
Physica D 237 (2008) 1157–1164
www.elsevier.com/locate/physd
The neglected pillar of material computation

Susan Stepney

Department of Computer Science, University of York, YO10 5DD, UK

Available online 9 February 2008

Abstract

Many novel forms of computational material have been suggested, from using slime moulds to solve graph searching problems, to using
packaging foam to solve differential equations. I argue that attempting to force such novel approaches into the conventional Universal Turing
computational framework will provide neither insights into theoretical questions of computation, nor more powerful computational machines.
Instead, we should be investigating matter from the perspective of its natural computational capabilities. I also argue that we should investigate
nonbiological substrates, since these are less complex in that they have not been tuned by evolution to have their particular properties. Only then
we will understand both aspects of computation (logical and physical) required to understand the computation occurring in biological systems.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Today’s computing, classical computing, is an extraordinary
success story. However, there is a growing appreciation that it
encompasses an extremely small subset of all computational
possibilities. A variety of paradigms encompass classical
computing, and their assumptions need to be carefully
scrutinized. The UKCRC’s Grand Challenge exercise [1]
includes the Grand Challenge of Non-Classical Computation
(GC-7) [1–4], whose task it is to challenge and move beyond the
various classical computational paradigms, thereby broadening
and enriching the subject area.

GC-7 identifies and challenges the classical paradigms [3],
of which the Turing paradigm is arguably the most prominent
one. The Turing machine model assumes that computation is
a logical or mathematical property, and that the computational
substrate is merely an implementation detail. As Deutsch [5]
neatly sums it up:

“Turing hoped that his abstracted-paper-tape model was
so simple, so transparent and well defined, that it would
not depend on any assumptions about physics that could
conceivably be falsified, and therefore that it could become the
basis of an abstract theory of computation that was independent
of the underlying physics.”
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Deutsch goes on to argue that Turing’s model is in fact
falsified with respect to quantum physics. Other assumptions
of the Turing model can be questioned [6] and modified, in
particular considering the effect of interacting with a physical
real-time environment [7].

The Turing model, relevant to computers as they are con-
ventionally engineered, is a designed logico-mathematical
computational model. People also see computation occurring
naturally. Neural networks, immune systems, evolving pop-
ulations, ecosystems, termites building massive and complex
homeostatic mounds, ant colonies finding shortest paths to
food, bacteria swimming up concentration gradients towards
nutrients, and more: all these biological systems are said to
compute.

But what does it mean, from this classical Turing perspec-
tive, to say that biological systems compute? Turing computa-
tion, designed computation, is about halting, computability and
universality; it is symbolic, discrete and closed (pre-defined);
it is deterministic and sequential (in the sense that probabilis-
tic or parallel variants provide no additional computational
power); it finds many interesting problems infeasible to com-
pute in general; its calculations are exceedingly fragile to small
changes or errors. On the other hand, biological computation,
found computation, is about not halting (halting equates to sys-
tem death); it is (mostly) nonsymbolic, continuous and open
(constantly adapting and evolving due to the continual flow of
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matter, energy and information through the system); it is essen-
tially stochastic and massively parallel; it finds feasible near-
optimal solutions to many classes of classically infeasible prob-
lems; and it is robust to many classes of errors. (Indeed, it is
these properties of near-optimal solutions and robustness [8]
that attract many to the domain of bio-inspired computing.) So,
how can biological systems, with properties so different from
classical Turing computation, be considered to be computing?
And if these systems are computing, what is giving them these
properties not seen in classical computational systems?

These questions arise because half the picture is missing.
Biological systems are different from the logico-mathematical
Turing view of computation: they directly exploit their material
substrate to perform their own style of computation. This
contrasts with the case of classical computation, which
is deliberately abstracted away from the implementation
substrate precisely to make it substrate-independent. The
classical computational virtual machine can be implemented
on any suitable substrate, no matter how ‘unnatural’ that
implementation may be for the substrate (for example, analogue
transistors being run saturated to make them act as digital
switches).

