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SHANNON SAMPLING AND FUNCTION RECONSTRUCTION
FROM POINT VALUES

STEVE SMALE AND DING-XUAN ZHOU

Dedicated to the memory of René Thom

Preamble

I first met René at the well-known 1956 meeting on topology in Mexico City. He
then came to the University of Chicago, where I was starting my job as instructor
for the fall of 1956. He, Suzanne, Clara and I became good friends and saw much
of each other for many decades, especially at IHES in Paris.

Thom’s encouragement and support were important for me, especially in my first
years after my Ph.D. I studied his work in cobordism, singularities of maps, and
transversality, gaining many insights. I also enjoyed listening to his provocations,
for example his disparaging remarks on complex analysis, 19th century mathemat-
ics, and Bourbaki. There was also a stormy side in our relationship. Neither of us
could hide the pain that our public conflicts over “catastrophe theory” caused.

René Thom was a great mathematician, leaving his impact on a wide part of
mathematics. I will always treasure my memories of him.

Steve Smale

1. Introduction

This paper gives an account of sampling theory and interpolation, with some
focus on the Shannon theorem. One goal is to deal with noise in the sampling data,
from the point of view of probability estimates. Our quantitative estimates give
some guidelines as to how much resampling or regularization is required to balance
noise in the form of a variance. A measure of the richness of the data is key in this
development.

The theory evolves in a universe which is a Hilbert space of real valued functions
on a (an “input”) space X . In the Shannon case X is the space of real numbers.
Other examples for X include a rectangle in the plane (image processing), a graph
as in theoretical computer science, or a high dimensional space as in learning theory.

Our first generalization of the Shannon theorem centers around the case of rich
data and the use of a Hilbert space and a kernel function, reminiscent of reproducing
kernel Hilbert spaces derived from a Mercer kernel. Subsequently we see how poor
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data and general Hilbert function spaces fit into our analysis. An objective is to
integrate the theory with fast algorithms which work well in the presence of noise.
Our main results are new general error estimates.

We have been inspired by the disciplines of learning theory, regression analysis,
approximation theory, inverse problems, and signal processing, and hope that in
return this work can give some new insights into these subjects.

2. Motivating examples

To describe the general reconstruction of functions from their point values, we
give some simple motivating examples.

Example 1 (exact polynomial interpolation) (a baby example). Consider
polynomials pt : R→ R, for t ∈ t := {0, 1, . . . , d} with pt(x) = xt. The polynomial
interpolation problem is to find a polynomial f =

∑
t∈t atpt of degree d such that

f(xi) = yi for i = 1, . . . , d + 1. Here (xi, yi)d+1
i=1 is the data. The situation yields

a system of equations: L(at)t∈t = (yi)d+1
i=1 with L = (pt(xi))i=1,...,d+1,t∈t being a

(d+ 1)× (d+ 1) matrix. When {xi} are distinct, this system has a unique solution
a0, a1, . . . , ad, which solves the problem. If we denote x = {xi}d+1

i=1 , then the “data”
is given by the function on x. Here |x| = |t|. Certainly the choice of pt is quite
naive. In Section 10 this kind of problem is studied.

The next two examples are from image processing. The first is borrowed from
[7].

Example 2 (inpainting). Consider a black and white photograph as a function g
from t to [0, 1] where t is a square of pixels (e.g. 512 by 512) and g(t) represents a
shade of grey of pixel t. Now suppose that the photograph has been partly masked
as by some spilled ink or writing over it, destroying g on the mask, say t̂, and leaving
our function intact on x = t \ t̂. The problem is to recover an approximation to g
from its restriction to x. Here the input or data is (x, g(x)) for x ∈ x. Note that
|x| < |t|. This is a case of what we call later “poor data”.

Example 3 (image compression). Here t is a coarse pixel set and x is a fine
pixel set. The original picture is represented by a function from x to the interval
as in Example 2. The problem is to find a worse but reasonable representation
(with small error) as a function from t. The efficiency of a compression scheme is
measured by the ratio |x|/|t| (as large as possible, representing the richness of the
data) and the error (within a threshold).

3. Learning and sampling

The classical Whittaker-Shannon-Nyquist Sampling Theorem or simply Shannon
Theorem gives conditions on a function on R (band-limited with band π) so that
it can be reconstructed from its sampling values at integer points:

Theorem. Let φ(x) = sin πx
πx and φt(x) = φ(x− t). If a function f ∈ L2(R) has its

Fourier transform supported on [−π, π], then

f =
∑
t∈Z

f(t)φt.
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See [2], [31] for some background and some generalizations. We proceed to state
our own generalization.

Suppose X is a closed subset of Rn (a complete metric space is sufficient) and
t ⊂ X is a discrete subset. In the Shannon special case, X = R, t = Z. Another
important case is when X is compact and (hence) t is finite.

Next consider a continuous symmetric map (a “kernel”) K : X × X → R and
use it to define a matrix (possibly infinite) Kt,t : `2(t)→ `2(t) as(

Kt,ta
)
s

=
∑
t∈t

K(s, t)at, s ∈ t, a ∈ `2(t).

Here `2(t) is the set of sequences a = (at)t∈t : t→ R with an inner product defined
by < a, b >=

∑
t∈t atbt. For t ∈ t, set Kt : X → R to be the continuous function on

X given by Kt(x) = K(t, x). Unless said otherwise, we always assume the following.

Standing Hypothesis 1. Kt,t is well-defined, bounded, and positive with bounded
inverse K−1

t,t
.

In the Shannon case K(t, s) = φ(t − s), and it is seen that Kt,t is the identity,
because φ(j) = 0 for j ∈ Z \ {0} and φ(0) = limx→0 φ(x) = 1. For Example 1, we
can take X = R, t = {0, 1, . . . , d}, and K(t, s) = (1 + t · s)d. Then for c ∈ `2(t),

there holds < Kt,tc, c >`2(t)=
∑d

k=0

(
d
k

)(∑
t∈t ctt

k
)2. Since the Vandermonde

determinant det(tk)t∈t,k=0,1,...,d is nonzero, Standing Hypothesis 1 is satisfied.
Next define a Hilbert space HK,t as follows. Consider the linear space of finite

linear combinations of Kt, t ∈ t, i.e.,
∑

t∈t atKt where only a finite number of at
are nonzero. An inner product on this space is defined (from the positivity of Kt,t)
by linear extension from

(3.1) < Kt,Ks >K= K(t, s).

