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Abstract. Even simple, standard price adjustment models from economics – used
to model the “invisible hand” story of Adam Smith – admit highly chaotic behavior.
After relating these dynamical conclusions to complexity problems from numerical
analysis and showing the mathematical reason why these results arise, it is suggested
why similar counter-intuitive conclusions permeate the social sciences.

A lesson learned from modern dynamics is that natural systems can be surpris-
ingly complex. No longer are we astonished to discover that systems from, say,
biology (e.g., [GOI, Ma1, Ma2]) or the Newtonian n-body problem (e.g., [MM, Mo,
Mk, SX, X]) admit all sorts of previously unexpected dynamical behavior. This
seeming randomness, however, sharply contrasts with what we have been condi-
tioned to expect from economics. On the evening news and talk shows, in the
newspapers, and during political debate we hear about the powerful moderating
force of the market which, if just left alone, would steadily drives prices toward
an equilibrium with the desired balance between demand and supply. The way
this story is invoked to influence government and even health policies highlights its
important, critical role. But, is it true?

I have no idea whether Adam Smith’s invisible hand holds for the “real world,”
but, then, no one else does either. This is because, even though this story is used to
influence national policy, no mathematical theory exists to justify it. Quite to the
contrary; what we do know indicates that even the simple models from introduc-
tory courses in economics can exhibit dynamical behavior far more complex than
anything found in classical physics or biology. In fact, all kinds of complicated dy-
namics (e.g., involving topological entropy, strange attractors, and even conditions
yet to be found) already arise in elementary models that only describe how people
exchange goods (a pure exchange model).

Instead of being an anomaly, the mathematical source of this complexity is so
common to the social sciences that I suspect it highlights a general problem plagu-
ing these areas. If true, this assertion explains why it is difficult to achieve progress
in the social sciences while underscoring the need for new mathematical tools. In
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this article I explain my suspicion by outlining what goes wrong with the price ad-
justment story. To do so, in Sect. 2, after quickly introducing the needed concepts
(I recommend [V] for a complete, relaxed description), the price assertion is de-
scribed in terms of the structure of vector fields on a sphere. Then, an explanation
and extension of this counter-intuitive result are given.

2. The price model

In a n ≥ 2 commodity world without production, agents can exchange goods
according to (positive) prices. If pj is the price per unit of the jth commodity,
the cost of xj > 0 units is pjxj . So, letting vector p represent the prices of all
commodities, the cost of a commodity bundle x = (x1, . . . , xn) ∈ Rn

+ is computed
by the inner product (p,x). In an exchange economy, what the kth agent can afford
is based on what he can sell – his initial endowment wk – which provides wealth
(p,wk). Thus at prices p, agent k can afford a commodity bundle xk satisfying the
budget constraint (p,xk) ≤ (p,wk), or any xk in the budget set

(2.1) {xk ∈ Rn
+ | (p,xk − wk) ≤ 0}

The boundary plane passing though wk with the price vector p as a normal is the
budget plane.
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Fig. 1. The kth agent’s demand function.
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A person’s choices at prices p are governed by personal preferences. As a natural
ordering doesn’t exist on Rn, n ≥ 2, impose one by assuming each person’s prefer-
ences are captured by a utility function uk : Rn

+ → R where uk(y) > uk(x) iff the
kth agent prefers bundle y to x. To further simplify the mathematics, assume that
individual preferences are strictly convex. This means that for any x, those com-
modity bundles this person likes as much or better than x, {y | uk(y) ≥ uk(x)}, is
a strictly convex set. Also, assume that all components of ∇uk are positive. (Thus,
all commodities are desired and an agent prefers more than less of each good.) With
this idealized set-up, the kth agent’s demand at price p, xk(p), can be determined
by elementary Lagrange multiplier techniques; it is where a uk level set is tangent
to the budget plane. (See Fig. 1.) As this requires ∇uk to be orthogonal to the
budget plane at xk(p), there is a positive scalar λ so that

(2.2) λp = ∇uk(xk(p)).
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The kth agent’s excess demand, ξk(p) = xk(p) − wk, is the difference between
what is demanded, xk(p), and what is supplied, wk. This elementary derivation im-
mediately leads to the classical properties of the aggregate excess demand function,
ξ(p) =

∑n
k=1 ξk(p), called Walras’ laws.