In this paper, I argue that we need to consider the physical,
material aspect of computation before we can understand
biological computation. To do this, we should not start with
biological substrates, since these have been finely tuned by
evolution to have their particular properties. Instead, we should
investigate various nonbiological substrates, and examine their
essential computational capabilities.

2. The effect of the substrate

2.1. The constraints of the substrate

The Turing model abstracts away from the details of the
physical substrate. Nevertheless, a realization of a computation
must occur in some physical device. Any physical structure
labours under the physical constraints of the material from
which it is constituted. These constraints include the general
constraints affecting all materials arising from the basic
laws of physics, which involves consideration of: the speed
of light; conservation of energy; entropy; energy and mass
density; quantum limits; the size of the observable universe.
These provide ultimate physical limits to computation [9–13],
general limits that can be considered the physical analogue
of computability constraints in classical computation. (There
are also some philosophical arguments whereby some logico-
mathematical computability constraints maybe also appear as
physical constraints in the form of fundamental physical laws.)

¿From the point of view of a biological system, or any
other open system interacting with its environment, there
are constraints due to natural length scales and timescales
governing the interaction dynamics.

More interestingly, from the point of view of this paper at
least, there are also specific physical properties local to the
substrate, such as its strength, plasticity, elasticity, electrical
and thermal resistance, and so on. These provide problem
and substrate limits to computation, specific limits that can be
considered the physical analogue of feasibility constraints in
classical computation.

2.2. The power of the substrate

Constraints are not always a disadvantage, however. The
state space is constrained to a smaller region, and the
computation to particular trajectories. If those regions and
trajectories are desired ones, the constraints can help the
performance of computation. For example, elasticity may
enable some form of return to equilibrium, or ‘reset’, to occur
without further specific implementation [14].

Additionally, the physical properties are not merely
constraints. Certain physical properties may enable certain
computational aspects to happen “for free”, compared to
implementing them in a classical computer: the computational
system may be able to transfer some of its computational
burden (be it memory or processing) to the substrate.
Exploitation of the specific substrate may allow new problems
to be solved in new ways; physically rich substrates may
exhibit vast, if specific, computational power. Indeed, this is
one of the claimed advantages of the whole field of analogue
computation: the underlying physical substrate implements the
required computation directly, rather than via levels of ‘virtual
machine’ that abstract away from the substrate and implement
the logical computational model. When there is a good match
between the physical properties and the desired computation,
then very efficient results may be obtained. For example: the
spaghetti sorting computer [15]; constructing Steiner minimal
trees [16] using the surface tension properties of a soap film as a
surface area minimiser [17]; performing 2D Fourier transforms
directly using the optical properties of lenses. (It should be
noted that one of the drawbacks to these analogue methods
often glossed over is that they do not scale: for example, there
is often a loss of precision with large problems. However,
analogue computers have been very widely used: the slide rule
was ubiquitous for over a century.)

2.3. Simulating the substrate

Exploiting the power of the substrate should be contrasted
with the subdiscipline of “nature-inspired computing”, where
a physical, chemical or biological process is interpreted as
computation, abstracted from the substrate, and implemented
by analogy in a classical manner. For example, simulated
annealing [18], various artificial chemistries [19], generic
algorithms [20], ant colony optimization [21], to name but a
few, have all been abstracted from the underlying substrate
and implemented in classical terms. These have proved highly
successful in their new abstract domain, but have lost something
in the translation. For example, there are often discussions
on how to implement the constraints, such as conservation
of mass in artificial chemistries, or decay of pheromones in
ant systems. When we are working with the substrate, the
substrate does such implementation “for free”. (Of course, one
of the advantages of abstracted algorithms is that one can
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1 Or ‘salted Jello’, depending on your side of the Atlantic.
then implement different physical laws, unphysical laws, if so
desired.)

