?
13.8 EXPLORATION: RANDOM NUMBERS FROM LOGISTIC MAP?

There are claims [P&R 95] that the logistics map in the chaotic region
Tit+1 = 42?-5(1 = .’L‘i), (13.21)

can be used to generate random numbers. While we know tflilta]j: s:cec::fgz
i : if the population for every ~ gen

bug populations are correlated, i e

is gxl::,rri)ined, the correlations die out and random numl.)ers'resulz. To help

make the sequence uniform, a trigonometric transformation is use

%= s cos~ (1 — 2z;)- (13.22)
T

. _ -
Use the random-number tests discussed in Chapter 6, Deterministic Rando
ness, to confirm this claim.

13.9 EXPLORATION: FEIGENBAUM CONSTANTS

_ it was discovered by [Feig 79] that the sequence o.f Lk valmas.(lsi.20})l cczlx}x;earsgz-‘
geometrically when expressed in terms of the variable é, which is the dis
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Table 13.1 Several nonlinear maps to explore

Name . f(=z)

genic Bl —2[z - 1/2))
cology zer(l-=) -

Quartic | pll — (2 - 1)

between bifurcations:

' c
A (13.23

5 = hm Bt
k—oo lig41 — Pk

Use your sequence of p; values to determine the constants in (13.23) iand
compare to those found by Feigenbaum: :

Ihoo = 3.56995, c=~2.637, 0~ 4.6692. (13.25

Amazingly, the value of the Feigenbaum constant § is a universal constant 'fc;
all second order maps.

13.10 EXPLORATION: OTHER MAPS

Only nonlinear systems exhibit unusual behavior like chaos. Yet systems can
be nonlinear in any number of ways. Table 13.1 lists three maps that you may
use to generate z; sequences and bifurcation plots. The tent map is illustrat
in Fig. 13.3, which makes clear the origin of the name.

14

Differential Chaos in
Phase Space

14.1 PROBLEM: A PENDULUM BECOMES CHAOTIC

In Fig. 14.1 we see a realistic pendulum driven through viscous air by an ex-
ternal, sinusoidal force. When the driving force is turned off, the system is
observed to oscillate at the pendulum’s natural frequency wp. When the driv-
ing force is strong, the system is observed to oscillate at the driver’s frequency
w (mode locking). When wp and w are equal, or nearly equal, and the driving
force is not too strong, a slow and periodic variation of the pendulum’s ampli-
tude is observed (beating). As the initial conditions are changed, the motion
gets very complicated and appears chaotic. Your problem is to describe this
behavior with a simple equation of motion, and to determine whether even
the most complicated motion has some simple structure underlying it all.
In Chapter 13, Unusual Dynamics of Nonlinear Systems, we discovered that

a simple nonlinear difference equation yields solutions that may be simple,

‘complicated, or chaotic. . In this chapter we search for similar behavior in

differential equations. We also reveal the beauty and simplicity underlying
chaotic systems by observing their flow in phase space.

"Our study is based on the description given by [Rash 90]. An excellent,
analytic discussion of the related parametric oscillator is given in [L&L 69,
§25-30]. A similar system [G&T 96] has a vibrating pivot—in contrast to our
periodic driving torque. . - T v

+Aq
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Fig. 14.1 A pendulum of length [ driven through air by an external, sinusoidal torque.

The strength of the torque is given by f and that of air resistance by c.

14.2 THEORY AND MODEL: THE CHAOTIC PENDULUM

The basic theoty for the chaotic pendulum is the same as given in our dis-
cussion of the realistic pendulum in Chapter 11, Anharmonic Oscillators.
Newton’s laws of rotational dynamics tell us that the sum of the gravitational
torque 7, the frictional torque Ty, and the external torque 7.,; equals the
moment of inertia of the pendulum times its angular acceleration:
2
T F T Tt — I%. (14.1)

. a
If we assume that the external torque is sinusoidal and that the viscous friction

is proportional to the velocity of the pendulum’s bob, we obtain the nonlinear
differential equation :

_mgl o

Bdf 1 d*e

where [ is the distance to the center of mass and the nonlinearity arises from

the sin#, as opposed to 6, dependence of the gravitational torque.-In a more ,

standard form, (14.2) is

da. db '
i e : = 7 14.3
2 wy sin @ .th + fcos wt,: | (14.3)
where !
wo‘déf ———m}q , o et !i-’ f‘déf ——11) ' (14.4)

ddeh e (142)
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In review, wp is the natural frequency of the syst.:erfl arising from the grav.lta_
tional res’toring force, the o term arises from friction, and the f term arises
from the driving force. - . ;

Equation (14.3) is a second order, time-dependent, nc.mlmear élﬁerfr_m;'ﬂ
equa%ion In the standard form we use to solve differential equations,” it is
the two simultaneous first-order equations:

JO = g @ %95, 88)

(1) :
%T(t) =y, il
dy® @) = -wising®()—ay®(t)+ fcoswt. ()
dt

14.3 THEORY: LIMIT CYCLES AND MODE LOCKING

It is easy to solve (14.6)—(14.7) on the compu.ter. The difficulty is ’Zhazl t};l,e
types of solutions that occur are 80 rich that it is not easy !:0 figure ouhw ihs
gﬁging on. Accordingly, we will examine some simple limiting cases where the
motion is easy to understand. "
When the chaotic pendulum is driven by a weak driving fo.rcej (smal}bviahze
for f) with frequency w equal to the natural frequen(t:‘y wu,Ilt E -poss;e fat i(;
iodi i ith frequency of wp. In this case 1
have a periodic steady-state motion wi ki
il pi lagni the external torque such that after
ossible to ‘pick the magnitude for : :
iP;litia,l transients die off, the average energy put into the s'ysi:,em ;ur'mgt?;i
period exactly balances the average energy dissipated by friction during
period: :

(J;c;aswt) = (afld—i)=(a3—i(0)coswt), (14.8)
- = _f = a%%((]) (14.9)

. This leads to a limiijcycie in which the motion is stable even in the presence
. th‘:-f;“'hat e e e
f)?rre?';?)::eizii?r?;::r:lr g:;illations’ of the:’r ignc}ul:;neir;(rin fgiz sotfeaf,rclizr;t?zskiz

ion is at the iver. This is
3&70;11: IZZ(;: Tot:lfitll':;ezacz ‘;)(f:cfl};ef(()l: 11¥§2ar or nonlinear systems, something un-

Tations
usual occurs for nonlinear systems. We have already seen how the oscillation: ‘

1gee Chapoter 9, Differential Equations and Oscillations.
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of a nonlinear system may contain higher Fourier components (overtones),
This means that under the right conditions, the driving force may lock ontg

the system by exciting its overtones. In this case the driving frequency and - 3

natural frequency are rationally related:

w

; , (14.10)

3=

Wo

where n and m are integers.

14.4 IMPLEMENTATION 1: SOLVE ODE, RK4.F (.C)

Take your solution to the harmonic or anharmonic oscillator and extend it to
(14.6)—(14.7). This means adding velocity and time-dependent terms to the
derivative function subroutine. Make o and f input parameters. Run some
checks before you attack the full problem; namely, verify that -

L. Ifa = f =0, you get the realistic pendulum studied previously.

2.If f=0buta # 0, you get a uniformly decaying solution.

145 ASSESSMENT AND VISUALIZATION: PHASE-SPACE ORBITS

The conventional solution to an equation of motion is the position x(t) and
the velocity v(t) as functions of time. In contrast, it is illuminating to go to
an abstract space, phase space, where the ordinate is the velocity v(2) and the
abscissa is the position z(¢). As we can see in Figs. 14.2-14.6, the solutions

of the equations of motion of classical dynamics form geometric objects -

in phase space. In this way, periodic motion, which is rather complicated to

describe in terms of the time dependence of a position and a velocity, becomes -

recognizable geometric objects. Likewise, chaos, which seems beyond our
descriptive abilities in ordinary space, becomes easily recognized structures
in phase space. , \

Phase-space plots are useful in visualizing the solutions to the equations of

motion. To understand ‘why, we look at the nondriven one-dimensional har-

monic oscillator with no friction. The position and velocity of the oscillating
mass as functions of time are

N

2(t) = Asin(wt), | (14.11)

ol = ZE o poslen), (14.12)

dt
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x(t)

Fig. 14.2 A phase-space plot of velocity versus position for a harmon%c oscillator. Be-
cause the ellipses close, the system must be periodic. The different ellipses correspond

to different energies.

V(x)
N .
W
NN -

Fig. -14.3 (Up;iér) ‘A potential-energy plot for a nonharmonic oscillam_tor; (lower) a
phase-space plot for the same nonharmonic oscillator. The ellipse-like _ﬁg}lres are
neither ellipses nior symmetric with respect to the v axis. The different orbits in phase

space correspond to different energies.
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v(t)

DIFFERENTIAL CHAOQS IN PHASE SPACE

v(t)

e

Fig. 14.4 Two phase-space orbits for oscillators with friction. The system eventually
comes to rest at the origin. The damping is greater for the oscillator on the right.

When we use these solutions to form the total energy, we obtain a constant: -

K@) +V(z) =

E

' P2 A2
2m

Linw? A2,

Equation (14.13) implies that the harmonic oscillator follows closed elliptical
orbits in phase space, with the size of the ellipse increasing with the system’s
energy. Different initial conditions produce the same ellipse if they have the

same energy.

In Figs. 14.2-14.6 we show some typical structures encountered in phasé

space. Some generalities to note are

e For nonharmonic oscillators, the orbits will still be ellipse-like but with
“corners” that become more distinct with increasing nonlinearity.

e Closed trajectories describe periodic oscillations

again and again].

¢ The closed figures in the plots are stable predictable attractors or étable
attractors. A nearby orbit in phase space is attracted to these (which -

means that they are stable).

e Phase-space orbits move clockwise for restoring forces (negative viafter

maximum z).