1. ξ(p) is single-valued and smooth (because of uk’s convexity and smoothness),
2. ξ(p) is homogeneous of degree zero (because each ξk(p) is defined by the tangency

of the utility function with the budget plane, and for any positive scalar µ, both
p and µp define the same budget plane), and

3. ξ(p) is orthogonal to p (because both wk and xk(p) are in the budget plane).

What else happens. As only elementary concepts are used, one might anticipate
only well-behaved properties to emerge. But, as already promised, this is not true.
To place this problem in a mathematically more convenient framework, notice that
Prop. 2 allows us to scale the prices to norm 1; so, treat prices as points on the price
simplex Sn−1

+ – the intersection of the unit sphere Sn−1 with the positive orthant
Rn

+. On the price simplex, ξ(p) is a smooth, tangent vector field (Prop. 1, 3).
Independent of how prices may change, it is reasonable to wonder whether equi-

libria for Adam Smith’s story exist; namely, is there a price p∗ whereby ξ(p∗) = 0
so supply equals demand? To see why this is true, notice from the construction that
choosing p nearly orthogonal to an axis forces the budget plane (the constraint for
the Lagrange multiplier problem) to be nearly parallel to this axis. The strict con-
vexity of preferences combined with the optimization procedure, then, forces a large
excess demand for this good. This makes sense; the p choice significantly reduces
the (relative) price of a desirable good, so its demand should become unbounded.
Mathematically, this forces the vector field ξ(p) to point toward the interior of
the price simplex all along the boundary, so, from the Brouwer fixed point theo-
rem (e.g., see [M]), ξ(p) has a zero; thus, price equilibria exist. This description
captures the essence of the important Arrow-Debreu construction [AD, AH, De2]
establishing in quite general settings the existence of Adam Smith’s equilibria.

Price equilibria exist, but do prices tend toward them? In differential form, the
commonly told story about the price dynamic, where an increase in demand results
in an increase in prices, is

(2.3) p′ = ξ(p),

with the discrete analogue

(2.4) pn+1 = pn + hξ(pn)

for some positive constant h. In either setting, the resulting price dynamic is gov-
erned by the properties of ξ(p). The natural question posed by Hugo Sonnenschein
[So1, 2], then, is to determine all general properties beyond 1-3 that ξ(p) must
satisfy. For instance, if Adam Smith’s invisible hand story holds, then at least one
of the price equilibria must be a local attractor (where nearby prices converge to
it). Or, if Eqs. 2.3,4 never are chaotic, or never have positive topological entropy,
or never admit an attractor with a particular fractal dimension, or fail to satisfy
the newest form of chaos yet to be discovered, then these conditions constitute still
other properties enjoyed by excess demand functions.

xinwei

xinwei
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To re-express Sonnenschein’s question, let Ξ(n) be the set of continuous tangent
vector fields on Sn−1

+ , U the set of continuous (smoothness is dropped as the tan-
gency of a level set and the budget plane suffices), strictly convex utility functions,
and Rn

+ the space for initial endowments. With a agents, the construction of the
aggregate excess demand function defines a mapping

(2.5) F : [U × Rn
+]a → Ξ(n)

Using this notation, we can interpret Sonnenschein’s question as seeking a charac-
terization of the F image set in Ξ(n).

Sonnenschein provided an answer, Mantel [M] improved it, and Debreu [De1]
proved the version of the SMD theorem which, in our notation, follows. In this
theorem, Sn−1

+,ε = {p ∈ Sn1
+ | each pj ≥ ε} is a trimmed price simplex bounding

prices away from zero, and Ξε(n) is the set of continuous tangent vector fields on
Sn1

+,ε.