One takes the completion to obtain HK,t.
In the Shannon case, it can be shown (see Example 4 in Section 8) that HK,t

is the space described, i.e., f ∈ L2(R) with suppf̂ ⊆ [−π, π]. Here f̂ denotes the
Fourier transform of f . It is defined for an integrable function on Rn as f̂(ξ) =∫
Rn f(x)e−iξ·xdx, and can be extended naturally to the space L2(Rn).

In Example 1, with the kernel K(t, s) = (1 + t · s)d, we find that HK,t is exactly
the space of polynomials of degree d.

If we define `2K(t) as the Hilbert space consisting of sequences in `2(t) with the
inner product < a, b >`2K(t):=< Kt,ta, b >`2(t), then the natural map from `2K(t)
to HK,t, given by a →

∑
t∈t atKt, is an isomorphism. Note that `2K(t) does not

depend on X , just t and K restricted to t × t. Hence it discretizes the setting.
Also, Standing Hypothesis 1 tells us that `2K(t) is isomorphic to `2(t) under the
isomorphism: a→ K

1/2

t,t
a.

If s ⊂ t replaces t, then the important invariants ‖Kt,t‖ and ‖K−1
t,t
‖ improve.

That is, ‖Ks,s‖ ≤ ‖Kt,t‖ and ‖K−1
s,s ‖ ≤ ‖K−1

t,t
‖. Thus, if K is restricted to X ′ ⊂ X

and s = t ∩X ′, then Standing Hypothesis 1 remains true.
If K is a Mercer kernel and HK the corresponding reproducing kernel Hilbert

space [3], then HK,t is the closed subspace generated by {Kt, t ∈ t} (with the
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induced inner product). This gives a class of spaces HK,t satisfying Standing Hy-
pothesis 1 (besides the space generated by φ in the Shannon theorem). One such
example is a Gaussian kernel K(x, y) = e−|x−y|

2/σ2
on any closed subset X of Rn.

See Section 8, and more examples and background in [8].
So far, we have a space HK,t which plays the role of a “representation space”

in the Shannon theory. We now pass to the sampling side which we separate out.
Moreover, noise is introduced into our model in this sampling, represented by a
Borel measure ρ on X × R.

Let ρX be the marginal measure induced by ρ on X , i.e., the measure on X
defined by ρX(S) = ρ(π−1(S)) where π : X × R → X is the projection. It defines
a space L2

ρX on X with L2 norm ‖f‖ = ‖f‖L2
ρX

:=
(∫
X |f(x)|2dρX

)1/2. It is not
assumed that ρX is a probability measure as in the special case of learning theory.
In fact in the Shannon case it is the Lebesgue measure.

The set for the sampling is a discrete set x ⊂ X . The set x may be determined
as in a net (Shannon, with x = Z) or may have come from a random sample as in
[8] or [4]. For x ∈ X , we denote the variance of the conditional measures ρx of ρ as
σ2
x. We assume that the conditional measures ρx(x ∈ X) of ρ satisfy

Preliminary Version of Special Assumption. For x ∈ X, ρx is a probability
measure with zero mean supported on [−Mx,Mx] with B :=

(∑
x∈xM

2
x

)1/2
<∞.

To study the relationship between the discrete sets t and x, we define the linear
operator Kx,t : `2(t)→ `2(x) and its adjoint Kt,x : `2(x)→ `2(t) by the matrix

(3.2)
(
Kx,ta

)
x

=
∑
t∈t

K(x, t)at.

Standing Hypothesis 2. Kx,t (and hence Kt,x) is well-defined and bounded.

The sampled values y ∈ `2(x) will have the form:

(3.3) For f∗ ∈ HK,t, and x ∈ x, yx = f∗(x) + ηx, where ηx is drawn from ρx.

Special Assumption implies that {ηx} ∈ `2(x) and ‖{ηx}‖`2(x) ≤ B <∞.
Define the sampling operator Sx : HK,t → `2(x) by Sxf = (f(x))x∈x. That

is, for a function f from HK,t, Sxf is the restriction of f to x : f |x. Then for
f =

∑
t∈t ctKt, we have Sxf = Kx,tc. It follows that

∑
x∈x f

∗(x)2 = ‖Sxf∗‖2`2(x)

can be bounded by ‖Kx,t‖2‖f∗‖2K/‖K−1
t,t
‖ and is finite according to (3.3), hence

y ∈ `2(x).
In the Shannon case, x = t, ρx is trivial, so ηx = 0 for all x ∈ Z. Now our

sampling problem is:
Reconstruct f∗ (or an approximation of f∗) from y ∈ `2(x). Towards its study,

consider the minimization problem

(3.4) arg min
f∈HK,t

∑
x∈x

(
f(x)− yx

)2
.

The solution of (3.4) is expressed using Kt,x and Kx,t.

Definition 1. We say that x provides rich data (with respect to t) if

(3.5) λx := inf
v∈`2(t)

‖Kx,tv‖`2(x)/‖v‖`2(t)

is positive. It provides poor data if λx = 0.
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One can easily see that x provides rich data if and only if the operator Kt,xKx,t

has a bounded inverse; that is, its smallest eigenvalue (λx)2 is positive. Note that
if x ⊂ x, then λx ≤ λx.

Our generalized Shannon Sampling Theorem (for rich data) can be stated as
follows (the proof will be given in Section 7). Define the variance of the system
(ρ, x, t,K) as

(3.6) σ2 :=
∑
x∈x

σ2
x

∑
t∈t

K(t, x)2 =
∑
x∈x

σ2
x‖Kt,xex‖2`2(t),

where ex is the delta sequence supported at x. It represents how the variance on x
is transferred to t by the operator Kt,x : `2(x)→ `2(t). Standing Hypothesis 2 and
Special Assumption tell us that σ2 is finite.