¢ Open orbits correspond to nonperiodic or “running” motion (a pendu-

lum rotating like a propeller).

cos®(wt) + Lw?m? 42 sin? (wt)

%

x(t)

2 2.2

L m2z

s’ + tw (14.13)
(14.14)

(14.15)

[the same (z,v) éccur

=i
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V() E,

E,
E,

Fig. 14.5 Phase-space trajectories for a particle in a repulsive potfantia.l. Notice the
a,bs.ence of trajectories in the regions forbidden by energy conservation.

e Friction may cause the energy to decrease with time and t%le phase-space
orbit to spiral into the a fized point. However, for certain parameters,
the energy pumped in by the external force exactly balances that lost

by friction and a closed orbit results.

e For given initial conditions, different orbits do not cross because s}?-
lutions are unique. Nonetheless, open orbits', do come together at the
points of unstable equilibrium (hyperbolic points).

14.6 IMPLEMENTATION 2: FREE OSCILLATIONS IN PHASE SPACE

You Iﬁay recall the assessment in §11.10 in which you investigated phgs&ngce
orbits for anharmonic oscillations. That is the best place to start visualizing

the chaotic pendulum.

e ‘ i ‘ i ndulum (@, not sin @, restoring
B 1;1;11:1?1;0311;; ;lllé?gﬁet;h:z-sza;cn;?)?‘ocitgior a varie(ty of initial conditions:
(a) 4(0) =0, df/dt(0) # 0,
(b) 6(0) # 0, df/dt(0) =0,
(c) .6(0) #0, dB/dt(Q) 0
Méke éure that some of the initial conditions correspond to energies
large enough to send the bob over the top (E > 2ml).

2. The phase-space flow should follow closed elliptic orbits. Determine
) whether the motion is clockwise or counterclockwise.
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3. Plot the phase-space orbits for the same initial conditions but this time .

for the realistic pendulum (sin 6 not 6).

4. Deduce how the shapes of the orbits differ as the amplitude of oscillation
becomes larger and larger.

5. Include friction into your model and describe the changes.

14.7 THEORY: CHAOTIC AND RANDOM MOTION IN PHASE
SPACE

Random motion, when viewed in phase space, appears as a diffuse cloud filling
all accessible regions of phase space. Periodic motion appears as smooth
closed curves, ellipse-like in shape. As shown in Fig. 14.7, chaotic motion falls
someplace in between. In particular, if viewed for long times and many initial
conditions, the flow in phase space may contains dark bands rather than lines.

The continuity within a band means that there is a continuum of solutions -

possible, and this is what causes the coordinate space solutions to appear
chaotic. So even though the motion may be chaotic, the definite shape of the
band means that there is a well-defined and simple structure within the chaos.

14.8 IMPLEMENTATION 3: CHAOTIC PENDULUM

The challenge with the computer study of the chaotic pendulum (14.6)—(14.7)
is that the 4-D parameter space is immense. For normal behavior, sweeping
through w should show us resonances and beating; sweeping through a should
show us underdamping, critical damping, and overdamping; sweeping through
f should show us mode locking (at least for certain values of w). These
behaviors can be found here, yet they get mixed together.

. Worse yet, when in the chaotic region, a minuscule change of a parameter
or an initial condition may drastically change the solution. Accordingly, the
exact locations of the characteristic regions in phase space are highly sensitive.
For that reason, we are specific as to what parameters to use in the imple-

mentation to follow. You should not be surprised to require slight variations
to obtain results similar to ours.

1. In this project you will reproduce the phase-space diagrams in Fig. 14.7.
The different behaviors in this figure correspond to the different initial
conditions (from top to bottom): z(0) = —0.0885, v(0) = 0.8; z(0) =
—0.0883, v(0) = 0.8; z(0) = —0.0888, v(0) = 0.8. (The Web tutorials
give animations showing an actual pendulum and sonifcations of these
and ather motions.) ‘
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30 ] :
rotating solutions

20 -

t pendulum
ve) starts

rotating

pendulum
falls
back

20 0.0 20 4.0 6.0
x(t)

] 5 j i lane pendulum including “over the top” or
Fiz. 14.6 Phase-space trajectories forap : . .
rofat'mg solutions. (Although not shown completely, the tra,Jec?o-nes are symmetric
with respect to vertical and horizontal reflections through the origin.)

(a) For this first step, set a = 0.2 and wp = 1. l ; =
i ou may use a larger time step for
: gﬁ)ti?:; Eil?eoranbiils Ss}?;igfl’se}; to sosllve the _diﬂ'erential equations
(a step size h equal to a.pproximately T'/100 is usually go};)d). Plot
[6(t),do/di(t)] for ever-increasing time steps and see where your
plots start losing detail.
(¢) Indicate which part of the orbits are transients.

(d) Correlate phase-space structures with the behavior of 8(t) by plot-
_ting @ versus t on the same page as d@/dt versus 6.
(e) Gain some physical intuition ab.out the flow in phase space by
watching how it builds up with time.

9. For the second part of the study, use the same parameters as in first
part, but now sweep through a range of w values.

(a) Use initial conditions: df/dt(0) = 0.8, and 6(0) = —0.0888.

(b) For w ~ 0'.6873, you should find a perio.d-threi? lir-nit cycle where
the "pendulum jumps between three major orb.1ts in phase space.
(More precisely, there are three dominant Fourier components.)

(c) For w =~ 0.694—0.695, you should find running squti_ons where the
pendulum keeps going over the top. Try to determine how many
vibrations are made before the pendulum rotates.

(d) For w ~ 0.686, you should find chaotic motion in whi-ch the ptat};&i
in phase space become bands of motion and the Fourier sperlc‘r rutb
becomes broad (if you let the solution run long enough). Try
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i t Gy
5-752 1:1;17d L:\ Eh(ﬁ;eézpa'?hgl:;glerﬂ position is #(¢) and the angular velocity is v(t).

in the bottom figure,
The chaotic regions are the dark bands gurg

he chaotic pendulum with wo=1a=02 f=

ASSESSMENT: CHAOTIC STRUCTURE IN PHASE SFPACE 19

determine just how small a difference in w values separates tly
regular and the chaotic behaviors.

(e) Decrease your time step and try to determine how the bandsg gei
filled. Try to distinguish short-term and long-term behaviors i
phase space.

149 ASSESSMENT: CHAOTIC STRUCTURE IN PHASE SPACE

Look at the plots you have produced and idéntify the following characteristic
structures:

I. Limit cycles: ellipse-like figures with frequencies greater than wp.
There may be sporadic changes among the limit cycles.

2. Strange attractors: well-defined, yet complicated semiperiodic be-
haviors that appear to be uncorrelated to the motion at an earlier time,
These are highly sensitive to initial conditions. Even after millions of
observations, the motion remains attracted to these paths.

3. Predictable attractors: well-defined, yet fairly simple periodic be-
haviors that are not particularly sensitive to initial conditions. These
are orbits,-such as fixed points and limit cycles, into which the system
settles. If your location in phase space is near a predictable attractor,
ensuing times will bring you to it.

4. Chaotic paths: regions of phase space that appear as filled-in bands
rather than lines. The continuity within the bands implies some very
complicated 6(t) behaviors, yet the general motion still has some un-
derlying structure. '

1410 ASSESSMENT: FOURIER ANALYSIS OF CHAOTIC PENDULUM

We have seen that a realistic pendulum contains nonlinear terms in the restor-
ing torque that lead to overtones; that is, frequencies other than just the
fundamental. In addition, when a realistic pendulum is driven by an external
sinusoidal force, the pendulum and driver may mode lock, and this leads to
the pendulum moving at a frequency that is rationally related to the driver’s.
Consequently, the behavior of our chaotic pendulum is expected to be a com-
bination of various periodic behaviors, sometimes occurring simultaneously
and sometimies occurring sequentially.

~ In this assessment you will determine the Fourier components present in
the pendulum’s complicated and chaotic behaviors. This should show that a
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“three-cycle structure,” for example, contains three major Fourier compo-
nents. You should also notice that when the pendulum goes over the top, its
spectrum contains a steady-state (“dc”) component.

1. Dust off your program which analyzes a y(t) into Fourier components. :
(Alternatively, you may use a Fourier analysis tool contained in your
graphics program or system library.) '

2. Apply your analyzer to the solution of the forced, damped pendulum for -
the cases where there are one-, three-, and five-cycle structures in phage
space. Deduce the major frequencies contained in these structures. '(’I‘ryL ;
not to analyze the transient behavior.)

3. Try to deduce a relation between the Fourier components, the natural
frequency wo, and the driving frequency w. '

4. A classic signal of chaos is a broadband, although not necessarily flat,
Fourier spectrum. Examine your system for parameters that give chaotic
behavior and verify this statement.

14.11 EXPLORATION: PENDULUM WITH VIBRATING PIVOT

A pendulum with a vibrating pivot point is an example of a parametric reso-
nance. It is similar to our chaotic pendulum ( 14.3), but with the driving force
depending on sin 8:

20 o ,
B g (w§ + f coswt) siné. (14.16)‘
One way of understanding the physics of this equation is to go to the rest
frame of the pivot (an accelerating reference frame) where you would say tha

there is a fictitious force that effectively leads to a sinusoidal variation of go

2
wg -

Analytic [L&L 69, §25-30] as well as numeric [DeJ 92, G&T 96] studies o
this system exist. A fascinating aspect of this system is that the excitation o
its modes of vibration (overtones) occurs through a series of bifurcations. In
fact, when the instantaneous angular velocity df/dt is plotted as a function of :
the strength of the driving force, the bifurcation diagram in Fig. 14.8 results
Although the physics is very different, this behavior is manifestly similar to*
the bifurcation diagram for bug populations studied in Chapter 13, Unusual:
Dynamices of Nonlinear Systems. This behavior is, apparently, the result of -
mode locking and beating with the overtones.
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1
amplitude of driving force

Fig. 14.8 Bifurcation diagram for the damped pendulum with a vibrating pivot. The
ordinate is |d6/dt|, the absolute value of the instantaneous angular velocity at the
beginning of the period of the driver, and the abscissa is the magnitude of the driving
force d. The heavy line results from the overlapping of points, not from connecting
the points. (Produced with the assistance of Melanie Johnson and Hans Kowallik.)