SMD Theorem. For n ≥ 2 and ε > 0, the price mapping

(2.6) Fε : [U × Rn
+]a → Ξε(n)

is surjective iff a ≥ n.

In other words, with at least as many agents as commodities, anything can hap-
pen! Whatever dynamic on Sn−1

+,ε is contemplated, no matter how complex, or how
it may imitate a favored example from physics or the newest form of chaotic dy-
namics, the SMD theorem ensures there exist endowments and continuous, strictly
convex preferences for the a ≥ n agents so that, at least on the trimmed price
simplex, the aggregate excess demand function is the chosen vector field. It now
is trivial to dismiss the Smith story simply by choosing a vector field of the kind
illustrated in Fig. 2a with a lone, unstable equilibrium. While this economy ad-
mits an equilibrium, the prices move away from it. (For supporting preferences,
see [Sc].) Of course, as we also could choose a vector field without a zero, the zero
promised by the fixed point theorem must be hiding in the excised ε-region. On the
other hand, should the vector field have the correct global index properties on the
boundary of Sn−1

+,ε , preferences can be found where ξ(p) has no zeros in the excised
region (which restores the original intent of the conclusion) [MC].
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Fig. 2a. Scarf’s example
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Fig. 2b. Coin flipping

3. Consequences of the SMD Theorem

What a mess! Although the SMD Theorem seriously erodes confidence in Smith’s
invisible hand, there are counterarguments. A natural approach is to dismiss SMD
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by speculating that only pathological preferences could define an aggregate excess
demand function admitting chaos. To explore this hope, let me provide a quick,
intuitive introduction for “chaos” by using the highly random event of continually
flipping a coin. As either “Heads” or “Tails” can follow each event, the complexity
is manifested by the tree diagram (Fig. 2b) where any downward branch lists all
admissible outcomes. The dynamic governing the path next taken at each node is
decided by chance, and the complexity is manifested by the rapid growth of the
tree size generated by the two different choices that follow each event.

If the “chance moves” of a coin flip could be replaced with a deterministic dy-
namic xn+1 = f(xn), then the dynamics would admit an equally complicated struc-
ture – chaos. This can be accomplished if phase space can be divided into regions
where the f image of each is the full space. (Examples are easy to construct; e.g.,
for H = [0, a], T = (a, 1], let the graph of f connect (0, 0) with (a, 1) with (1, 0);
this defines the well-analyzed tent map; e.g., [D, R].) The only difference between
the tree diagrams for a flipping penny and this dynamic is that the path taken at
each juncture is decided by deterministic dynamics; either choice is admissible and
decided by the selection of the initial condition. So, whenever phase space can be
divided into several regions where several admissible paths emerge from each node,
the complexity defined by the deterministic dynamics can make the random tree
of the flipping coin pale in comparison. (For an example with Newton’s method
for finding zeros of polynomials, see [S2]. In [S2], concepts from “chaos” are then
modified to analyze “static” aggregation paradoxes from statistics, probability, and
voting.) Each admissible branch on this tree for dynamics is called a word; the set
of all words (i.e., all admissible branches) is the dictionary.

It now is clear how to construct a dynamic with as complicated a dictionary as
desired. The main ingredient is for the map to be sufficiently expansive so that
the f image over a specified region covers several other specified regions. As the
SMD Theorem ensures that this “over reaction” effect occurs with price dynamics,
it remains to understand whether it requires the preferences for agents to be so
strained that economists could reject them – along with the troubling consequences
of the SMD theorem – as being unrealistic. To analyze this inverse problem, notice
that (with the exception of the scalar term λ) Eq. 2.2 resembles an inverse function
relationship x = g(g−1(x)) with its derivative condition (g−1)′ = 1/g′. Thus, one
might suspect from Eq. 2.2 that expansiveness of individual demands must, in some
way, correspond to preferences where the level sets of uk are fairly flat with small
curvature. (While the precise conditions are more complicated [S6], this intuition is
correct.) Now, by browsing through books and journals on mathematical economics,
one discovers that this is a common choice for utility functions. Thus, the SMD
theory cannot be rejected on these grounds.