Theorem 1. Assume f∗ ∈ HK,t with X,K, t, ρ as above, y as in (3.3) together
with the Special Assumption, and x provides rich data. Then problem (3.4) can be
solved:

fz =
∑
t∈t

atKt, a = Ly and L =
(
Kt,xKx,t

)−1
Kt,x,

and its solution approximately reconstructs f∗ from its values at x in the following
sense.

For every ε > 0, ‖fz − f∗
∥∥2

K
≤ κσ2 + ε with probability 1− δ where

κ := ‖Kt,t‖
λ4
x
, δ = exp

{
− ελ2

x

2‖Kt,t‖B2 log
(
1 + ε

κσ2

)}
.

Remark. Since x provides rich data, we see from Definition 1 that the operator Kx,t

is injective. The operator L defined in Theorem 1 is exactly the Moore-Penrose
inverse of Kx,t. See e.g. [11], [13].

When the richness of the data increases such that λx → ∞ (see Proposition 1
below), we have κ→ 0. If moreover B2/λ2

x is kept bounded, then from Theorem 1
we see that for the error bound κσ2 + ε with any ε > 0 the confidence tends to 1.
This yields the convergence with confidence if σ2/λ4

x → 0. Also, we find that for
any λx when the variance vanishes, fz = f∗ with probability one by taking σ2 → 0
in Theorem 1; thus we cover the classical Shannon theorem.

When the data is resampled k times over x, the richness increases to
√
kλx,

κσ2 is reduced to κσ2/k, while the bound B2 of the system becomes kB2. Then
c := ελ2

x

2‖Kt,t‖B2 is unchanged. We see from Theorem 1 that for the better error
bound κσ2/k + ε with the same ε, the confidence 1− (1 + ε/(κσ2))−c is improved
to 1− (1 + kε/(κσ2))−c.

Corollary 1. Under the assumption of Theorem 1, if the data is resampled k

times over x, then for every ε > 0, ‖fz − f∗
∥∥2

K
≤ κσ2/k + ε with probability

1−(1+kε/(κσ2))−c while the probability given in Theorem 1 is 1−(1+ε/(κσ2))−c.

Corollary 1 convinces us that resampling improves the error when one takes the
same probability as in Theorem 1. See also Proposition 3 in Section 6.

The constant κ is the infimum of error bounds for positive probability in Theo-
rem 1. This threshold quantity relates the key variables. The case of exact inter-
polation corresponds to |t| = |x|, λx > 0. Note that error bounds less than κ may
be studied by the introduction of a regularization parameter γ > 0 (see below).
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Theorem 1 will be extended to include the case of poor data.
The regularized version of problem (3.4) takes the form

(3.7) f̃z,γ := arg min
f∈HK,t

∑
x∈x

(
f(x)− yx

)2 + γ‖f‖2K,

where γ ≥ 0 and the case γ = 0 includes the setting of Theorem 1. As in Theorem
1, problem (3.7) can be solved by means of a linear operator: f̃z,γ =

∑
t∈t atKt,

where a = Ly and L =
(
Kt,xKx,t + γKt,t

)−1
Kt,x.

We expand the setting a bit by introducing a weighting w on x. A weighting is
necessary to expand beyond the special case of x defined by a uniform grid on X .
So we let w := {wx}x∈x be a weighting with wx > 0. One example is to take w as
the ρX -volume of the Voronoi [28] associated with x. Another example is w ≡ 1 or
if |x| = m <∞, w ≡ 1

m .
We require ‖w‖∞ = supx∈xwx < ∞. Denote Dw : `2(x) → `2(x) as the diago-

nal matrix (multiplication operator on `2(x)) with main diagonal entries {wx}x∈x.

Then ‖Dw‖ ≤ ‖w‖∞. The square root D
1
2
w is the diagonal matrix with main diag-

onal entries {√wx}x∈x.

Definition 2. The regularization scheme for the sampling problem in the space
HK,t takes the form:

(3.8) fz,γ := arg min
f∈HK,t

{∑
x∈x

wx
(
f(x)− yx

)2 + γ‖f‖2K
}
.

Theorem 2. Assume f∗ ∈ HK,t and the standing hypotheses with X,K, t, ρ as
above, and y as in (3.3). Suppose Kt,xDwKx,t + γKt,t is invertible. Define L to be
the linear operator L =

(
Kt,xDwKx,t + γKt,t

)−1
Kt,xDw. Then problem (3.8) has

a unique solution:

(3.9) fz,γ =
∑
t∈t

(
Ly
)
t
Kt.

The corresponding errors will be analyzed in the next sections (Theorems 4 and
5). The error analysis will generalize Theorem 1 with general bound M , weighting
w and γ ≥ 0. It also extends to the poor data setting. Observe that under the
standing hypotheses, Kt,xDwKx,t + γKt,t is invertible if γ > 0 or λx > 0.

Consider the case when K is a “convolution kernel” K(s, u) = ψ(s − u). Let
ψ ∈ L2(Rn) whose Fourier transform ψ̂ satisfies

(3.10) ψ̂(ξ) ≥ c0 > 0, ∀ξ ∈ [−π, π]n

and the following decay condition for some C0 > 0, α > n:

(3.11) 0 ≤ ψ̂(ξ) ≤ C0(1 + |ξ|)−α ∀ξ ∈ Rn.

Definition 3. We say that x is ∆-dense in X if for each y ∈ X there is some x ∈ x
satisfying ‖x− y‖`∞(Rn) ≤ ∆.

Proposition 1. Let X = Rn, t = Zn, K(s, u) = ψ(s− u) with an even function ψ
(i.e. ψ(u) = ψ(−u)) satisfying (3.10) and (3.11). If 0 < L < 1/4 and x is ∆-dense
for some 0 < ∆ ≤ τ , then

λx ≥
(cosLπ − sinLπ)nc0

21+n/2
Ln/2∆−n/2.
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Here τ is a constant independent of ∆ and Proposition 1 is a consequence of Corol-
lary 6 below, where an explicit expression for τ (depending on L) will be given.