3. Example substrates

3.1. Biological substrates

There is active research in the use of biological
substrates to perform “wet” unconventional computation.
Possibly the best recognized, and best developed, is DNA
computing [22], exploiting the molecular properties of base-
pair complementarity, originally to build a Hamiltonian path
finding device. Another relatively well-developed application
of a bio-molecule is the use of the bacteriorhodopsin protein
as a three dimensional optical storage memory [23,24]. There
is also active research in exploiting whole biological cells as
components in computational devices, from leech neurons [25]
to bacteria and slime moulds [26].

This research is interesting and productive, but does it tell
us anything deeper about computation? I would submit not.
There are two main reasons for this. Firstly, the applications
chosen are usually classical and digital, and not naturally suited
to the analogue substrates. Secondly, and more profoundly,
the biological substrate is extremely complex and complicated,
having evolved over billions of years to exploit specific
properties. In some sense, biological substrate is as far (or
further!) removed from a primitive substrate as are our own
designed abstract digital computational media. This makes it
extremely difficult to develop any abstract models of biological
material computation, or any concepts of how to exploit
(program) such material.

Hence, in order to understand, develop and exploit
computation in materio [27], we need to move to simple (that
is, unevolved) materials: move out of the domain of biology,
and into that of chemistry and physics.

3.2. Known physical substrates

Turing introduced reaction-diffusion systems as an hypoth-
esized morphogenic mechanism underlying animal coat pat-
terns [28]. Reaction-diffusion systems comprise chemicals that
react with each other locally, and diffuse spatially at different
rates through the system. This complicated nonlinear process
can lead to waves and spots of activity throughout the substrate.
This activity can be modulated by applying spots of chemi-
cals, or illuminating the substrate with spatially varying pat-
terns of light. Reaction-diffusion systems are now considered
more generally to be computational systems [29]. For exam-
ple, a 2D chemical substrate can be prepared to solve a 2D
Voronoi diagram problem (given a set of pn points in space,
divide the space into n regions, one per point, such that every
point in a region i is closer to pi than it is to any other p j ). Put
a spot of chemical at each point pi ; the chemical diffuses out;
at the boundaries of the Voronoi regions diffusing waves meet
and react, leaving a chemical trace marking the boundaries.
RD systems can also be used to implement logic gates (see for
example [30]) and hence Turing machines.
Mills [31] implements (approximations to) Rubel’s extended
analogue computer, using a variety of materials as the
computational substrate: conductive surfaces and solids
including conductive plastic foam, and gelatin doped with
sodium chloride (that is, salted jelly1).

3.3. Novel physical substrates

These are known substrates being exploited. Where should
we look to novel substrates that might tell us something
about computation? The idea that the ‘edge of chaos’ [32]
is connected with maximal complexity and computational
power is at least suggestive (despite its details having been
questioned [33]). This idea is that maximal computational
power occurs near a phase transition (in some parameter of
the system) [34], from a ‘solid’ form (where the system has
structure/memory, but no dynamics/processing) to a ‘fluid’
form (where it has plenty of dynamics, but no structure). In
other words, to get interesting computational properties, we
want to look for phases of matter with both complex dynamics
and complex structure over a wide range of time scales and
length scales. It is also helpful to look at cases where we could
exploit existing commercial laboratory technology [35].

Consider liquid crystals, a form of matter that lies on the
boundary between solids and fluids (sometimes called ‘the
fourth phase of matter’). A liquid crystal has both dynamics
(the molecules can flow and rotate) and structure (the molecules
are ordered on length scales much bigger than their individual
sizes). Can such materials perform computation? The answer
is a definite yes. Harding and Miller have demonstrated
that a liquid crystal chip can be programmed to act as a
tone discriminator and as a robot controller [36–38]. It is
currently unclear precisely how the material performs these
computations: in these cases the matter was programmed using
an evolutionary algorithm. One reason these researchers chose
to experiment with liquid crystals in the first place was the
commercial availability of devices conveniently packaged with
electrical contacts: liquid crystal displays. Liquid crystals are
just one form of “soft (condensed) matter”. The whole field
appears to be ripe for computational exploration, all the more
so because one end of the spectrum of this complex form of
matter includes bio-materials.