Another way to try to save Smith’s story is to accept the SMD theorem but
wonder whether Eqs. 2.3, 4 are overly simplistic; maybe the market works in more
complicated and mysterious ways. If so, then how should market mechanisms be
modeled and what do they require to ensure that some price equilibria always will
be reached? The long history of this theme (e.g., see [AH, AHu, H]) includes
Smale’s [Sm] “Globalized Newton Method (GNM)” (which can be viewed as using
Milnor’s [M] proof of the Brouwer fixed point theorem to extend [KLY].) Smale
starts with a vector field, f(x), on a k-dimensional simplex, so its normalized form,

xinwei

xinwei
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G(x) = f(x)
‖f(x)‖ , maps the simplex to Sk−1. Because Sard’s Theorem ensures that

almost all values are regular, for almost all c ∈ Sk−1 the closed set G−1(c) is the
image of a finite union of circles and closed line intervals. As the endpoints of an
image of a line interval must be in the boundary of the domain of G, they are either
boundary points of the simplex, or, of more interest, zeros of f . Imposing appropri-
ate boundary conditions on f (so that, at least generically, the direction defined by
f at each point on the simplex boundary is unique) forces one endpoint to be a zero
of f . Thus, by parameterizing the curve by α(t) and differentiating G(α(t)) = c, a
zero is found by solving the differential equation α′(t) = λD−1

α(t)f(f(α(t)) with an
initial condition on the simplex boundary; this is a continuous version of Newton’s
method.

The GNM generated interest in economics with its guarantee of finding a zero
for ξ(p). But, quickly, it was dismissed as an explanation of price dynamics because
there was no way to justify the market behaving in this contrived manner. Equally
as important was the associated informational overload; not only does GNM feed
on all the market information from ξ(p), but also from its Jacobian Dpξ. Such
information, requiring knowledge of, say, how the demand for steel varies with the
price of bubble gum exceeds all bounds of decency and reasonableness making the
GNM an unrealistic explanation of Smith’s invisible hand.

If the GNM doesn’t work, what does? Simon and I [SS] investigated this question
by seeking the minimal conditions that would allow a market mechanism to work.
Instead of a particular procedure, we assumed the general form

(3.1) p′ = M(ξ(p), Dpξ)

where M is piecewise smooth and where the dynamics stops iff ξ(p) = 0; our goal
was to find what kind of information does M need to ensure convergence to some
price equilibrium.

Notice that Eq. 3.1 extends Eq. 2.3 by permitting a wide spectrum of possi-
ble choices ranging from where different commodities have different rates of price
adjustment (by choosing M = A(ξ(p)) where A is a positive diagonal matrix) to
potentially very complex mechanisms. But even with all this flexibility, our result
is discouraging for n ≥ 3 commodities. Namely, should prices adjust as suspected –
with some choice of M – then M needs most of the differential information required
by GNM to always ensure convergence to at least one of the price equilibria. Some
minimal informational savings can arise (i.e., some terms from the Jacobian can
be dropped) when designing an M by exploiting the boundary properties of the
vector field. (For instance, the integrated information requiring the excess demand
to point inwards along the boundary of the price simplex exempts the two-good
setting from this negative assertion; Eq. 2.3 does support the n = 2 supply and
demand story. Here, the price simplex is the portion of the unit circle in the first
quadrant. The boundary properties of ξ(p) force an orbit of p′ = ξ(p) starting near
the boundary to move inward along the circle until it hits one of the promised price
equilibria.) So, trying to preserve the Adam Smith story even in this general Eq. 3.1
framework carries the heavy cost of needing an unrealistic amount of information.
(Among the extensions of [SS], I call attention to [J]. In [SS] we used the geometric
theory of dynamical systems, the structure of GL(n) and some singularity theory;
[J] replaces the singularity theory with a topological argument.)