14.117.1 Implementation: Bifurcation Diagram of Pendulum

We obtained the bifurcation diagram of Fig. 14.8 by following these steps (a
modification of those in [DeJ 92]):

1. Set@=0.1,wp =1,w = 2, and let f vary through the range in Fig. 14.8.
9. Use the initial conditions: 6(0) =1 and %(0) = 1.

3. Sample (record) the instantaneous angular velocity ‘;—g whenever the
 driving force passes through zero.

4. Wait 150 periods before sampling to permit transients to die off.
5. Sample %’:— for 150 times and .plot the results.
6. Plot |%| versus I

7. Repeat the procedure for each new value of f.
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Fig. 149 Two phase-space trajectories correspondin
equation. One trajectory approaches the limit cycle
while the other approaches it from the outside.

8 to solutions of the van der Pol
(the dark curve) from the inside,

14.12 FURTHER EXPLORATIONS

&2z dx
=7 T u® - mg)ag +wiz =0. (14.17)

The behavior predicted for these systems is self-limiting because the

equation contains a limit cycle that is also a predictable attractor, You
can think of (14.17) as describing an oscillator with z-dependent damp-
ing (the p term). If z > 2, friction slows the system down; if 2 < z,,

friction speeds the system up. Some phase-space orbits are shown in
Fig. 14.9. The heavy curve i

limit cycle spiral out until they reach the limit cycle;
it spiral in.

2 Duffing oscillator: Her

e we have a nonlinear oscillator that ig damped
and driven,

.
e | opay = Sl

| ) 30(1-6?) LT +fcosc.ut. ! (14.18)
This is similar to the chaotic pendulum we studied, but has some ad- :

vantage in the ease with which the multiple attractor sets can be found.
It has been studied by [M&L 85],

3. Lorenz attractor: In 1962 Loren% was loo

king for a simple model for
weather prediction and simplified the heat-

transport equations to the
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three equations [Tab 89
dz

—_— = 10(y = 3)5 (14.19)
dt

W patEe g, (14.20)
= (14.21)
dz 8 ‘14.
SR = Zy— zZ.

a §—=3 i .

ir i tions gave the complicated
i these simple nonlinear equat :
Ehlf Sc')h;ttl}(:;ltfa.s led to the modern interest in chaos (after considerable
- behavio ‘ i
* doubt regarding the numerical solutions).

4. A 3-D computer fly: Plot, in 3-D space, the equations

z = sinay — zcosbz, (14.22)
’ y = zsiner — cosdy, (14.23)
z = esinz. (14.24)

Here the parameter e controls the degree of randomness.

5. Hénon-Heiles potential: The potential and Hamiltonian

V(z,y) = %:ﬁ + %yz + 2%y — %yg‘, (14.25%
o : 14.26
H = ip+ 204+ V(ny), (
: . ’ ind
sed to describe three astronomical objects interacting. They bin
are u _

.
gl 7

equations

o oy d_gg = —y -2+, (14.27)
—_— T — ] t
t =
8 dz _d_y ul (14.28)
: .Where‘ Ecpm dt —.Py-

] - - . the
(a) Numerically solve for the position [z(t),y(t)] for a particle in
Hénon—Heiles potential. “ G4
(b) Plot [z(2),y(t)] for a number of initial COIldlth.D.S. Check tha
initial con,dition E < % leads to a bounded orbit. ol
(¢) Produce a Poincare section in the (y,p,) plane. Plot (y,p,
time an orbit passes through z = 0.



| Thermodynamic
- Simulations: The Ising

22.1 PROBLEM: HOT MAGNETS

Ferromagnetic materials such as bar magnets contain domains that are mag-
netized even in the absence of an external magnetic field. When an external
magnetic field is applied, the different domains align and the internal fields
become very high. Yet, as the temperature of the ferromagnet is raised, the
magnetism decreases and in some cases a phase transition occurs in which the
-magnetism decreases precipitously. Your problem is to explain the thermal
behavior and the phase transitions of ferromagnets.

We will solve this problem with the quantum mechanical Ising model and
the simulated annealing (Metropolis) algorithm. The model is simple but
contains much physics, and the simulation gives a visualization of thermal
equilibrium that is absent from formal studies. The same algorithm and theory
is used for lattice quantum mechanics, and so the present project should be
completed before attempting Chapter 23, Functional Integration on Quantum
Paths. : ;

222 THEORY: STATISTICAL MECHANICS

When we say that an object is at a temperature T, we mean that the atoms
composing this object are in a state of thermodynamic equilibrium with an
environment at temperature T. While this may be an equilibrium state,
it is also a dynamic state (it is thermodynamics after all). The system’s

297
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energy is continually changing as it exchanges energy with the environment, .
If the system is at temperature T, then its atoms have an average kinetic

energy proportional to T', with larger and larger fluctuations from this average - .

occurring as the temperature increases.
An example of how the equilibrium state changes with temperature is the

annealing process (it’s one we will simulate on the computer). Let’s say that -

we are making a blade for a sword and are hammering away at it while it’s
red hot to get its shape just right. At this high a temperature there is a lot

of internal motion and not the long-range order needed for a stiff blade. So, - :

as part of the process, we anneal the blade; that is, we heat and slow cool
it in order to reduce brittleness and increase strength. Too rapid a cooling

would not permit long-range equilibration (and ordering) of the blade, and

this would lead to brittleness.

In the present problem we deal with the thermal properties of magnetized - -
materials. The magnetism arises from the alignment of the quantum me-

chanical spins of the atoms. The spin of each atom, in turn, arises from its
electrons. When the number of electrons is large, the problem is too difficult
to really solve, and so statistical methods are used to obtain average quantities

(in most cases that is all we can measure, anyway). If the system is described =

microscopically by classical or quantum mechanics, then this method is called
statistical mechanics.

Statistical mechanics starts with the elementary interactions among a sys-
tem’s particles and constructs the macroscopic thermodynamic properties
such as temperature T' and internal energy U. The essential assumption is
that all microscopic configurations of the system consistent with the con-
straints are equally probable. This leads to a distribution for the states of the

system in which state a; with energy E(a;) occurs with a probability given
by the Boltzmann factor:

e—El(c;)/kT
P(Oﬁj) —Z(j_;)——, (221)
Z(T) = ) e BT (22.2) .

Here k is Boltzmann’s constant, T is the temperature, and the partition func-
tion Z(T) is a weighted sum over states.

Notice that the Boltzmann distribution (22.1) does not require a thermal
system to be in the state of lowest energy. Rather, it states that it is less
likely for the system to have a high energy. Of course, as T —0 only the E =0
state has a nonvanishing probability, yet for finite temperatures we expect the
system’s energy to have fluctuation on the order of kT.

Fig. 22.1 A 1- .
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distribution (22.1) does not have a single configuration. Rather, there is a
continual and random interchange of thermal energy with the environment
that leads to fluctuations in the total energy. Even at equilibrium, the system
fluctuates with the fluctuations getting larger as the temperature rises.

22.4 SOLUTION, ANALYTIC

For very large numbers of particles, the thermodynamic properties of the 1-D
Ising model can be calculated analytically: [P&B 89]. This tells us that the

average energy (in J units) is

U i e eJ/KT _ o= J/kT
7 = —Nta.n.hﬁ =-—N'———eJlkT‘+E_J/kT, (229)
N, for kT — 0, : '
= {0, for BT o6 (22:10)
The analytic result for the specific heat per particle is
5
_ e ) (22.11)

C(kT) = —
() NdT — cosh®(J/kT)
While the specific heat for the 1-D model does have a maximum as a func-

tion of temperature, it does not exhibit the characteristic discontinuity of a
the 2-D and 3-D models do). For the 1-D Ising model, the

phase transition (
magnetization is

. (2212)

: JIET
M(ET) = Ne sinh(B/kT') '
' \/ey/"T sinh®(B/kT) + e~2J/kT

22.5 SOLUTION, NUMERICAL: THE METROPOLIS ALGORITHM

-We need an algorithm to evaluate the sums that appear in the partition func-
tion (22.2). This is analogous to a 2"V-dimensional numerical integration, and
we know from §7.13 that a Monte Carlo approach is best for such high di-
mensions. Yet we do not want to generate random configurations uniformly
for a system in thermal equilibrium because the Boltzmann factor essentially
vanishes for those configurations whose energies are not close to the mini-
mum energy. In other words, the vast majority.of the terms we sum over to
determine the thermodynamic properties of the system make hardly any con-
tribution, and it would be quicker to weight the random numbers we generate

such that most of the sum is over large terms. ; '
In their simulation of neufron transmission through matter, Metropolis,
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position

0 200 400 600 800 1000
time

Fig. 22.2 . A 1-D lattice of 100 spins. As indicated by the dark circles, initially all

she sp?nlsr.a,re pointing up (a “cold” start). Magnetic domains are seen to form as the
system -hieats up. ;

{osenﬁ?luph, Teller, and Teller [Metp 53] found an algorithm to improve the
\/Ionte.-.;,Ca,r]o calculation of averages. This Metropolis algorithm has now be-

t proghfces is an example of a Markov chain, and in our case simulates the
luctuations in spin configurations that occur during thermal equilibrium. Al-
hough not simple or particularly illuminating to prove, this algorithm changes
z'n.ldo‘rgly the individual spins in such a way that on the average, the proba-
ility of any one configuration occurring follows a Boltzmann distribution.