Consider nuclear spins, which are manipulated by magnetic
and radio frequency fields in the discipline of nuclear magnetic
resonance (NMR) and magnetic resonance imaging (MRI).
Materials manipulated in this was have complex structure
and dynamics in terms of the interacting spin states, which
may be analysed in computational terms [39], and has the
advantage of commercially available spectrometers sitting in
many university Chemistry departments. (This is different from
the existing field of NMR quantum computing, which exploits
spin entanglement in single molecules, rather than complex
properties of bulk matter.)

Consider plasmas (ionized gases, also sometimes called
‘the fourth phase of matter’), especially as they occur in
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experimental fusion reactor plasmas. This matter certainly has
dynamics (much of the research is dedicated to controlling
this dynamics), and turbulent structure over many length
scales. The performance of a fusion reactor depends on the
pressure gradient that can be sustained in the plasma, which
is determined by the rate at which energy leaks out of the
plasma due to turbulence. These fine-scale turbulent processes
can generate a large scale sheared flow, which feeds back
to suppress the turbulence, influencing the pressure gradient
in a complicated way. This non-linear system can yield
experimentally observable phenomena such as bifurcations,
depending on the choice of parameters. For example, we might
model the pressure gradient as a pile of sand, with the plasma
heating at its core analogous to adding grains of sand to the top
of the pile. Instabilities in the plasma can be triggered when
the pressure gradient exceeds a certain value. The resulting
redistribution of pressure destabilizes another region, and then
another, leading to an avalanche process affecting the system
over a much larger length scale than the initial perturbation
at the unstable region. So the fusion plasma has structure and
dynamics, and can be analysed as a complex system. Can it
be analysed as a computational system? What are the natural
computational modes for such a system?

4. From substrate to computer

4.1. Programmability

There are many forms of matter that have complex structure
and dynamics. Each could be analysed as a computational
system, relating its computational properties and power to
physical properties of the material substrate. What is also
required is a more unified theory of various computational
models of matter with structure and dynamics. This will tell us
something fundamental about the very concept of computation,
and how we could exploit the different natural computational
properties of different kinds of material substrates.

Computation implies more than simply allowing matter
to slosh around in a complex manner, however. It requires
programmability: we want to make the matter compute for us,
to solve our problems, not (just) its own.

Any matter used to implement a computer needs to be
programmable on at least two levels: first to implement
the model of computation, second to implement a particular
program (including input and output).

4.2. Resist the lure of Universality

A curious compulsion overcomes many researchers in
unconventional computation: no matter how inappropriate their
substrate, they seem compelled to use it to implement logic
gates, and thereby demonstrate that it can perform Turing
universal computation.

Whilst it might be intellectually interesting to realize just
how many weird ways there are to implement extremely inef-
ficient Turing machines, what does this teach us about compu-
tation that is new? I would submit that, while using a reaction-
diffusion computer to generate Voronoi diagrams in a natural
manner suited to the medium is interesting, using it to imple-
ment unnatural and glacially slow logic gates is rather less so.

This compulsion seems to stem from a fear that
conventional digital colleagues will disparage nonuniversal
devices; however, a long history of successful nonuniversal
analogue computation would not seem to support this fear. We
should be exploiting novel materials for what they can naturally
do well, not restricting them to do what other materials can do
so much better.