Recall that the Shannon case corresponds to the choice ψ = φ with n = 1, c0 =
1, C0 = (1 + π)6, α = 6, and ‖ · ‖K = ‖ · ‖L2(R). Then

∑
t∈tK(t, x)2 ≡ 1 and

σ2 =
∑

x∈x σ
2
x. Combining Theorem 1 with Proposition 1 for L = 1/5 (and the

constant τ given in Corollary 6) yields the following.

Corollary 2. Let X = R, t = Z, K(s, u) = φ(s − u) where φ is the sinc function
given in the Shannon Theorem. If x is ∆-dense for some 0 < ∆ ≤ 1/500 and ρ
satisfies Special Assumption, then for any ε > 0, the function fz given in Theorem 1
satisfies

Prob
{
‖fz − f∗

∥∥2

L2(R)
≤ 204∆2σ2 + ε

}
≥ 1− exp

{
− ε

800∆B2
log
(
1 +

ε

204∆2σ2

)}
.

If the data becomes dense such that ∆→ 0 but ∆B2 is kept bounded (e.g. x is
quasi-uniform), then ∆2σ2 → 0 and Corollary 2 yields the convergence of fz to f∗

with confidence.
Notice that x 6= t in general: f∗ ∈ HK,t, while x stands for the sampling points

which can be much denser than t.
In the above discussion, where f∗ ∈ HK,t, one may take either of two points of

view. Start with ρ and let f∗ = fρ be the regression function as done in learning
theory [27], [29], [14], [8], [18], or take a primary f∗ as in sampling theory [2], [15]
and hypothesize ρ as above.

Our learning process in Definition 2 is an example of a regularization scheme.
Regularization schemes are often used for solving problems with ill-posed coeffi-
cient matrices or operators such as numerical solutions of integral and differential
equations, stochastic ill-posed problems with operator equations, and empirical risk
minimization problems for traditional learning. See e.g. [25], [16], [13].

Some preliminary estimates on λx will be provided in Sections 8 and 9. But we
hope to give more satisfactory results in a subsequent work.

The authors would like to thank Akram Aldroubi for his conversations on the
question of relating learning theory to sampling.

4. The algorithm

We give the proof of Theorem 2.
For f : X → R, it is natural to introduce an “error function”

(4.1) E(f) =
∫
Z

(
f(x)− y

)2
dρ.

For the empirical counterpart of E , let z = (x, yx)x∈x be a sample, so that x is
defined by x and yx is drawn at random from f∗(x) + ρx as in (3.3). Then the
empirical error is

(4.2) Ez(f) =
∑
x∈x

wx
(
f(x)− yx

)2
.

With the empirical error Ez(f), our learning scheme (3.8) can be written as

(4.3) fz,γ := arg min
f∈HK,t

{
Ez(f) + γ‖f‖2K

}
.
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We show how to solve the minimization problem (4.3) or (3.8) by a linear algo-
rithm.

Proof of Theorem 2. Consider the quadratic form

Q(c) := Ez(
∑
t∈t

ctKt) + γ‖
∑
t∈t

ctKt‖2K , c ∈ `2(t).

A simple computation tells us that Q(c) equals

<
(
Kt,xDwKx,t + γKt,t

)
c, c >`2(t) −2 < DwKx,tc, y >`2(x) + < Dwy, y >`2(x) .

Taking the functional derivative as in [19] tells us that if c is a minimizer of Q in
`2(t), then it satisfies

(4.4)
(
Kt,xDwKx,t + γKt,t

)
c = Kt,xDwy, c ∈ `2(t).

By our assumption, Kt,xDwKx,t+γKt,t is invertible, so system (4.4) has a unique
solution: c =

(
Kt,xDwKx,t + γKt,t

)−1
Kt,xDwy. It yields the unique minimizer of

Q which represents the unique minimizer fz,γ of the functional Ez(f) + γ‖f‖2K in
HK,t. �

Remark. Standing Hypothesis 1 can be weakened for the purpose of Theorem 2:
the first case is γ > 0; the second case is t = x and γ = 0. In both cases, the scheme
(4.3) has a solution fz,γ lying in

HoK,t := {
∑
t∈t

ctKt : c ∈ `2(t)} ⊆ HK,t

if and only if system (4.4) is solvable. When the solvability of (4.4) holds, the
solution in Ho

K,t
is unique and given by fz,γ =

∑
t∈t ctKt, independent of the

choice of the solution c to (4.4). In fact, if c and d are both solutions to (4.4), then∑
t∈t ctKt =

∑
t∈t dtKt : Kt,t(c− d) = 0 for either γ > 0 or t = x.

In the following three sections we shall estimate the error ‖fz,γ − f∗‖.

5. Probability inequalities

In the following theorem, m ∈ N or m = ∞. When m = ∞, the product
probability measure on the product space Rm can be defined in any sense such as
the one defined by means of the Tikhonov topology; see e.g. [21].

Theorem 3. Let {ξj}mj=1 be independent random variables on R with variances
{σ2

j }j, and wj ≥ 0 with ‖w‖∞ < ∞. If σ2
w :=

∑m
j=1 wjσ

2
j < ∞, and for each j

there holds |ξj−E(ξj)| ≤M almost everywhere, then for every ε > 0 the probability
in the product space Rm satisfies

Prob
{∣∣∣∣ m∑

j=1

wj
[
ξj − E(ξj)

]∣∣∣∣ > ε

}
≤ 2 exp

{
− ε

2‖w‖∞M
log
(

1 +
Mε

σ2
w

)}
.

Corollary 3. If m <∞ and ξ1, ξ2, . . . , ξm are i.i.d. random variables with expected
value µ, variance σ2 satisfying |ξ − µ| ≤M , then

(5.1) Prob
{∣∣∣∣ 1
m

m∑
j=1

ξj − µ
∣∣∣∣ > ε

}
≤ 2 exp

{
−mε

2M
log
(

1 +
Mε

σ2

)}
.
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Proof of Theorem 3. Without loss of generality, we assume E(ξj) = 0. Then the
variance of ξj is σ2

j = E
(
ξ2
j

)
.