xinwei
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There is even more bad news; by being a differential equation Eq. 3.1 requires
a continuum of market information. Of course, we would replace Eq. 3.1 with a
discrete version, but could information be lost in the gaps? To investigate this
question, in [S3] the discrete analogue

(3.2) pn+1 = pn + M(ξ(pn), ξ′(pn), . . . , ξ(s)(pn); . . . , ξ(pn−j), . . . , ξ(s)(pn−j))

was analyzed to find the minimal conditions on M (the price mechanism), the
number of derivatives s of the excess demand function, and the time lag j needed
to ensure convergence of any exchange economy to some price equilibrium. (There
are, of course, convergent mechanisms such as the bisection method, but we need
Eq. 3.2 to investigate Smith’s market pressure story and whether information is
lost by using a discrete version of the differential equation.) Again, Eq. 3.2, which
permits the simplistic approach of Eq. 2.4 to be replaced with highly complex,
involved mechanisms, appears to subsume most, if not all, proposed price theories.
Nevertheless, the theorem asserts that with n ≥ 2 commodities, no mechanism can
always promise convergence to a price equilibria. Instead, because of the admissible
chaotic behavior of Eq. 3.2 inherited from the SMD Theorem, for any choice of
M , s, and j, there exists an open set of aggregate excess demand functions (in
any reasonable topology on function space) and an open set of initial conditions
where convergence never occurs. (For an interesting variation of this impossibility
assertion, see [BK].) Incidentally, the same assertion holds for numerical methods
used to find the real zeros of real polynomials [S4].

A partial positive conclusion finally was found in [SW]. Stated in words, if de-
mands are driven by preferences, why should the economics of prices be the same in
Rio as in Chicago, in Moscow as in Stockholm, or in Zurich as in Paris? Maybe the
economists’ long time goal of an universal price mechanism is an impossible dream;
instead, maybe different locales require different mechanisms. To express this math-
ematically, say that a given mechanism M covers a set of economies (i.e, a set of in-
dividual preferences and initial endowments for the agents) if pn+1 = pn+M(ξ(pn))
converges to at least one equilibrium should the prices start sufficiently close to it.
So, mimicking the the reason it is impossible to represent the sphere S2 with a single
chart, maybe the topology of price adjustments requires more than one mechanism
to cover the set of all economies.

While Williams and I found (in a more general setting) that this is true, we
also found that the space of economies is σ-compact with this topology where the
obstacles preventing compactness are singularities. So, for any ε > 0, if one is
willing to exclude a set of economies of (an appropriate) measure less than ε (which
eliminates a region around singularities), the remaining set of economies (i.e., the
remaining choices of initial endowments and preferences) are covered by a finite
number of price adjustment procedures. A successful mechanism exists for each
economy, but we don’t know which one. To relate this assertion to actual practice,
notice that the purpose of “market regulations” is to change the price dynamic.
So these results imply that while an unregulated free market might not work as
widely advertised, if correct regulations are imposed, the market now might behave
as desired. This conclusion probably would not be to Smith’s liking, but it finally
is a positive assertion and we might not be able to do much better.

xinwei
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4. More difficulties

Dampening this partial success story is the realization that the situation is much
more complex. Start with the fact that by measuring market reactions, the aggre-
gate excess demand function is an important tool used in all sorts of ways. For
instance, in spite of the SMD Theorem, it is reasonable to use a specified ξ(p) to
extract valuable information about the economy. Perhaps we can learn what to
expect should a new commodity be added, or another suppressed. Similarly, an
area called consumer surplus computes the excess demand functions for each com-
modity and then pieces this information together to obtain conclusions about the
full excess demand. The area of macroeconomics, with its concern about measur-
ing ξ(p), quickly encounters realism where any attempt to compute ξ(p) for all ten
million commodities would generate Gee-Whiz comments “If a thousand modern
computers started during the ‘Big Bang,’ . . . ” Consequently they use statistical
measures of the excess demand for certain commodities to make inferences about
the general situation.