Theﬁ_,.Metropolis alggrithm involves two steps. First we start off with an
.nbl_t.l‘a,ry initial condition and repeatedly apply the algorithm until thermal
quilibrium for a specific temperature is reached. For example, in Flg 2229
e have.a.n initially “cold” system, whereas the spins would be random for
ave an L{JJtiaHy “hot” system. Once the system reaches thermal equilibrium
1e alg_ogthm generates the statistical fluctuations about equilibrium that,
etemrgine- the thermodynamic quantities. i

Be’ca‘iuse the 2V configurations of N spins can be a lot, the amount of
)mplitgr time needed can be very long (yet the program is éimple). The
ope is that the configurations obtained after a small number (~ 10N) of
erations will be close to those that produce minimum energy. While the
1swers:do get better if we sample more and more configurations, there is a

nit t% Improvement because roundoff error increases as more calculations
‘e made.

£l l. . :
EXP_}{‘:‘FIM Fhe Metropolis algorithm is used to generate a nonuniform, ran-
m d_:gtpbutmn of spin configurations o; values, (22.5); with each o having

‘ome a cornerstone of computational physics. The sequence of configurations
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probability -
Play) = %E“E(“"’/’“T. (22.13)

The technique-is a variation of von Neumann rejection (stone throwing of §7.8)
in which we start with an initial configuration and vary it randomly to obtain a
trial configuration. The Boltzmann factor tells us that the relative probability
of this trial configuration is proportional to AP = exp(—AE/kT), where AE
is the difference in energy between the previous and the trial configuration.
If the trial configuration has a lower energy, AE will be negative, the relative
probability will be greater than one, and we accept the trial configuration as
the new configuration with no further ado. If, on the other hand, the trial
configuration has a higher energy, we do not reject it out of hand, but accept
it with the relative probability AP = exp(—AE/kT) < 1.

To accept a configuration with a probability, we pick a uniform random
number between 0 and 1, and if the relative probability is greater than this
number, we accept the trial configuration; if the Boltzmann factor is smaller
than the chosen random number, we reject it. ‘When the trial configuration
is not accepted, the next configuration is identical to the preceding one.

The key aspects of the Metropolis algorithm is that the weight given to a
trial configuration depends on how far it is from the minimum-energy configu-
ration. Those configurations that stray far from the minimum-energy configu-
ration are deemphasized but not completely discarded. By permitting the sys-
tem to deviate away from the minimum-energy configuration (go “uphill” for a
while), this technique is successful at finding a global extremum for situations
in which other techniques are successful at finding only local ones. Its success
relies on it not being too quick in “cooling” to the minimum-energy configu-
ration; for this reason the algorithm is sometimes called simulated annealing.

«The algorithm is expected to be good at simulating the fluctuations about
rhinimum energy, and gives explicit results for the thermodynamic quantities
like those in Fig.'22.3. ‘ ¢

The explicit rules for the Metropolis algorithm are

1. Start with an arbitrary spin configuration oy = {s1,52,...,5n}-
2. To generate a new configuration cg41:
(a) Pick particle i randomly.
(b) Reverse i’s spin direction to create trial configuration .
(¢) Calculate the energy E(a,) of the trial configuration.
- (d) If E(atr) < E(ax), accept the trial; that is, set a4 = 4.
(e) If E(as:) > E(ax), accept with probability P = exp(—AE/kT):
= i. Choose a uniform random number: 0 <r < 1,

s _ Jou, fP2>r (accept),
i Lt ogyy = {qg, if P<r (reject).
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22.3 Simulated results for the eénergy, specific heat, and magn;etization of a 1-D
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IMPLEMENTATION, METROPOLIS ALGC)RITHM. ISING.F (.C)

ents the Metropolis algorithm, that is
1 ple : that
produces a new configuration Qx+1 from the present conﬁguratiojn Q.

(Alternatively, use the program supplied on the diskette or the Web.)

Make the key data structure in your Program an array s(1:x) containing

the values of s;. For debuggi i
_ i 88Ing, print out + and - to ive i
eagh lattice point and the trial number. He e

The value for the exchan 1
8¢ energy J fixes the scale for energy. i
fixed at J =1 (or —1 for an antiferromagnet). i

The thermal energy kT in units

your program should treat as
debugging.

of: J is the independent variable that
an Input parameter. Use kT' =.1 for
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6. Try N =~ 20 for debugging and larger values for production runs.
\
7. Use the printout to check that the system equilibrates for
(a) A totally ordered initial configuration (cold start).

(b) A random initial configuration (hot start).

Your cold start simulation should resemble Fig.22.2.

22.7 ASSESSMENT: APPROACH TO THERMAL EQUILIBRIUM

1. Watch a chain of N atoms attain thermal equilibrium when in contact
with a heat bath. At high temperatures, or for small numbers of atoms,
you should see large fluctuations, while at lower temperatures you should
see smaller fluctuations.

2. The largest kT may be unstable as the system can absorb enough energy
‘to flip all its spin. This is related to the fact that we have eliminated
the magnetic field and in this way have no preferred direction to space.
Introducing an external magnetic field B will stabilize the system but
will also change the total energy and the analytic results.

3. Note how at thermal “équilibrium” the system is still quite dynamic with
spins flipping all the time. It is the energy exchange that-determines
the thermodynamic properties.

4. You may well find that simulations at small kT (say that kT ~ 0.1 for
N = 200) are slow to equilibrate. Higher kT values equilibrate faster
yet have larger fluctuations.

22.8 ASSESSMENT: THERMODYNAMIC PROPERTIES

For a given spin configuration @j, the energy and magnetization are given by

N—1 .
E; = —J Z %811, . (22.14)
=1
N 2
= ZS"‘ (22.15)
i=1

At high temperatures we expect a random assortment of spins and so a van-
ishing magnetization. At low temperature we expect M to approach N /2 as
all the spins get aligned.
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/hile the specific heat can be computed from the elementary definition:

1g a number of simulations

1 M
= 2
U; = i t§=1 (B:)?,

then determine the specific heat from the energy fluctuations:

. (22-1,%)

Uz - (U)?
C= g
Extend your program to calculate the total internal energy U (22.14)

the chain. Notice that you do not

(22.15)

one spin changes. S

Make sure you wait for your system to attain thermal eqjlilibrium before -
you caleulate thermodynamic quantities. (You can check that U is fluc-

tuating about its average.) Your results should resem

bl¢ those shown in
Fig.22.3. : :

The large statistical fluctuations are red

. uced by running the simulation
3 number of times with different seeds and taking thé average of the
results. . i

= < i
The simulations you run for small N may be realistic but may not agree
vith statistical mechanics, which assumes N ~ oo (you may assume that

V = 2000 is close to infinity). Check that agr

eement with the analytic
esults for the thermodynamic limit is bette; for large N than small N .

“heck that the simulated thermodynamic quantities are independent

f initial conditions (within statistical uncertainties). In practice, your -
old and hot start results should agree.

Take a plot of the internal ener
> the analytic result (22.9).

gy U &8s a function of kT and compare

fake a plot of the magnetization A as a
) the analytic result. Does this
lagnet to behave? ]

function of kT and compare
gree with how you expect a heated

\

ompute the fluctuations of the energy U, (22.17), and the specific heat

(22.18). Make a graph of your simulated specific heat compared to_
e analytic result (22.11). ' :
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22.9 EXPLORATION: BEYOND NEAREST NEIGHBORS

Extend the mod;al so that the spin—spin interaction (22.?) extends Eo 1;:}:;-
i ighbors. For the ferromagnetic :
t neighbors as well as nearest neig ' :
?I??srﬁloiﬂdgleid to less fluctuation because we h.ave increased the couplings
among spins and thus an increased thermal inertia.

22.10  EXPLORATION: 2-D AND 3-D ISING MODELS

" Extend ﬂthe model so that the ferromagnetic spin—spin interaction (22.6) ex-

tends to nearest neighbors in two and then three dimensio;s. Cont'uimetlisu;%
periodic boundary conditions and keep the number of particles small, at lea:
to start [G&T 96].

1. Form a square lattice and place /N spins on each side.

2. Examine the mean energy and magﬁetization of the system as it equili-
brates. :

3. Is the temperature dependence of the average energy qualitatively dif-
ferent from the 1-D model?

4. Print out the spin configurations for small N (~ 16-25) and identify the
domains. v

5. Once your system appears to be behaving properly, c.alculate the he}zlmt
: capacity of the 2-D Ising model with the same technique used for the
1-D model. Use a total number of particles 100 < N < 1000.

" 6. Look for a phase transition from an ordered to unordered conﬁguratic;g
. by examining the heat capacity as a function of temperature. It shou
i.di'\ferge at the phase transition (you may get only a peak).
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Electrostatic Potentz’a_ls

25.1 INTRODUCTION:_ TYPES OF PDE’S -

Natural quantities such as temperature and pressure vary continuously in both
space and time. Such being our world, the function or field U = U(z,y, z,t)
used to describe these quantities must contain space and time coordinates
as independent variables. The independence of each variable means that the
derivatives in the equations must be partial derivatives. The equations are
then partial differential equations (PDEs) in contrast to ordinary differential
equations (ODEs). ' '

Solving PDEs differs from solving ODEs in a number of ways. In particular,
the initial condition (the ¢ = 0 solution) must be known not just at one point,
but throughout all of space. In addition, we must constrain the solution for
all times by requiring it to have a specified form in some region of space [the
boundary conditions, e.g., U(z = a,y,2,t) = 12]. This makes the algorithms
for the solutions of PDEs more complicated than those for ODEs.