First we assume m <∞. It is sufficient for us to prove the one-sided inequality:

(5.2) I := Prob
{ m∑
j=1

wjξj > ε

}
≤ exp

{
− ε

2‖w‖∞M
log
(

1 +
Mε

σ2
w

)}
.

Let c be an arbitrary positive constant which will be determined later. Then by
the independence,

I = Prob
{

exp
{ m∑
j=1

cwjξj

}
> ecε

}

≤ e−cεE

(
exp
{ m∑
j=1

cwjξj

})
= e−cεΠm

j=1E

(
exp
{
cwjξj

})
.

Since |ξj | ≤M almost everywhere, we have

E

(
exp
{
cwjξj

})
= 1 +

+∞∑
`=2

c`w`jE
(
ξ`j
)

`!
≤ 1 +

+∞∑
`=2

c`w`jM
`−2σ2

j

`!
.

As wj ≤ ‖w‖∞ and 1 + t ≤ et, there holds

E

(
exp
{
cwjξj

})
≤ exp

{+∞∑
`=2

c`‖w‖`−1
∞ M `−2wjσ

2
j

`!

}

= exp
{
ec‖w‖∞M − 1− c‖w‖∞M

‖w‖∞M2
wjσ

2
j

}
.

It follows that

I ≤ exp
{
−cε+

ec‖w‖∞M − 1− c‖w‖∞M
‖w‖∞M2

m∑
j=1

wjσ
2
j

}
.

Now choose the constant c to be the minimizer of the bound on the above right
hand side:

c =
1

‖w‖∞M
log
(

1 +
Mε∑m
i=1 wiσ

2
i

)
.

That is, ec‖w‖∞M − 1 = Mε
σ2
w

. With this choice,

(5.3) I ≤ exp
{
− ε

‖w‖∞M

{(
1 +

σ2
w

Mε

)
log
(

1 +
Mε

σ2
w

)
− 1
}}

.

If we set a function g(λ) as

g(λ) := (1 + λ) log(1 + λ)− λ, λ ≥ 0,

then

(5.4) I ≤ exp
{
− σ2

w

‖w‖∞M2
g

(
Mε

σ2
w

)}
.

We claim that
g(λ) ≥ λ

2
log(1 + λ), ∀λ ≥ 0.

To see this, define a C2 function on R+ as

f(λ) := 2 log(1 + λ)− 2λ+ λ log(1 + λ), λ ≥ 0.
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We can see that f(0) = 0, f ′(0) = 0, and f ′′(λ) = λ(1 + λ)−2 ≥ 0 for λ ≥ 0. Hence
f(λ) ≥ 0 and

log(1 + λ) − λ ≥ −1
2
λ log(1 + λ), ∀λ ≥ 0.

It follows that

g(λ) = λ log(1 + λ) + log(1 + λ)− λ ≥ λ

2
log(1 + λ), ∀λ > 0.

This verifies our claim.
The desired one-sided inequality (5.2) follows from this claim and the bound for

I in terms of g.
When m = ∞, the independence and the convergence of the series

∑∞
j=1 wjσ

2
j

tells us that {Sk :=
∑k
j=1 wjξj}∞k=1 is a Cauchy sequence in L2:

‖Sk − S`‖L2 =
(
E(Sk − S`)2

)1/2 =
(∑̀
j=k

w2
jσ

2
j

)1/2 ≤ (‖w‖∞∑̀
j=k

wjσ
2
j

)1/2 → 0

as k, ` → ∞. Then by the Cauchy Test in L2 (see e.g. [21, p. 258]), the sequence
{Sk} converges in L2 to a random variable. Since the convergence in L2 implies
the almost sure convergence, we write the limit random variable as

∑∞
j=1 wjξj and

can understand the convergence of the series as in L2 or almost surely. Thus, for
every ε > 0, we have almost surely{∣∣∣∣ ∞∑

j=1

wjξj

∣∣∣∣ > ε

}
⊆ ∪∞`=1 ∩∞r=`

{∣∣∣∣ r∑
j=1

wjξj

∣∣∣∣ > ε

}
.

Then the inequality (5.2) for ` <∞ implies

Prob
{∣∣∣∣ ∞∑

j=1

wjξj

∣∣∣∣ > ε

}
≤ lim inf

`→∞
Prob

{∣∣∣∣∑̀
j=1

wjξj

∣∣∣∣ > ε

}

≤ lim inf
`→∞

2 exp
{
− ε

2M maxi=1,...,`wi
log
(

1 +
Mε∑`
i=1 wiσ

2
i

)}
= 2 exp

{
− ε

2‖w‖∞M
log
(

1 +
Mε∑∞
i=1 wiσ

2
i

)}
.

This proves our inequality. �

Remark. (a) From (5.4), Bennett’s inequality [5], [20] follows.
(b) Corollary 3 always implies the Bernstein inequality up to a constant of 2/3

which states for i.i.d. random variables ξ1, . . . , ξm with mean µ and variance σ2

that

Prob
{∣∣∣∣ 1
m

m∑
j=1

ξj − µ
∣∣∣∣ > ε

}
≤ 2 exp

{
− mε2

2(σ2 + 1
3Mε)

}
.

To see this, notice that

(5.5) log(1 + λ) ≥ λ

1 + 1
2λ
, ∀λ ≥ 0.
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Then (5.1) implies

Prob
{∣∣∣∣ 1
m

m∑
j=1

ξj − µ
∣∣∣∣ > ε

}
≤ 2 exp

{
− mε2

2(σ2 + 1
2Mε)

}
.

This is the Bernstein inequality except for a loss of two-thirds. The Bernstein
inequality can also be derived from (5.4) using the lower bound:

g(λ) ≥ 3λ2/(6 + 2λ).

(c) When the variance is small, the estimate in Corollary 3 (with ξ1, . . . , ξm
identical) is much better than the Bernstein inequality. In particular, when the
variance vanishes, i.e., σ2

j = 0 for each j, then Corollary 3 yields 1
m

∑m
j=1

[
ξj −

E(ξj)
]

= 0 in probability 1 while the Bernstein inequality only gives the estimate
1
m

∣∣∑m
j=1

[
ξj − E(ξj)

]∣∣ < ε with confidence 1− 2e−mε/M .