Zauner and Conrad [40] argue strongly for consideration of
the advantages of “anti-universal” machines, that can solve only
a certain class of problems. The argument partly reduces to how
much of the “program” resides in the logical state (software),
and how much in the physical state (hardware), of the machine.
When is physical reconfiguration to be considered as building
a different computer, and when is it merely reprogrammming
the hardware? The boundary here is blurring even in the
case of classical digital hardware, with the growing used of
“programmable hardware” such as Field Programmable Gate
Arrays (FPGAs), and will blur even more as we use other
complex matter as a computational substrate.

Zauner and Conrad [40] further argue that it may even be
advantageous to consider one-shot “instance machines”, that
can solve only a single instance of a problem. By avoiding the
requirement for resetting a machine to its initial configuration,
the computation can irreversibly alter the state of the system
(often a consequence of using a complex biological substrate,
for example).

As we extend our notion of what is a computational device
away from the requirement for universality, we will need to
consider more dimensions in complexity and cost analysis [41],
especially the setup time (initializing the logical and physical
state), and the material cost (which may no longer be able to be
amortized over multiple uses).

4.3. Implementing the computational model

Abstract mathematical models of computation need to be
implemented in physical devices that have been engineered
to behave in a manner isomorphic to those models. That
engineering can be extremely intricate, since there is no reason
to believe a priori that physical material will behave in
accordance to some independent, unrelated abstract model.

For example, Charles Babbage implemented abstract
mathematical laws of arithmetic using exquisitely designed
and arranged collections of tens of thousands of brass gears
and other parts. (Although Babbage himself never actually
completed his Difference Engine, Swade and colleagues at the
Science Museum built a working implementation, completed in
1991, to Babbage’s original design and within the engineering
tolerances of the time [42].)

Similarly, implementation of a Turing machine requires
implementation of the “moving parts” that represent the current
state, the state machine transitions, the moving head, the tape,
and the tape symbol reading, writing and erasing mechanisms.
Although one could do this (micro-)mechanically [43,44],
the usual implementation is the classical digital electronic
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computer. This requires exquisitely designed and arranged
collections of many millions of transistors and other parts.

The raison d’être of computation in materio, however, is to
be able to forego this implementation step. Rather than start
with some abstract mathematical model, and then delicately
engineer the substrate to implement it, one starts with the
computation that the substrate does naturally. So there is little
or (ideally) no engineering required to implement the model
of computation itself. One is instead computing “close to the
physics”, doing what comes naturally, and therefore (hopefully)
efficiently. This does not mean, however, that there is no
engineering required at all: one still has to be able to program
the device, else it is just a block of material.

4.4. Ballistic programming

The Turing machine model is a “ballistic” style of
computation: that is, the program is loaded, the initial
configuration (input) is set up, then the computation “fires off”
and proceeds with no further input from the external world. If
and when the machine eventually halts, the final state (output)
can be read from the tape. The Turing model implements a
black box (partial) function evaluator.

An in materio ballistic analogue would require its initial
condition of the material to be set in a particular input state, then
the material would be left to compute, and the final state of the
material would contain (an encoding of) the output. Different
initial conditions, corresponding to different inputs, would yield
correspondingly different outputs. But what of the “program”?

At the simplest level, the “program” is just the laws of
physics, as realized in matter with complex structure and
dynamics. The substrate follows these natural laws, in a
complex manner from its given initial conditions. To change
the program, one cannot change the laws of physics, however,
so one changes the structure and dynamics of the substrate.

One could do this by changing the substrate itself for one
with different structure and dynamics; essentially, changing to
a different computer.

One could design the path of the computation itself to
affect the material, and hence its future behaviour, through
feedback, including: temperature and other physical changes;
chemical composition changes; biological growth processes.
Depending on how resettable such changes were, this form of
programmability might imply a one-shot “instance machine”.
(One of the current problems with using biological substrates
is that they are extremely more difficult to “program” in
this manner than nonbiological substrates, due to them
having evolved intricate structure and dynamics for their own
purposes.)