" As time evolves, the changes.in the field U(z, y, 2,t) at any one position
affects the field at neighboring points. While the time evolution is similar
to ordinary differential equations, there are now couplings to simultaneous
variations in the space dimensions, and so our algorithms will make finite-
difference steps in both time and space. For a realistic problem requiring a
reliable level of precision, this may lead to an incredibly large number of cou-
pled equations. In the next few chapters we will investigate various problems
leading to different types of partial differential equations and correspondingly
different approaches to solving them. -
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The most general form of a 2-D time-independent PDE is

2

o*U 92U 82U oU au
= _— —=F —_—, 1
‘A(mi y) 82:2 + ZB(E! y) away + C(‘T'l y) 6'y2 (m)yi U! BIE b ay )1 (25 1)
where A, B, C, and F are general functions. For the special case where
B*(z,y) = A(=,y)C(z,v) (25.2)

for all z and y, the equation is called parabolic. An example with B = C =0,
is the 1-D heat equation:

oU(x,t) _ &k 8°U(s,1)
e (25.3)

When B? > AC for all z and y, the equation is called hyperbolic.” An example
with B =0 and AC < 0 is the 2-D wave equation: - :

Ppay,t) | Pyt _ 1 8%(z,y,t)
Bz dy? 2 a2

(25.4)

Here the y of (25.1) has become the time variable. When AC > B? for all 2
and y, the equation is elliptic. An example is Laplace’s equation (25.7).

25.2 PROBLEM: DETERMINING AN ELECTROSTATIC POTENTIAL

Your problem is to find the electric potential for all points inside the charge-
free square shown in Fig. 25.1. The bottom and sides of the region are made
up of wires that are “grounded” (kept at 0 V). The top has a different wire
running across it, connected to a battery that keeps it at a constant 100 V.

Once the electric potential is known, you should also determine the nature of
the electric field E.

25.3 THEORY: LAPLACE'S EQUATION (ELLIPTIC PDE)

It is known from classical electrodynamics [Jack 75] that the electric potential
U(x) satisfies Poisson’s PDE: '

V2U(x) = —4mp(x). : (25.5)

Here p(x) is the charge density at the spatial location x, and we leave off
its time dependence because we are dealing with an electrostatics problem.
In charge-free regions of space,-that is, regions where p(x) = 0, the scalar
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Fig. 25.1 (Left) The region of space within a square in which we want to d%term(;ne
the electric potential. There is a wire at the fop kept at a consta,xllt 100 E and a
grounded wire at the sides and bottom. (Right) ’.1“he electric _potent{a.l V (= U) for
this geometry. The projection onto the zy plane gives the equipotential lines.

potential satisfies Laplace’s equation:

This equation is an elliptic PDE with physical applications beyond electro-

statics. In 2-D rectangular coordinates it takes the form

PU(,y)  PUEY) _ (25.7)
Ox? oy®

which shows that the potential depends simultaneously on z and. y. The
mathematical problem is to find U(z,y) within a boundary, given its values
along the boundary.

25.4 METHOD, NUMERICAL:‘FINITE DIFFERENCE

Mathematical theorems tell us that if the potential U(z,y) ;15 known along a
specific boundary, solutions must exist inside the boundary.

1The soiution outside the boundary cannot a_lwa.ys.be found analytically,_altt}ogil}tlt:);lj;

" tence is physically obvious. It can be found numencally.. of course, we view in é j(livalenf. :
“houndary,” ‘and make the potential zero th'ere. Then being outside the square is eq ‘
to being “between” two conductors, which is a problem we can solve.
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25.2 .'_[.‘he algorithm for Laplace’s equation in which the potential at the point
) = (i, 5)A equals the average of the potential values at the four nearest-
8. The boundary conditions are im
leter remain at fixed values.

. neighbor
posed by having the potentials along the

) deduce an algorithm (illustrated in Fig. 2
25 . .
5.7), we follow similar & 2) for the numeric solution

ence algorithm for differentiation. We e i
: expand the potential at the poj
Az,y) as a Taylor series in the variable: i

- Ulz+Az,y) = U ot 18U 2
) (=:9) + 5—Az + 2 5a7 (Az)* o, (25.8)
Ulz—Az,y) = U _au 15%y :
) (z,9) 5 Az + 3552 L R "(25.9)

.1 we add these equati_ons and keep terms of order (Az)?, the linear terms
: ?ancel and we obtain a central-difference approximation to the second
itive for the partial derivative 8207 (z,y) /022

8%U(z,y) o Uz + Az,y) + U(z — Az,y) —2U(z

Y
32 (Bo)? 2 e
ise, we expand U (r,y+Ay) as a Taylor series in 3 to obtain
0U@y)  U@y+dy) + Uy - Ay ~2W(e,y)
Ay? (Ay)? St (35.11)

steps to those used in §8.1 to derive the forward- -
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We expect the error in these finite-difference equations to be proportional to
A*. Substituting these approximations into (25.7) leads to a finite-difference
approximation (Fig. 25.2) to Laplace’s PDE:

Ulz + Az,y) + U(z — Az,y) — 2U(z,y)
(Az)?
Uz, y + Ay) + U(z,y — Ay) —2U(z,y) _ o
(Ay)? -

The reader will notice that (25.12) is a relation among the solutions at five
points in space. To utilize it, we divide space up into a lattice, and solve for U
at each site on the lattice. This results in a set of linear algebraic equations.
One approach is to solve these linear equations explicitly as a (big) matrix
problem, using the computer to do the matrix algebra. This is attractive as
a direct solution, but it requires a great deal of computing time and memory.

The approach we follow is a simple one. We assume equal grid spacings,
Az = Ay = A in (25.12) to obtain i

£ (25.12)

Ulz,y) = 1[U+A,9)+ Uz —A,y) +Uz,y + A) + U(z,y — A)].
(25.13)
Equation (25.13) is our basic algorithm for Laplace’s equation in two dimen-
sions. It approximates the potential at point (z,y) as the average of the
potential values at the four nearest neighbors, as shown in Fig. 25.2. It is ap-
plied as part of an iterative scheme in which we start with the solution along
the boundaries and an initial guess for the rest of the solution, use (25.13) to
obtain an improved solution, and keep repeating the algorithm until stability
is attained. .
As is often true in the numerical solution of PDEs, this algorithm is not of
as high an order as those used to solve ordinary differential equations (e.g.,

.rk4), and so for a given step size A, is not as accurate. We will see the effect of

this crudeness in the large number of iterations needed to obtain convergence.
For serious calculations that use large amounts of computer time, a more
accurate, “industrial-strength” algorithm is probably worth the programming
complexity. '

25.5 'METHOD, ANALYTIC: POLYNOMIAL EXPANSIONS

We want the analytic solution of Laplacei’s equation

PUE) | FU)

- ayg 0, (25.14)
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with the boundary conditions

the potential is the product of independent functions of z and y:

U(z,y) = X (2)Y (y),

and substitute this product into
by X (z)Y () we obtain

(25.15)

d*X (z)/dz>
X(z)

2
LY@/
Y(y)
Because X(z) is a function of
only z and Y (y) of onl derivatives i
i ¥ ¥, the derivat
(25.16) are ordinary as opposed to partial derivatives. Since X (:c)l‘;i;v;s(;)l

are assumed to be independent, the onl
: - y way (25.16) can be valid f
of  and y is for each term in (25.16) to be equal tg) a constanlt' s

CY(y)/dy? X (z)/ds?
Yl) ~ T X(@

Ne now have two, noncoupled ordinary differential equations:

(25.16)

- (25.17)

&?X (z)

W——FkQX(:E)__ = O, (25.18)
dQY(y) —k2Y( ) —

wra y) = 0. (25.19)

Xz dsll;;)ali see Sha.t this choi.ce f’f sign for the constant matches the boundar
S and gives us periodic behavior in z. The other choice of sign woulc};

ive periodic behavior in ¥, and that would
riod ; not work. i
re periodic and those for ¥ (y) are exponential: i

X(:c) =
Y(y) =

he z = 0 boundary condition, U(z = 0, y)
be z = L boundary condition, U(z =

Asinkz + B cos kz,
Ce* + De—Fv,

&

(25.20)
(25.21)

= 0, can be met only if B = 0.
L,y) = 0, can be met only for values

'k for which

N X kL=nm, n=1,2.... (25.22)
o ngly, for each val i i ;

o ue of n there is a solution for X that we label as

Xa(z) = A, sin (%m) -

r each value 'of kn which satisfies the z bound
Y) must satisfy the boundary condition T}

+ (25.23)

.ary conditions, the y solution
(&, = 0) = 0. This requires

given along a square of side L. We assume that

(25.14). After dividing the resulting equation =
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D = —C in (25.21), and so

Y, (y) = C(e*? — e~*=¥) = 2C'sinh (%y) . (25.24)

Because we are solving linear equations, the principle of linear superposition
holds and this means that the most general solution is the sum of the products

Xa(@Yaly): :
U(z,y) = Z E,sin (%m) sinh (%y) - (25.25)

" The E,, values are arbitrary constants and are fixed by requiring the solu-

tion to satisfy the remaining boundary condition at y = L. In general, this
boundary condition could be that the potential has some specific functional
dependence. For our problem the boundary condition is U(z, L) = 100 V,
and so

" Ensin asinhnr =100 V. (25.26)

L
n=1

We determine the constants E,, by projection. We multiply both sides of the
equation by sinmm/Lz, with m an integer, and integrate from 0 to L:

oo L L
Z E, sinhnm / drsin "=z sin g = / dz100sin =~z (25.27)
= 0 L L 0 L

Yet the integral on the LHS is nonzero only for n = m, in which case we can
solve for E,:

” 0, for n even,
B~ {20t ode e
Finally, we obtain the potential at any point (z,9),
&2 400 . /nmz\ sinh(nmy/L)
2 = : 25.29
Ulz:y) Z P ( L ) sinh(n) ( )

n=1,3,5,...