Because of its importance for function reconstruction, Theorem 3 has been de-
veloped in greater generality than needed for our immediate use in Theorem 4
below.

Bennett [5] has an early version of our Theorem 3. One may see Devroye,
Györfi and Lugosi [12, p. 124] for an account which sketches a proof of (5.3) but
with these differences: they have no weighting, there is an extra factor 2, and
they use an average of the nonidentical random variables. Also, Colin McDiarmid
“concentration” Theorem 2.7 [17] is along the same lines. The last two references
were given to us by David McAllester.

6. Sample error

Define

Ex(f) :=
∑
x∈x

wx(f(x) − f∗(x))2.

This is the empirical error (4.2) with yx = f∗(x). Then the corresponding minimizer
for (4.3) becomes

(6.1) fx,γ := arg min
f∈HK,t

{
Ex(f) + γ‖f‖2K

}
.

We see from Theorem 2 that fx,γ exists and is unique when Kt,xDwKx,t + γKt,t is
invertible.

Even when the variance vanishes, fx,γ is not f∗ in general. But the error
‖fx,γ − f∗‖2 is not caused by noise. It is a deterministic quantity. We shall bound
this error in Section 7.

With the weighting, our assumption takes the following general form.

Special Assumption. For each x ∈ X, ρx is a probability measure with zero mean
supported on [−Mx,Mx] with Bw :=

(∑
x∈xwxM

2
x

)1/2
<∞.

The weighted richness is defined as

(6.2) λx,w := inf
v∈`2(t)

‖D
1
2
wKx,tv‖`2(x)/‖v‖`2(t).
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When λx,w < ∞, we have ‖D
1
2
wSxf‖`2(x) = ‖D

1
2
wKx,tc‖`2(x) ≥ λx,w‖c‖`2(t) for

f =
∑

t∈t ctKt. Hence the sampling operator Sx satisfies

(6.3) ‖D
1
2
wSxf‖`2(x) ≥

λx,w‖f‖K√
‖Kt,t‖

, ∀f ∈ HK,t.

Corresponding to (3.6), the weighted variance of the system is defined as

(6.4) σ2
w :=

∑
x∈x

wxσ
2
x

∑
t∈t

K(t, x)2wx

which is bounded by ‖Kt,xD
1
2
w‖2

∑
x∈xwxσ

2
x ≤ ‖Kt,xD

1
2
w‖2B2

w.
The sample error in the form of ‖fz,γ−fx,γ‖2 involves samples y = (yx)x∈x, the

weighting w, and the point sets x, t, and γ. We can apply Theorem 3 to estimate
the sample error. To do this, we use the expressions for fz,γ (and fx,γ) given in
Theorem 2. But we shall replace L by the linear operator Lw : `2(x)→ `2(t) defined
by

(6.5) Lw :=
(
Kt,xDwKx,t + γKt,t

)−1
Kt,xD

1
2
w.

It improves our error estimate and is natural: for the rich data case with γ = 0,
Lw is exactly the Moore-Penrose inverse of the operator D

1
2
wKx,t.

Under the assumption that Kt,xDwKx,t + γKt,t is invertible, our error bound is
given by means of the quantity

(6.6) κ := ‖Kt,t‖ ‖
(
Kt,xDwKx,t + γKt,t

)−1‖2.

Theorem 4 (sample error). Suppose Kt,xDwKx,t + γKt,t is invertible. Under
assumption (3.3), let fz,γ =

∑
t∈t ctKt be the solution of (4.3) given in Theorem 2

by c = Ly. Set Lw and κ as in (6.5) and (6.6) respectively. Then for every ε > 0,

Prob
{
‖fz,γ−fx,γ‖2K ≤ κσ2

w+ε

}
≥ 1− exp

{
− ε

2‖Kt,tLw‖ ‖Lw‖B2
w

log
(
1+

ε

κσ2
w

)}
.

Proof. Applying Theorem 2 to the sample f∗|x, we see fx,γ =
∑

t∈t
(
L
(
f∗|x

))
t
Kt.

Hence

fz,γ − fx,γ =
∑
t∈t

(
L
(
y − f∗|x

))
t
Kt =

∑
t∈t

(
LwD

1
2
w

(
y − f∗|x

))
t
Kt

and

(6.7) ‖fz,γ − fx,γ‖2K =
〈
Kt,tLwD

1
2
w

(
y − f∗|x

)
, LwD

1
2
w

(
y − f∗|x

)〉
`2(t)

.

Expression (6.7) yields the bound

‖fz,γ − fx,γ‖2K ≤ ‖Kt,tLw‖ ‖Lw‖ ‖D
1
2
w

(
y − f∗|x

)
‖2`2(x) ≤ ‖Kt,tLw‖ ‖Lw‖B2

w.

From (6.7) we also find that

‖fz,γ − fx,γ‖2K ≤ κ‖Kt,xDw

(
y − f∗|x

)
‖2`2(t).

But

‖Kt,xDw

(
y − f∗|x

)
‖2`2(t) =

∑
t∈t

{∑
x∈x

(yx − f∗(x))
〈
Kt,xDwex, et

〉
`2(t)

}2

.
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Since the random variables {yx− f∗(x)}x∈x are independent and have zero means,
we see that E

(
(yx − f∗(x))(yx′ − f∗(x′))

)
= δx,x′σ

2
x. It follows that

E

(
‖fz,γ − fx,γ‖2K

)
≤ κ

∑
t∈t

∑
x∈x

w2
xσ

2
xK(t, x)2 = κσ2

w.

The one-sided inequality of Corollary 3 with m = 1, w = 1 asserts that for a
single random variable ξ satisfying |ξ| ≤M , there holds for every ε > 0,

Prob
{
ξ − E(ξ) > ε

}
≤ exp

{
− ε

2M
log
(
1 +

Mε

σ2(ξ)
)}
.

