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THE IMPACT OF THOM’S COBORDISM THEORY

MICHAEL ATIYAH

1. Introduction

At the 1958 International Congress of Mathematicians in Edinburgh, René Thom
received one of two Field Medals for his development of cobordism. In his citation
[11] Heinz Hopf described the definition of cobordism as one of those elementary and
apparently trivial constructions which can hardly be expected to yield significant
results. He compares this with Hurewicz’s definition of homotopy groups, a very
simple idea which has turned out to be extremely fruitful. Hopf then points out
that there is in fact a close link between cobordism and homotopy which Thom
exploits.

In fact the basic idea linking homotopy theory to differentiable manifolds goes
back to a construction of Pontrjagin [13]. Given a smooth map f : Y → X between
two compact, connected and oriented differentiable manifolds, the inverse image
f−1 (p) of a regular value p ∈ X is an oriented submanifold F of Y with dimF =
dimY −dimX. It is easy to see that the homology class of F in Y is independent of
p and is a homotopy invariant of f : in fact it is the Poincaré dual of the cohomology
class f∗ (u) where u is the fundamental class of X in top dimension.

But the geometry of F contains more information about f than just this ho-
mology class. For example, when Y = S3, X = S2 are spheres and f is the Hopf
fibration, then F is a circle and any two such circles have linking number 1. Applied
to any map f : S3 → S2, we get in this way a homotopy invariant known as the
Hopf invariant.

In another direction the homological equivalence between two fibres Fp and Fq
(for p, q ∈ X) can be strengthened to a more precise geometrical relation, namely
that there is an oriented manifold W with boundary Fp and −Fq (i.e. Fq with
the opposite orientation). This manifold W appears naturally as a submanifold of
Y × I, where I is the unit interval defined by a generic path in X from p to q. In
Thom’s terminology W is a cobordism between Fp and Fq.

Pontrjagin’s idea was to use the geometry of F to deduce information about
the homotopy of f , in the spirit of the Hopf invariant. In the early days of homo-
topy theory this geometric approach paid some dividends, but it was delicate to
use (and could lead to mistakes). But in the early fifties powerful new algebraic
methods were introduced into homotopy theory, notably the Leray-Serre spectral
sequence for fibrations, and Pontrjagin’s method then became obsolete, but Thom
turned the tables and used homotopy theory to attack the geometry of manifolds.
Specifically he showed [15] that the abstractly defined cobordism groups could
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be interpreted as homotopy groups of certain spaces MSO(n). These spaces, as the
notation implies, are constructed from the orthogonal groups SO(n) which enter
because a smooth manifold has infinitesimally a linear structure. This is a crucial
observation and it has major consequences.

Remarkably the homotopy groups of the complicated spaces MSO(n) are much
easier to compute than the homotopy groups of spheres. This led rapidly to the
complete determination of all cobordism groups, whereas the homotopy groups of
spheres have still not yielded their final secrets.

Over the rationals the cobordism ring turned out to be a polynomial algebra
with one generator in each dimension of the form 4k, and a representative generator
was the complex projective space P2k (C) . Moreover, a complete set of (rational)
invariants was given by the Pontrjagin members. These are constructed from the
Pontrjagin classes which ultimately come from the cohomology of the orthogonal
groups, emphasizing the importance of the tangent bundle of a manifold, given by
its infinitesimal linear structure.

2. Relation with K-theory

One of the first major applications was made by Hirzebruch [9], who derived
his famous formula for the signature of the quadratic form on H2k (X,R) of a 4k-
manifold. This formula given by the “L-genus” was then used by Hirzebruch with
great virtuosity in his proof [10] of the general Riemann-Roch theorem (HRR) for
complex projective algebraic manifolds. This proof was a synthesis of cobordism
theory with various new techniques, notably the Cartan-Serre theory of coherent
analytic sheaves.

Shortly afterwards Grothendieck introduced his K-groups and formulated and
proved the Grothendieck-Riemann-Roch Theorem (GRR) for an algebraic mor-
phism f : Y → X, reducing to HRR when X is a point [6].

This in turn, together with the advent of Bott’s periodicity theorems [7] for the
homotopy groups of the classical groups, led Atiyah and Hirzebruch to develop
topological K-theory as a periodic “generalized cohomology theory” [2]. This had
intimate relations with cobordism theory, and it suggested a parallel definition of
a generalized cobordism cohomology theory.

In due course Quillen [14] took this a step further by showing that (a U (n)-
analogue of cobordism) was a “universal theory” and used this to deduce its alge-
braic structure by a totally new method related to the theory of “formal groups”.

3. Relation to the index theorem

Motivated by HRR, Atiyah and Singer were led to their general index theorem
for elliptic differential operators on compact manifolds [5]. The first proof of this
[4] mimicked Hirzebruch’s approach to the signature by showing that the index of
a certain basic operator was a cobordism invariant and then using Thom’s work.

Subsequent proofs went along different lines. One proof [5] copied the proof of
GRR, while another one [3] relied on an invariant theory approach that charac-
terized the local expression of Pontrjagin forms in terms of curvature. In a sense
this invariant theory (derived from the classical representation theory of SO (n))
replaced Thom’s global geometric methods.
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4. Relation to quantum field theory

Undoubtedly the most surprising descendant of Thom’s cobordism theory arose
from new ideas in quantum field theory (QFT). Since physics is formulated in terms
of differential equations, it has always been the case that physics is closely related
to differential geometry, as in Maxwell’s equations (which led to Hodge theory)
and in Einstein’s General Relativity (GR). In the past thirty years there has been
a serious attempt to unify GR and quantum theory, and this has led physicists
into deeper territory in differential geometry. In particular the Atiyah-Singer index
theorem has found a natural place in modern physics, and so cobordism is seen
lurking in the background.

Certain parts of QFT have a topological character, and this leads to the notion of
a topological QFT, introduced by Witten and formally developed by Atiyah in [1].
According to this a topological QFT (in dimension n) is a functor from the category
of n-manifolds to the category of complex vector spaces, where the morphisms of
manifolds are cobordisms. There are a small number of rather obvious axioms, so
this definition is very much in the spirit of Thom. What is surprising, and highly
non-trivial, is that there are a number of extremely deep examples of such theories
in dimensions n = 2, 3, 4. These are numerous for n = 2 and lead in particular to
the notion of the “elliptic genus” [16]. For n = 3 we have the Jones polynomial
invariants of knots [12],[17], and for n = 4, the Donaldson invariants of 4-manifolds
[8],[18]. This whole area has been of intense interest to geometers and physicists
over the past decades, and it demonstrates the long life of a really fundamental idea
such as cobordism.
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