At this point it is interesting to observe that the solution via the numerical
algorithm (25.13) starts with the values of the potential on the boundaries
and then propagates them through all space via many iterations. The nu-
merical solution keeps repeating the algorithm until a stable solution results.
In contrast, the analytic solution has the z and y dependence explicit via a
double Fourier series, but must keep summing terms until a stable solution
results. ' '

Tt is important to notice when evaluating the analytic solution, that the
sinh functions in (25.29) may overflow for large n. Some of these overflows
can be avoided by expressing the quotient of the two hyperbolic sine functions
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in terms of exponentials:
sinh(ny /L) _ em(W/I-1) _ p—nn(y/L+1)
sinh(nm)

| While the en /n term sti
n (25.29) converges.

1 —e—2n=w

(25.30)

i
gets large, the sum of term with alternating signs

]

5.6
IMPLEMENTATION: SOLUTION ON LATTICE, LAPLACE.F

Ve divide the square into

 divic a lattice with equal spaci i i

directions. The z and Y variables are now disireéz-g kg

e - _ ) !
Zo +2AJ y—?/D"‘JA: (Z)j=0aNmAX=L/D)-

y the array U(N,,,.,

| (25.31)
€ represent the potential b

gorithm (25.13) e Nmax). The finite-difference

UG, ))=1[wi+ L) +UGE-1,5)+ Ult,i +1)+U(, 5 — 1)], (25.32)

th the following boundary conditions:
Ui, Nmax) = 100y (top),
5(11\}1) = 0, (left),
Dmund) =0, (righi, 55
1,1) = 0, (bottom).
e ave i
g anl;:iggz (32383?011 ljllfec'i to ﬁréd the potential at each position (4, §), startin
ginwards. S ive i i ried :
oo A et preViouSuccesswe Iterations are obtained by using

iteration, the iterations ending when the

nges in the potential are insignificant,.

- Write a program or mo

: dify th :
solution of Laplace’s eq ify the one on the diskette or Web to find the

uation within a square of side L.
- Increase the number of iterations
change in the potential throu
computations are involved, do

until you see there is no significant :
ghout the entire region. Because man
the calculation in double precision. - 4

- Impose the boundary conditions - 7 l .

: oL o on th i
1S an ambiguity in the top corner  four sides of the square. There

s because they can be 100 V on 0.
Repeat the iteration several hundre

dt
row by row. Check whether the bo times and observe the potential,

" undary' conditions are always met.
er you have the numerical solution ‘deby

with the analytic solution (25.29), gged and stable, compare

Do not be surprised if you need to

=
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sum thousands of terms before the “analytic” solution converges!

25.7 ASSESSMENT AND VISUALIZATION
1. Observe how the solution converges with successive iterations.

2. Observe how your choice of potential values for the corners leads to
inaccuracies near the corners.

3. Repeat the process for different step sizes and judge if it is stable and
convergent.

4. You will need hundreds or possibly thousands of iterations to obtain
stable and accurate answers (we warned you that you pay a price for
simplicity of algorithm).

5. Which solution is more precise, the analytic or numerical?

6. Use a plotting program to draw lines of constant U (potential). These
are equipotential surfaces.

7. Either by hand or in some clever way, draw curves orthogonal to the
equipotential lines, beginning and ending on the boundaries (where
charges lie). The regions of high line density are regions of high electric

force.

_25.8 EXPLORATION

The numerical solution to the PDE can be used for any boundary conditions.
The computer just calculates different numbers on the boundary and then
iterates as before. Once you have a running program, have some fun and
try out other boundary conditions. Two boundary conditions to try out are

‘triangular

_ {200¢, forz < L/2,
06e,0) = {1006~ 3, for s > 113, i
and sinusoidal '2
U(z,a) = 100sin (—’EE) (25.35)

Unfortunately, you will have to recalculate the Fourier coefficients for these
boundary conditions, or have confidence in your numerical solution and live
without an analytic comparison. Tl
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Vix.y)
100 ’-
100 vV 50l

SO
IR
s
R 2

\\\\\“\\

— -50
-100 Vv
L -100
e 4
— oV

Fig. 253 (Left) the geometry of a parallel-plate capacitor within a box. A realistic
capacitor would have the plates closer together in order to condense the field. ( Right)

The electric potential for this geometry. The projection on the zy plane gives the
:quipotential lines.

5.9 EXPLORATION: PARALLEL-PLATE CAPACITOR

he standard solution for a capacitor’s field is for the region between two
nfinite plates. We want to see the edge effects and the exterior field when a
inite capacitor is placed in a grounded box, as shown in Fig. 25.3. Modify
he given program to satisfy these boundary conditions.

Plot the potential and equipotential surfaces. Sketch in the electric field
nes (always orthogonal to the equipotential surfaces and beginning and end-
1g on charges). Where is the electric field most intense, and how does it

iffer from that for an infinite capacitor? Results of our simulation are shown
1 Fig. 25.3. '

5.10 EXPLORATION: FIELD BETWEEN SQUARE CONDUCTORS

du have designed a piece of equipment that is essentially a small metal box
100 V within a larger, grounded one. You find that sparking occurs inside
which indicates too large an electric field. You need to determine .where
e field is greatest so that you can change the geometry and eliminate the
arking. B 3
Modify the program to satisfy these boundary conditions and to determine
e field between the boxes (Gauss’s law tells us that the electric field vanishes
thin the inner box because it contains no Ich‘au'g;e). ‘Plot the potential and
uipotential surfaces, and sketch in the electric field lines (always orthogonal
the equipotential surfaces and beginning and ending on charges). Deduce

TORS
’ EXPLORATION: FIELD BETWEEN SQUARE CONDUCTOR.
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Heat Flow

26.1 PROBLEM: HEAT FLOW IN A METAL BAR

In Fig. 26.1 we see a metal bar of length L = 100 cm and width w located on
the z axis. It is insulated along its sides but not its ends. Initially the bar is
at a uniform temperature of 100°C, and then both ends are placed in contact
with ice water. Heat flows out of the noninsulated ends only. Your problem
is to determine how the temperature will vary as we move along the bar at
any instant of time, and how this variation changes with time.

_~

26.2 MODEL: THE HEAT (PARABOLIC) PDE

A basic fact of nature is that heat flows from hot to cold; that is, from regions
of high temperature to regions of low temperature. The rate of heat flow H .
through some material is proportional to the gradient of the temperature T
within the material: - : : '
H=-KVT(x,t), (26.1)

where K is the thermal ccinductivit& of the material. The total amount of
heat energy Q(f) in the material at any one time is proportional to the integral
of the temperature over the volume of the material:

b .,

Q) = [ ax0pTe, (26.2)
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Fig. 26.1 A metallic bar insulated alo

ng its length with its ends in contact with heat
Teservoirs.

where C is the specific heat and p the density of the material. Because energy
is conserved, the rate of decrease of Q with time must equal the amount of
heat flowing out of the material. When this energy balance is struck and the
divergence theorem applied, the heqgt equation is the result:

T (x,t) K -
T = O—pV T(x, t), (26.3)

where we assume that constant density p.

Equation (26.3) is a parabolic PDE with space and time as independent
variables. The setup of this problem implies that there is no temperature

variation in directiong perpendicular to the bar, and so we haye one spatial
coordinate to consider in our PDE:

_ K 8°T(z,1)

26.4
Cp 022 (26.4)
Ne are given the initial temperature of the bar

T(z,t=0) = 100°C, (26.5)

nd must solve equation (26.4) to determine how ‘the temperature changes

ith time and along the bar. The solution is constrained by the boundary
»nditions .

T@=0)=T(z="L#=o, (26.6)
1at the ends of the bar are in ice water. ' '

.3 METHOD, ANALYTIC: POLYNOMIAL EXPANSIONS

1e analytic approach is again based on the alss'uniption that a solution éxists
which the time and space dependences occur as separate functions:

Tlr Y = Yia\Tr12

METHOD, ANALYTIC: POLYNOMIAL EXPANSIONS 357

When (26.7) is substituted into (26.4), and the resulting equation is divideq
by the product X (z)7(t), there results two, noncoupled ODEs:

er,\ﬁX(z) — 11 (26.8)
dz? X

a7 (¢) = 26.

=+ A2C—pT(t) = (26.9)

where A is a constant to be determined. The boundary- condition that the
temperature equals zero at z = 0 demands the sine function:

X(z) = Asin Az. (26-10)

The requirement that the temperature vanish at z = L determines the possible
values for the constant \:

nw !
sinAL = 0 = A:An:T, i — 2N (26.11)
T(t) = eat/Cr, ' (26.12)
The analytic solution is in this way
= Apsin (22 g=X2t/Cp 26.13)
T(a:,t)—ﬂAnsm( 7 )e : (

where n can be any odd integer and A, is an arbitrary constant.

Because the principle of linear superposition holds, the most genefal so-
lution to (26.4) can be written as a linear superposition of (26.13) using all
values of n: "

Tz,2) = Z A,e™*0t/Cp gipy (An2). . (26.14)
n=1
The Fourier expansion coefficients A,, are determined by the initial condition
that at time ¢ = 0 the entire bar has a temperature of T = 100°C:

T(at=0=T = Y A.sin(Aaz)=T. (26.15)

n=1

~ * As before, we use the orthogonality of different sine functions to determine

A, by projection: |
' T A, = 4—112, n=1,35,.., (26.16)
nm

The full solution is consequently the infinite series

oo

4T = 21r2 20 : : nmxr
T(x, t) =5 Z _n_::_e n Kt/(L P) sin (T) . ' (2617)
“ln=ii2
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expanding T'(z, ¢ + A
of lowest order in A:

T(z 1+ Af) ~ L T (z ?)
? = z,t) 4+ —22 %
It 2 A

? (26.18)
z 26.1
= ?%%i) ~ T&t+ Ay -7 t) Ch48)
= e =l ) 3
—— U~ fid
Oz2 L 0,74 ties Az, ) — 2T (z,t)

ey . (26.21)
The PDE (26.4) becomes the finite-difference

equation:

T(@,t+ At) — T(s, 1)

e
At

‘_K_T(-”H-Ax,t +T s

Cp W
(Az)2 Cp (26.22)

- 2T(z,1)].