The random variable ξ := ‖fz,γ − fx,γ‖2K satisfies 0 ≤ ξ ≤M := ‖Kt,tLw‖ ‖Lw‖B2
w

almost everywhere, E(ξ) ≤ κσ2
w and σ2(ξ) ≤ME(ξ) ≤Mκσ2

w. Applying the above
inequality, we see that with confidence at least

1− exp
{
− ε

2‖Kt,tLw‖ ‖Lw‖B2
w

log
(
1 +

ε

κσ2
w

)}
,

there holds ξ = ‖fz,γ − fx,γ‖2K ≤ E(ξ) + ε ≤ κσ2
w + ε. �

Remark. Another sample error estimate can be given by the Markov inequality
which states for a nonnegative random variable ξ and t > 0 that Prob{ξ > t} ≤
E(ξ)/t. Applying this to the random variable ξ = ‖fz,γ − fx,γ‖2K and t = E(ξ) + ε,
we have

Prob
{
‖fz,γ − fx,γ‖2K ≤ κσ2

w + ε

}
≥ 1− κσ2

w

ε+ κσ2
w

.

This bound is better when κσ2
w is much smaller than ε.

Proposition 2. The operator Lw defined by (6.5) satisfies

‖Lw‖ ≤ min
{

1
λx,w

,
‖K−1

t,t
‖ ‖w‖1/2∞ ‖Kx,t‖

γ

}
.

Also,

‖
(
Kt,xDwKx,t + γKt,t

)−1‖ ≤ min
{

1
λ2
x,w

,
‖K−1

t,t
‖

γ

}
.

Proof. Let v ∈ `2(x) and u = Lwv. Then(
Kt,xDwKx,t + γKt,t

)
u = Kt,xD

1
2
wv.

Bounding the inner product〈(
Kt,xDwKx,t + γKt,t

)
u, u

〉
`2(t)

=< Kt,xD
1
2
wv, u >`2(t)=< v,D

1
2
wKx,tu >`2(x)

from below by inner products with the positive definite operators Kt,xDwKx,t

and γKt,t separately, we see that ‖D
1
2
wKx,tu‖`2(x)‖v‖`2(x) is bounded from be-

low by γ

‖K−1
t,t
‖‖u‖

2
`2(x) and by < D

1
2
wKx,tu,D

1
2
wKx,tu >`2(x)= ‖D

1
2
wKx,tu‖2`2(x) ≥

λx,w‖u‖`2(t)‖D
1
2
wKx,tu‖`2(x). It follows that

‖u‖`2(t) ≤ min
{‖K−1

t,t
‖

γ
‖w‖1/2∞ ‖Kx,t‖,

1
λx,w

}
‖v‖`2(x).

Thus the required estimate for ‖Lw‖ follows. The proof for the second statement
is the same. �
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Remark. When t = x, we do not require Standing Hypothesis 1 for Theorem 2 and
Theorem 4. Take

(6.8) L = Lt,t =
(
Kt,t + γD−1

w

)−1

(the parameter γ can be zero when Kt,t is invertible). Moreover, we have

‖Lt,t‖ ≤
(
1/‖K−1

t,t
‖+ γ/‖w‖∞

)−1
.

Combining Proposition 2 with Theorem 4 presents estimates for the sample
errors ‖fz,γ−fx,γ‖2 (for both rich and poor data cases). Even in the rich data case,
the introduction of the parameter γ improves the well-posedness of the system in
Theorem 1.

Proposition 3. Assume (3.3) and that Kt,xDwKx,t + γKt,t is invertible. Then
for every 0 < δ < 1, with confidence 1− δ we have the sample error estimate

(6.9) ‖fz,γ − fx,γ‖2K ≤ Esamp := κσ2
w α
−1

(
2‖Kt,tLw‖ ‖Lw‖B2

w

κσ2
w

log
1
δ

)
,

where Lw and κ are given by (6.5) and (6.6) respectively, and α is the increasing
function defined for u > 1 as α(u) = (u− 1) log u. In particular, Esamp → 0 when
γ tends to infinity or σ2

w → 0.

Proof. Choose u = α−1
( 2‖Kt,tLw‖ ‖Lw‖B2

w

κσ2
w

log 1
δ

)
> 1. Then

κσ2
w

2‖Kt,tLw‖ ‖Lw‖B2
w

(u − 1) logu = log
1
δ
.

Set ε = κσ2
w(u− 1). We have ε > 0 since u > 1. Also, there holds

− ε

2‖Kt,tLw‖ ‖Lw‖B2
w

log
(
1 +

ε

κσ2
w

)
= − κσ2

w

2‖Kt,tLw‖ ‖Lw‖B2
w

(u− 1) log u = log δ.

It follows from Theorem 4 that ‖fz,γ − fx,γ‖2K ≤ κσ2
w + ε = κσ2

wu with confidence
1− δ. But κσ2

wu = Esamp. Then the stated sample error estimate follows.
When γ tends to infinity, we see that γ2κ→ ‖Kt,t‖ ‖K−1

t,t
‖2 and

γ2‖Kt,tLw‖ ‖Lw‖ → ‖Kt,xD
1
2
w‖ ‖K−1

t,t
Kt,xD

1
2
w‖

while κσ2
w → 0; hence Esamp → 0.

When σ2
w → 0, we have κσ2

w → 0. The definition of the function α tells us that

u→∞ and κσ2
w = 2‖Kt,tLw‖ ‖Lw‖B2

w log 1
δ

(u−1) log u . It follows that

Esamp = κσ2
wu =

u

u− 1
‖Kt,tLw‖ ‖Lw‖B2

w

2 log 1
δ

log u

which converges to zero. �

7. Regularization error and integration error

We finish the proof of Theorem 1 and give some estimates for the error ‖fx,γ −
f∗‖2. The first estimate depends (linearly) on the regularization parameter γ, and
we call it regularization error. Recall that f∗ ∈ HK,t.



SHANNON SAMPLING AND FUNCTION RECONSTRUCTION 293

Proposition 4. Assume the standing hypotheses. If f∗ ∈ HK,t and λx,w > 0, then

‖fx,γ − f∗‖2K ≤
γ‖Kt,t‖‖f∗‖2K

λ2
x,w

.