All of these topics involve the tacit assumption that, in some way, the excess
demand function for different sets of economies are related. But, are they? Must
a well behaved economy of ten goods remain well behaved if one good is taken
off the market, or could it become highly chaotic? To explore the reality of this
assumption, it is natural to mimic Sonnenschein’s question by seeking all possible
relationships admitted by the aggregate excess demand functions with changes in
the set of commodities. To describe this issue with the tree description used to
introduce chaos, label the 2n − (n+1) subsets of two or more commodities in some
manner as C1, C2, . . . , C2n−(n+1) where |Cj | is the cardinality of Cj . As above,
the aggregate excess demand function for the Cj commodities is a tangent vector
field on S

|Cj |−1
+ and the set of all continuous tangent vector fields is denoted by

Ξ(Cj). The tree diagram starts with the uncountable number of choices from Ξ(C1)
emerging from the C1 node. Attached to each choice are the Ξ(C2) vector fields
representing all of the C2 choices. This continues until at the last node we have the
C2n−(n+1) vector fields. Now, if the implicit assumption that the behavior of the
aggregate excess demand function for certain choices of commodities affects what
happens with others is true, then certain branches can be pruned off of this chaotic
tree of possibilities.

The answer again involves a trimmed price simplex which ignores (relative) prices
lower than a specified ε value, and Ξε(Cj) which denotes the continuous tangent
vector fields on this trimmed simplex. (When the goods from Cj are traded, each
agent holds fixed her holdings of all other commodities.)

Theorem ([S5]). Let ε > 0 be given. For n ≥ 2 commodities, the mapping

(4.2) Fε : [U × Rn
+]a →

2n−(n+1)∏
j=1

Ξε(Cj)

is surjective iff a ≥ n.

In other words, the “excess demand” tree description is full and chaotic; anything
and everything can happen. This permits us to design all sorts of disturbing scenar-
ios such as where with four goods the aggregate excess demand function carefully
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adheres to Smith’s story with a single globally attracting price equilibrium. Then,
withholding commodity cj from the market creates a chaotic three-commodity vec-

tor field with an attractor of, say, fractal dimension 1 +
√

j
5 , j = 1, . . . , 4. The

reader can choose what happens for each of the six two-good cases. According to
the theorem, this scenario is supported by one of those deceptively innocent ap-
pearing four-agent examples where each agent is assigned a preference for goods
(of the well behaved type described earlier) and an initial endowment. The market
pressures, as found by simple Lagrange multiplier arguments, do the rest.

The theorem can be extended to address other concerns from economics. Namely,
for any positive integer K, choose K continuous, tangent vector fields for each Cj

set. Then, there exists an n-agent example where each agent is assigned a fixed
preference relationship for the n commodities and K different initial endowments.
Computing the aggregate excess demand with these preferences and the ith assign-
ment of the initial endowments, we obtain (on the trimmed simplex) for each Cj

its ith assigned vector field. To illustrate with K = 2 and only the full set of three
commodities, the three agents’ preferences could define a well behaved aggregate
excess demand function that would delight Adam Smith should they use one set
of initial endowments, but, using different endowments with the same preferences,
any imaginable (two-dimensional) form of chaos can break out!