2

= T(z,t+ Ag)

2
e
“i-?
b
E
| =

1 discrete form, this ig

TG,j+1) = (i, ) + KAt[T(; + L) +T6G - Lj)—-21¢ )

Iere = =19 .
T=1Az and t = jAy, (26.23)

The algorithm deger;
cribed b (P8:93) 45 wivte
2 temperat i y ) 1S pictured j ;
Derature at the point, [ = At = (34 131; zlihzsfﬁswi‘ s(ee that
of (26.23)]

s of an earlier time
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‘ e () (W) () o
X

Fig. 26.2 The algorithm for the heat equation in which the temperature at the point
[z = iAz,t = (j + 1)At] is computed from the temperature values at three points of
an earlier time. .

26.5 ANALYTIC ASSESSMENT: ALGORITHM

Generally, PDEs are solved by converting them into finite-difference equa-
tions and then using the computer to find a numerical solution to the finite-
difference equations. Sometimes we are able to find analytic solutions to the
PDEs and test the numerics by comparing these to the analytic solution.!
The heat equation is an exceptional case in which there also exits an analytic
solution to the finite-difference equation (26.23) [C&P 88]:

. K At , (irAz\]’ . [(itAz
T(z,J)—A[l—th—p(Az)stm ( 5 )] sm( 7 ) (26.24)

While this analytic solution of the finite difference equation is not a valid
solution’to the PDE, it is helpful to provide understanding of the algorithm.

Results of the numerical simulation are shown in Fig. 26.3. If we compare
the analytic solution of the PDE (26.17) with (26.24), we see that the valid
solution decays exponentially with time, but this will not be true? for the

1In more realistic problems, or for more complicated boundary conditions, finding analytic
solutions may be difficult or impossible. In those cases you may be able to find a “test
case” similar enough to your problem to permit a check of your numerics.

2The argument is based on limn—e0(1 4+ 2/n)™ = €%, and is a little tricky. For example, a
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numeric solution unless

K At 3
Cp (Az)z = % (26.25)
If this condition is not met, th -
» Ulé numeric go]
clearly, will be wrong. E ution will not decay in time and so

26.6 IMPLEMENTATION, HEAT EQUATION, EQHEAT.F (.C)

Recall, we want to solve for the tem
f length I = 50 cm with the bou

Tz =08 = T(z=L,t) =0,

i

3 On the RHS of (26.25) will give 2 stable solution, but it will not decay with time
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and initial conditions
T(z,t=0) = 100°C. (26.27)

The constants appropriate to iron are

C =0.113 cal/(g°C), K =0.12 cal/(sg°C), p="7.8 g/cc. (26.28)

1. Write or modify the program given on the diskette and Web to solve
the heat equation.

2. Define a 2-D array T1(101,2) for the temperature as a function of space
and time. The first index is for the 100 space divisions of the bar, and
the second index for present and past times (because thousands of time
steps may be made, we save memory by saving only two times)

3. For time ¢t = 0, (j=1), initialize T so that all points on the bar except
the end points are at 100°C. Set the temperatures of the ends to 0°C.

4. Apply equation (26.21) to obtain the temperature at the next time.
5. Assign the present-time values of the temperature to the past values:

T(,1)=T(@,2), i=1,...,10L. (26.29)

6. Start running with 50 time steps. Once you are confident the program
is running properly, use thousands of steps to see the bar cool with time.

For every ~500 time steps, print the time and temperature along the
bar.

26.7 ASSESSMENT: CONTINUITY, NUMERIC VERSUS ANALYTIC

Extend your program to evaluate the analytic solution at the times and points
used for in the numerical solution. You may have to sum the analytic solution
over thousands of terms for stability and precision.

1. Make sure your program gives a temperature distribution that varies
smoothly along the bar and which agrees with the boundary conditions.

2. Make sure your program gives a temperaﬁure distribution that varies
smoothly with time and attains equilibrium. You may have to vary the
time and space steps to obtain well behaved solutions.

3. Compare the analytic and numeric solutions (and the times needed to’
compute them). If the solutions differ; suspect the one which does not
appear smooth and continuous.
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26.8 ASSESSMENT: VISUALIZATION

1. Make 2-D plots of the temperature versus position along the bar.

2. Better yet, make a 3-D plot of the temperature Versus position versus
time.

3. Make a plot of the contours of constant, temperature, the isotherms.

1 26.9 EXPLORATION

Stability test: Check that the temperature diverges with time if the con-
stant C in equation (26.25) is made larger than 0.5.

Material dependence: Repeat the calculation for aluminum, €' = 0.217
cal/(g°C), K = 0.49 cal/(g°C), p=2.7 g/cc. Take note that the stabil-
ity condition requires you to change the size of the time step.

Scaling: The shape of the temperature versus time curve may be the same
for different materials, but not the scale. Which of the two bars cools
faster?

Sinusoidal initial distribution: sin(mz/L). (This may seem somewhat
artificial, but it leads to_attractive graphs.) Use the same constants

(26.30)

Two bars in contact: Assume that there are two identical bars, each 25
cm long, as shown in Fig. 26.4. One bar is kept in a heat bath at 100°G,
and the other at 50°C. They are put in contact along one of their ends
with their other ends kept at 0°C. Determine how the temperature varies

at a temperature 7. different from the initial temperaturé of the bar.
In this case, Newton’s law of cooling (radiation) says that the rate of
temperature change due to radiation ig '

oT ' i '
3 = —MT-T.), (26.31)
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where h is a positive constant. The heat equation is now modified to

L S (26.32)
ot Cp 3%z

i include Newton’s cooling along
dify the algorithm and program to inc . .
1{\}{2 liafx{gth of tghe bar. Compare the cooling of this 'bar with that of the

insulated bar.
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Waves on a Strin,

27.1 PROBLEM: A VIBRATING STRING

You pluck a string and some pattern of waves follow. Your problem is {
predict this pattern when the pluck is 1 mm in height. You may have see
that if you pluck at one location and let go gently, a pulse or traveling wave
observed on the string. And if you shake the string just right, a standing-wax
pattern, in which the nodes remain in the same place for all times, may resul
Actually, we want to solve the problem for all of these possibilities.!

b

27.2 MODEL: THE WAVE EQUATION (HYPERBOLIC PDE)

As our model, we consider a string.of length I, tied down at both ends a
shown in Fig. 27.1. The string has a constant density per unit length p,
constant tension 7, and is subject to no frictional or gravitational forces. Th
vertical displacement of the string from its rest position is described by .
function of two variables y(z, ), where z is the horizontal location along th:
string and ¢ the time. We assume that the displacement of the string y is onl:
in the vertical direction. ‘ '

To obtain a linear eqﬁatibn of motion (nonlinear PDEs are discussed it
Chapters 28 and 29), we assume that the displacement and slope are small
If we isolate an infinitesimal section Az of the string, we know from Newton’
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PY ®
i time ®
Fig. 27.1 A stretched string of length [ tied down at both ends, The horizonta] o
position along the string is given by z and the vertical disturbance of the string from
its equilibrium position by y(=,t). - : :
® e .

second law of motion that the sum of the vertical forces on the string section
must equal the mass times the vertical acceleration of the section:

— - . * . . t . .
6_2;(,1 Fig. 27.2 Time steps in the algorithm for the vibrating string
§ :1; pAz PR (273:1

Here the forces are the components of the string’s tension 7. The verti

components of the tension on each end of the segment change as the angle
the string changes, and we obtain those components by relating the slope 0

the string to dy/dz: 7
8 : 2
7| (5 S JREE s ST
9z z+Az oz z 9z? =

6'81 We model the “pluck” with the mathematical function:

" 1.25z/1, for z < 0.81, (initial condition 1).  (27.6)
(x.1=0)= 5.0(1—z/l), for z > 0.8,

2.5

ecause (27.3) is a second-order equation in time., a second ini.tia,l. c%ld]tt;?{x;
(beyond initial displacement) is needed to determine the solution.: We

’ y(z,) 1 8%y(z, 1) 27.3 econd condition to be that the plucked string is released from rest:
T Ted T @ oam - (273)

- @(:r t=0)=0, (initial condition 2). (27.7)
Here the propagation speed is derioted by 2 e,

c=/7/p. (27. METHOD, NUMERICAL: TIME STEPPING

Observe in these equations that ¥, the height of the string, is the dependent.
variable, and that the position along the string z and the time ¢ are both

wa,;s done with Laplace’s equation in Chapter 25, Electrostatic Potentials,
independent variables. The existence of two independent variables makes this

i in Fi . In th
ook for a solution to our PDE on the 2-1;) grid shotv;nl }11; f)‘(l)gSI t?;.fmlzl Onz
i i index) represen _
esent case the horizontal axis (first in . :
i string and the vertical axis (second index) represents time. We assign

rete variables to z and t:

z=iAz, t=jAt, (27.8).

Because both ends of the string are tied down, the boundary conditions ar
that the displacements must vanish for all times at the end of the string:

y(0,8) = y(l,t) =0, [(boundary conditions). (27.5

- . . 't :
d represent y as y(4, 7). We convert the wave equation (27.3) into a finite-

As stated in the problem specification, the initial condition is that at ¢ srence equation by expressing the secofid derivatives in terms of finite

the right side of the string is “plucked,” that is, the string is lifted 1 mm &
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differences:

Py(z,t) oyl + D+y(i5 1) - 295, 5)

o2 = (At)? ’ 37.8)
Pu(,8) _ yli+1,5)+ Y(i—1,5) — 2(4, 5)
oz = (Az)? i

(27.10)

After substituting (27.9) and (27.10), we obtain final, discrete equation:

where ¢/ = At/Az, is just a combination of numerical parameters with the
dimension of velocity.