Or one could directly modulate the substrate’s behaviour
by application of some form of external field (for example,
electrical potentials [36], magnetic fields [39], incident light).
Since one would probably wish to alter the modulation
depending on the current state of the computation, this final
option fits in with an interactive style of programming, where
the modulation might also be chosen depending on the current
state of the environment.
4.5. Interactive programming

Computational models such as CSP [45] and π -calculus [46]
are less concerned with halting, and more concerned with
ongoing interaction with an environment. Wegner [47]
discusses interaction machines, “Turing machines extended by
addition of input and output actions that support dynamic
interaction with an external environment” (and claims that
they are more powerful than Turing machines). Interaction
machines are therefore more akin to a “guided missile” than
a “ballistic” metaphor. They provide a more natural way of
describing and reasoning about certain forms of computation:
real-time, embedded, embodied, interactive applications that
need to respond to their changing environment, which itself
may be changing in response to intermediate outputs from the
computation, in some closely coupled feedback loop [7]. This
style of computation has rather different requirements from
classical discrete “payroll processing” style applications (which
are well suited to classical computation).

For example, the computation should match the timescales
and precision of the environment with which it is interacting,
and be tolerant of stochastic noisy analogue input. A material
system that operates on the same timescales and precision
as the environment, and which is itself also stochastic, noisy
and analogue, may well be more naturally suited than a high-
precision digital system. The interactive style of computation
furthermore allows continual minor corrections “in flight”,
rather than requiring exquisitely precise initial setup (which is
furthermore impossible even in principle in an unpredictably
changing environment). One would wish to work with the
natural dynamics of the substrate, so that minor perturbations
due to noise naturally return to the original computational
trajectory, and that environmental (including programmatic)
inputs naturally move the system into other trajectories. In other
words, we are working with, rather than against, the natural
dynamics of the substrate. We can even exploit the noise as a
computational resource in its own right [48].

The means of programming an interactive in materio
machine would naturally be by modulating externally imposed
fields, which could well be integrated with environmental input
mechanisms (via suitable transducers).

4.6. The programming model

A natural question arises: how to chose the right field
modulations to achieve the desired computation? In other
words: what is the programming model? Harding et al. [38]
argue that material substrates are so complicated and their
dynamics so ill-understood that the best approach is to treat
each substrate as a “black box”, and use an genetic algorithm
approach to evolve the desired programmed inputs. They use
this technique successfully to program their liquid crystal
applications [36,37].

There are two objections to their proposal, however. First,
they use fixed inputs for a computational run, and it is not
clear that their approach scales to more sophisticated time-
varying inputs. Second, and more importantly, although such an
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approach suits their application-orientated emphasis, it would
not yield any new insights into the nature of computation
itself. Miller [private communication] has suggested that an
evolutionary approach could be adapted to investigate the
computational properties, in a more white-box approach: this
seems entirely plausible.

As for the argument that the dynamics is too complicated:
although the detailed microscopic properties probably are too
complicated to model or simulate to any fine degree, it might
be hoped that a computational abstraction would be more
amenable to analysis. In the same way that it is possible to
abstract the detailed semiconductor physics of a transistor into
a model of a switch (albeit because the implementation was
designed to support that very abstraction), it might be possible
to abstract the detailed dynamics of the substrate into higher
level trajectories through phase space and attractor basins, and
thence to form the basis of a computational, and ultimately,
a programming, model. For more classical computational
examples: DNA computing exploits only a small subset of the
attributes of the system (specific pairing of the complementary
bases), so the detailed chemical processes do not need to be
considered from the perspective of the computational model; a
computational model of a biological regulatory network may
consider it to be a logical switching network, abstracting from
its underlying biological and chemical complexity.

4.7. Gradients and flux

A computer, like any nonequilibrium device, requires a
flow of matter, energy, or information through it to function.
Classical digital computers ingest electricity and excrete waste
heat.