In other words, the SMD Theorem describes what happens with the single set
of all commodities and a single assignment of initial endowments; the above result
extends this disturbing conclusion to all sets of commodities and it shows that the
conclusion can vary significantly with changes in endowments. In particular, this
more general conclusion not only causes worry about the invisible hand story, but
it forces us to question those tacit assumptions – assumptions basic to several tools
from economics – about how the aggregate excess demand function for one commod-
ity set relates to that of others. One might argue (and this is a common reaction
during a colloquium lecture – particularly in a department of economics) that there
may exist conditions imposing strong relationships. Yes, but it is obvious from the
theorem that such constraints cannot be based upon the aggregate excess demand
function (as is a common practice); instead they appear to require imposing unre-
alistically harsh global restrictions on the agents’ preferences – restrictions similar
to those shown in [CM] to be needed to justify the consumer surplus approach.

5. Idea behind the proofs

What is going on? The derivation of the aggregate excess demand function
and Walras’ laws is sufficiently elementary to be taught in a first course on vector
calculus. So, we must wonder what a nice, simple model is doing in a complex place
like this. Actually, the source of the difficulty – which is common across the social
sciences – is that the social sciences are based on aggregation procedures. But, even
simple aggregation methods, from probability, statistics, and even voting, admit
surprisingly complex paradoxes. (For a description of some of them and why they
occur, see [S1, 2].) One way to envision the aggregation difficulties is to recognize
that even a simple mapping can admit a complex image should its domain have a
larger dimension than its image space. This is an element of the proof of the last
theorem, and it explains the hidden complexity of the social sciences. Namely, the
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complexity of the social sciences derives from the unlimited variety in individual
preferences; preferences that define a sufficiently large dimensional domain that,
when aggregated, can generate all imaginable forms of pathological behavior.

To prove the theorem, after selecting a tangent vector field for each S
|Cj |−1
+ , we

need to construct a continuous foliation for each agent so that the leaves (indif-
ference sets of preferences; i.e., the level sets of the uk functions) have the desired
convexity properties and the excess demand function they define (from the Lagrange
multiplier argument) agrees with the specified vector field on the trimmed simplex.
While the construction is technical and difficult in places, intuition can be provided
why the result holds and why we need as many agents as commodities. Start with
a two-commodity utility function u = xy where the level sets are hyperbolas. By
experimenting with the Lagrange multiplier argument and different initial endow-
ments, it becomes clear that the demand based on an initial endowment with a
relatively small amount of one commodity favors this scarce commodity – we want
what we don’t have. Thus, with two agents with initial endowments emphasizing
a different commodity, their excess demands point in opposing directions with zero
in the convex hull. So, just by changing the magnitude of each individual excess
demand at a price p (by flattening the level sets), the sum can realize a specified
value of ξ(p).

More generally, with any number of commodities, the excess demand associated
with an initial endowment lacking in a particular commodity tends to favor that
good. Therefore, with n commodities, choosing the jth agent to be shy in the jth
good creates an excess demand function pointing in a particular direction; with
a ≥ n agents, the convex hull defined by these vectors (in the tangent space at p
of the price simplex) includes the origin as an interior point. Clearly, this is false
for a < n. By varying the lengths of these vectors (i.e., by varying the curvature
of the leaves of the foliation), their sum can be whatever we desire. In this way a
continuous foliation is defined to do as advertised.

To connect the foliations defined for the various sets of commodities, notice that
if a commodity is withheld from the market, the relevant portion of Rn

+ is an affine
plane passing through wk orthogonal to the axis of the missing commodity. As
such, the budget plane passes through a portion of each level set much different
from that used to construct the leaves for the larger sets of commodities. Now,
the ε restriction forces a spacing among the foliations constructed for the different
subsets of commodities. Part of the proof shows how to exploit this gap to connect
the leaves from the different foliations to create a single foliation (while preserving
the convexity properties, etc.). It follows immediately from this construction that
any assertion trying to relate the aggregate excess demand functions from different
subsets of commodities must impose strict restrictions on preferences. Therefore,
constraints based only on the structure of the excess demand (as is typical) are
doomed for failure. Also, since individual preferences drive the social sciences, this
situation, with the accompanying troublesome complexity, undoubtedly extends to
most other areas.
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