As shown in Fig. 27.2, (27.11) is a Tecurrence relation that Propagates the
wave from the two earlier times, j and j — 1, and three nearby positions, j — 1
Y, and i + 1, to a later time j + 1 and 5 single position 5 (we are using Az
and At units). First starting the recurrence relation is a bit tricky because

- We need to know displacements from two earlier times, whereas the initial
conditions are for only one time. Ty alleviate that difficulty, we convert the
Initial conditions (27.6) and (27.7) to finite-difference form, and use that to
step backward in time! Explicitly, the central-difference approximation gives

Hotcth = p Y(@,A%) ~ y(z, A1)
gty = e,

TA: 0, (27.12)
= yli,-1) = y(, 1) (27.13)

Imposing this condition onto (27.11) for the initial time yields
. - 1 At & o) = - - \
y(,2) = y(,1) + 2 \Az) ClE+1,1) 4406 - L1)=2(,1)]. (27.14)

We see that (27.14) takes the solution throughout al] of Space at the initia]
time ¢ = @ (7 = 1), and Propagates it forward to time At. Subsequent
advances in time are produced by (27.1 1).

As we have seen in the finite-difference method é,pplied to heat conduction,
the success of the numerical method depends on the relative sizes of the time
and space steps. For the present problem there is 5 similar stability criterion
that tells us that the finite-difference solution will be stable if [Cour 28]

CRE = (27.15)

This means that the solution gets better with smaler time steps, but gets
worse for smaller Space steps. Thig appears somewhat surprising because the
Wave equation (27.3) is Symmetric in z and ¢, Yet the symmetry is broken

METHOD, ANALYTIC: NORMAL MODES 3¢
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0 10 position

Fig. 27.3 The vertical displacement as a function of- p-o.sition and-ti.me ?f a stnn%
initially lucked near its right end. Observe how the initial pulse dn:ldes into waves
lmtlal'ly ptu the right and to the left, and how each traveling wave inverts afteI: ite
Ezz‘;il;;i f?om a ﬁgxeci end. Notice, too, that the traveling wave moving to the right

hits the end first.

by the nonsymmetric way we specify the initial and boundary conditions. A
typical numerical solution is shown in Fig. 27.3.

5

27.4 METHOD, ANALYTIC: NORMAL MODES

The analytic solution to (27.3) is obtained via the familiar sepa.ratlon?otf-
variables technique. We assume that a solution to the. wave e.qua.tlon exists
that is the product of a function of space times a function of time:

y(z,t) = X (z)T(¢). (27.16)

We substitute (27.16) into (27.3), divide the resultil.lg equatim.l by y(l:z:%_t), :r;g
are left with an equation that has a solution only if there exists solution:

_ the two ODEs:

LGP = B (27.17)
F +w T(t)
g +E2X(z) = o, (27.18)
dt? : = :
et (27.19)
B

- Here the angular frequency w and the wave vector k.a.re determined by de-.
manding that the solutions satisfy the boundary conditions.
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The solution for X (z) is required to satisfy the boundary conditions that

the string is attached at both ends:

X(z=0,t) = X(z=1,¢=0

= Xa(z) = A.sink,z,
2 1
R l(“li_) n=0,1,....

The corresponding solution for the time equation is

T.(t) = Chsinw,t+ D, cos wWnt,
def 27c
Wn = nwy, wy = ckyp= W

Solutions of the form (27.16) and (27.23) are the nth normal modes, wher

by definition, each mode oscillates at a single frequency.

The initial condition (27.7) requires the C,, values in (27.23) to be zers
Putting the pieces together, this means that for a string with its ends fixac
and initially at rest, there are solutions of the wave equation of the form

Yn(z,1) = sinkpzcoswpt, (n=0,1,.. 2k

Since (27.3) is a linear equation in y, the principle of linear superpositior
holds and the most general solution can be written as the sum

7 oo
gzt = Z B, sink,z cosw,t.

n=0

The Fourier coefficients B,, are determined by using the second initial condi
tion (27.7), which describes how the wave is plucked. We start with

izt =0y= EB,, sinnkoz,

—

multiply both sides by sin mkoz, substitute the value of y(z,0

and integrate from 0 to [ to obtain

sin0.87

B = —00125—=

We will compare (27.26) to our numerical solution. While it is in the nature
of the approximation that the precision of the numerical solution depends on
the choice of step sizes, it is also revealing to realize that the precision of the
“analytic” solution depends on summing an infinite number of terms, which

in real life can be done only approximately.

) from (27.7)
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5 IMPLEMENTATION, WAVE EQUATION, EQSTRING.F (.C)

odify the program given on the diskette or on the Web to solve for the
ohavior of the plucked string with ends fixed. Assume that the string has
gth I = 1 m, linear density p = 0.01 kg/m, and tension 7 = 40 N. The
ial conditions are given by (27.6) and (27.7). You should get a solution
t looks like the one in Fig. 27.3. -

1. The program uses a two-dimensional array y(101,3). The first index
- labels the z position along the string and the second, the three time
values used in the recurrence relation (27.14). Time 1 is past, time 2 is
present, and time 3 is the future:

. Choose the space step Az = 0.01, that is, 1 cm. Choose the time step
At such that the stability condition (27.15) predicts a stable solution.

. Use the initial condition (27 .6) to assign y(i,1).

Before running the program, print out the values of y(i,1) to check that
you have assigned the initial displacements correctly.

. Find the string’s displacement for time dt by using the algorithm (27.14)

(27.25 “to find y(i,2) for all ;.

. Check that the ends of the string remain fixed for all times, that is,
y(1,j) = y(101,j) =o0.

Program up a loop that steps the time forward using the solutions from
- two earlier times, (27.11). Keep repeating this iteration, reassigning the
 last two columns of y to the first two:

y(i, 1) = y(i, 2)
y@i, 2)

Present time becomes past.

]

y(@i, 3) Future time becomes present.

2 - 8. For every five time increments, write out the displacement of the string.
(27.27)

7.6 ASSESSMENT: VISUALIZATION

ompare the analytic and numerical solutions, keeping at least 200 terms in

(27.28) the “analytic” solution.

-1. Use your favorite graphics program to make a 3-D plot of displacement
* Y versus position z versus tire ¢. This is what we did in Fig. 27.3 with
gnuplot.

- 2. Observe the motion of the peak as a function of time and use your graph’
to estimate the peak’s propagation velocity ¢. Compare your deduced ¢
to (27.4). :
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27.7 EXPLORATION
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001 {

of different values for t
s the numerical solution be
gree with the stability condition (27.15)7.
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Fig. 27.5 The vertical displacement as a function of position and time of a string
initially plucked simultaneously at two points, as shown in Fig. 27.4. Note that each
initial peak breaks up into waves traveling to the right and to the left. The traveling
waves invert on reflection from the fixed end. As a consequence of these inversions,
the t = 15 wave is an inverted ¢t = 0 wave.

Including friction: We have so far assumed that the string feels no re-
sistance, clearly an idealization because we know that the notes on a
guitar fade away rather quickly. The effect of friction on the motion
of an element of string between z and z + dz is to oppose the motion
of that element. As a model, we assume that the force of friction is
proportional to the vertical velocity dy/ot of the string’s element. This
changes the wave equation to

Py ., 0y _ 0%
@ + 255 =C E
The constant & is proportional to the viscosity of the medium in which
the string is vibrating, and is inversely proportional to the density of
- the string.

(27.31)

Generalize the algorithm for the wave equation to include friction and

observe the change in wave behavior. Start off with 7' =40 N, p = 10

g/m, and & = 5. A solution might look something like that in Fig. 27.6,
- where damping of the wave is evident. As a check, reverse the sign of

r and see if the wave grows in time (this would eventually violate our
_assumption of small oscillations).

Normal modes: We know from the analytic solution that there are normal-
mode solutions to the wave equation that vibrate with one frequency.

Ve U O e O IR, p G G T s o SRR O S PR OO e s
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4
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time 1015
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position

string is initially placed in a norma] mode, for example

y(z,t =0) = 0.001 sin 272 : (27.32)
Try other modes. See if the sum of two modes gives beating.

ariable density and tension: If the
tension will no longer be a cons
Fig. 27.'8. In this case, the wave

string has a variable density, then its
tant, and waves propagate as shown in
equation becomes [F&W 80]:

T 2 T
0 [T(I)By( ,t)} = p)2¥@:1)

oz oz gz =)
0T (z) By(z,1) Pyle,t) - 0%(z,0)
o oz T %E" = sla) gz - (2739

For constant tension and density, the propagation velE)c_ity ¢ =+/T/p.
This no longer will be valid for variable densities, and you should ob-
serve whether the wave moves fast

er or slower in regions of high density.
To be specific, assume that the density and tension are proportional:

plz) = poe*®, ; (27.35)
T(z) = Tyeor, (27.36)
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the wave moves faster in the denser region to the right, but that its amplitu

because the string is heavier there.



376

WAVES ON A STRING

Substitution of these relations into (27.34) yields the new wave equation:

0%y(z, t) + o0 0(zt) T 8%y(a,t)

oz? Po Oz po  O¢2 (2e.2)

This equation is similar to the wave equation with friction, only now
the first derivative is with respect to z. The corresponding difference
equations are =

; .
¥63 = 960+ (20 Dyt g610 g

2
-3 aﬁgf" b +1,1) - y(i,1), (27.38)
VRITD = B -y6s -0+ BB b

PoAz

At 2T0 . s ’ i o ;
—= )= 1 — il gl (27
+(Ax) oo WE+ 1) +y(i - 1,5) 2y(4,7)]-(27.39)
Modify your program to handle this algorithm with ¢ — 0.5, Ty =
40 N, and py = 0.01 kg/m. Explain-in words how the wave motion

dampens. The behavior you obtain may look something like that shown
in Fig. 27.8.
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