Material computers also require such a gradient and flow:
slime moulds require nutrients; chemical reaction diffusion
systems require influx of fresh chemicals and removal of waste
products; packaged liquid crystal displays run on electrical
power; and so on. Applying and controlling a suitable gradient
(for example, extracting specific waste chemical products,
or controlling environmental fluctuations such as temperature
changes) might be quite challenging.

Biological organisms have evolved to exploit information
gradients. A full computational theory of biological systems
should be able to explain and exploit the roles of both material
and information gradients.

4.8. An architecture

Fig. 1 sketches an architecture for a programmable in
materio computer. The main component is the material
substrate, with complex structure and dynamics behaving
according to the laws of physics. Through this substrate run
pervasive programmable fields, to modulate the substrate’s
structure and dynamics. (The precise nature of these fields
will be determined by the requirement for programmability,
and by the specific details of the material: electromagnetic
fields are one obvious candidate.) Environmental inputs, and
program instructions, are provided via these fields. Information
Fig. 1. An architecture for a programmable in materio computer.

from the substrate can be read out, by natural emissions, or
by modulation of pervasive fields. A programmable device
(possibly a classical digital computer) controls the pervasive
fields, thereby providing program instructions. The precise
instructions provided may depend on details of the output
from the substrate. Hence the structure and dynamics of the
substrate are modulated by environmental inputs and program
instructions, which in turn may be modulated by the material’s
state, in a closely coupled feedback loop.

Simpler special purpose “ballistic” in materio computers
may not require all these components, in particular not the
hybrid classical computer to control the programming.

If we want to shoehorn this architecture into a classical
Turing-like model, we might think of the in materio component
as an (interactive) “oracle”. However, this relegation of most
of the interesting computation into a mysterious black box
seems to lose much of the power and interest of considering
the material to be implementing a (nonclassical) computational
model in its own right.

5. Biological substrates

The kinds of lightly-engineered bulk matter mentioned here
all implement what might be called “diffusion communication”
mechanisms: all interactions are with local, neighbouring
material, and so information can only diffuse through the
substrate. Diffusion is slow.

Wires (pipes, nerves) are a means to implement nonlocal
communication: information can move in larger leaps through
the substrate, resulting in faster communication, and more
complex dynamics. As we begin to build models of the
computational capabilities natural to materials, we should be
in a position to consider the effect of varying degrees of
inhomogeneity in the materials, including the capability for
long-range interactions.

The ultimate in inhomogeneous natural computation
material is biological material. It is easy to be misled by
cartoon pictures of cells with a blob of nucleus floating in
some thin liquid. Yet cells are intricately structured, with
nested compartmentalization providing gating and control of
bulk diffusion, and highly dynamic, with cytoskeletal dynamic
infrastructure supporting system-wide migration, self-assembly
and self-reproduction. The cartoon should look more like
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Fig. 2. The informatic (logical) and the material (physical) pillars of
computation, supporting biology.

minestrone soup than salt water; inside the nucleus is more
complicated still. Moreover, there are many emergent levels
of structure and dynamics between basic physical or chemical
processes and a fully functioning biological cell.

This is why starting at biology in an attempt to get
computational models other than Turing machines seems too
great a first step. A route that first starts with understanding
the computational properties of (relatively) simple materials, in
terms of their complex structure and dynamics, and then moves
towards more complicated materials, ultimately to materials
evolved to exploit information gradients, seems more likely
to succeed. (I am by no means saying that researchers should
stop working on biological computation from an applications
perspective: that has a different goal.)

6. Summary and conclusions

Fig. 2 shows the “classical informatics” pillar of computa-
tion, the subject matter of conventional computer science. It
also shows the neglected pillar of material computation, the
computation that physical matter performs “naturally”. The
overarching subject of biological computation rests on both
these pillars: evolved material exploiting an information gradi-
ent. I have argued that only by fully understanding both pillars
will we be able to produce a theory of biological computation.
And on the way up the material pillar, we will discover fasci-
nating and powerful new models of material computation.
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