Proof. According to the definition of fx,γ , since f∗ ∈ HK,t we have

Ex(fx,γ) + γ‖fx,γ‖2K ≤ Ex(f∗) + γ‖f∗‖2K .
It follows from the fact Ex(f∗) = 0 that

(7.1) ‖fx,γ‖2K ≤ ‖f∗‖2K
and

(7.2) Ex(fx,γ) ≤ γ‖f∗‖2K .

But Ex(fx,γ) =
∑

x∈xwx
(
fx,γ(x) − f∗(x)

)2 = ‖D
1
2
wSx

(
fx,γ − f∗

)
‖2`2(x). Together

with (6.3) and (7.2) this implies

γ‖f∗‖2K ≥
λ2
x,w ‖fx,γ − f∗‖2K
‖Kt,t‖

.

Then the desired estimate follows. �

Proof of Theorem 1. Since γ = 0 and w ≡ 1 in Theorem 1, the expression for fz

follows from Theorem 2, and we see from Proposition 4 that f∗ = fx,0. Moreover,
the operator Lw = L in Theorem 4 becomes

(
Kt,xKx,t

)−1
Kt,x, the one given in

Theorem 1. Also, σ2
w = σ2.

Since λx,w = λx > 0, Proposition 2 yields ‖Lw‖ ≤ 1/λx and ‖
(
Kt,xKx,t

)−1‖ ≤
1/λ2

x. Putting all these into Theorem 4, we know that for every ε > 0,

Prob
{
‖fz − f∗‖2K ≤ κσ2 + ε

}
≥ 1− exp

{
− ελ2

x

2‖Kt,t‖B2
log
(
1 +

ε

κσ2

)}
.

Here κ ≤ ‖Kt,t‖
λ4
x

. This proves Theorem 1. �

For the general situation including the poor data case, our estimate will be
given under a Lipschitz continuity assumption involving the Voronoi of X . We call
it integration error because the estimate comes from bounding the integral over X
by sample values at x.

Let X = (Xx)x∈x be the Voronoi of X associated with x, and wx = ρX(Xx).
Define the Lipschitz norm on a subset X ′ ⊆ X as

(7.3) ‖f‖Lip(X′) := ‖f‖L∞(X′) + sup
s,u∈X

|f(s)− f(u)|
‖s− u‖`∞(Rn)

.

We shall assume that the inclusion map of HK,t into the Lipschitz space satisfies

(7.4) Cx := sup
f∈HK,t

∑
x∈xwx‖f‖2Lip(Xx)

‖f‖2K
<∞.

This assumption is true if X is compact and the inclusion map of HK,t into the
space of Lipschitz functions on X is bounded (this is the case when K is a C2

Mercer kernel; see [33]). In fact, if ‖f‖Lip(X) ≤ C0‖f‖K for each f ∈ HK,t, then
Cx ≤ C2

0ρX(X).



294 STEVE SMALE AND DING-XUAN ZHOU

When K is a convolution kernel satisfying a mild decay condition, (7.4) also
holds. See Proposition 5 below and Example 5 in Section 8.

Theorem 5. Assume the standing hypotheses. Let X = (Xx)x∈x be the Voronoi of
X associated with x, and wx = ρX(Xx). If x is ∆-dense, Cx <∞, and f∗ ∈ HK,t,
then

‖fx,γ − f∗‖2 ≤ ‖f∗‖2K
(
γ + 8Cx∆

)
.

Proof. Let f ∈ HK,t. Then

Ex(f) =
∑
x∈x

wx(f(x)− f∗(x))2 =
∑
x∈x

(f(x) − f∗(x))2

∫
Xx

dρX .

It follows that
‖f − f∗‖2 ≤ Ex(f) + If ,

where If :=
∣∣∑

x∈x
∫
Xx

(f(x)− f∗(x))2 − (f(u)− f∗(u))2dρX(u)
∣∣.

For each x ∈ x and u ∈ Xx,∣∣(f(x) − f∗(x))2 − (f(u)− f∗(u))2
∣∣ ≤ 2‖f − f∗‖2Lip(Xx)

‖x− u‖`∞(Rn).

Since x is ∆-dense, we must have ‖x − u‖`∞(Rn) ≤ ∆; otherwise u ∈ Xx′ for some
x′ 6= x. Moreover, ρX(Xx) = wx. Hence

If ≤ 2
{∑
x∈x

wx‖f − f∗‖2Lip(Xx)

}
∆ ≤ 2Cx‖f − f∗‖2K∆.

Take f to be fx,γ . Then

‖fx,γ − f∗‖2 ≤ Ex(fx,γ) + 2Cx‖fx,γ − f∗‖2K∆.

This in connection with (7.1) and (7.2) implies

‖fx,γ − f∗‖2 ≤ γ‖f∗‖2K + 8Cx‖f∗‖2K∆.

This proves Theorem 5. �

From the proof of Theorem 5, we see that for f ∈ HK,t and x ∈ x,∫
Xx

|f(u)|2dρX ≤ ρX(Xx)‖f‖2L∞(Xx) ≤ wx‖f‖2Lip(Xx)
.

Then the following holds.

Corollary 4. Under the assumption of Theorem 5, there holds

‖f‖2 ≤ Cx‖f‖2K , ∀f ∈ HK,t.

Theorem 5 and Theorem 4 (together with the bounds in Corollary 4 and Propo-
sition 3) proves the following error estimate.

Corollary 5. Under the standing hypotheses and assumption (3.3), let X =
(Xx)x∈x be the Voronoi associated with x and wx = ρX(Xx). If x is ∆-dense,
Cx <∞, and f∗ ∈ HK,t, then for every 0 < δ < 1, with confidence 1−δ there holds

‖fz,γ − f∗
∥∥2 ≤ 2CxEsamp + 2γ‖f∗‖2K + 16Cx‖f∗‖2K∆

where Esamp is given by (6.9) in Proposition 3.

Let us verify condition (7.4) under some decay condition for K.
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Proposition 5. Assume Standing Hypothesis 1. Let X = (Xx)x∈x be the Voronoi
associated with x, and wx = ρX(Xx). If each Kt is Lipschitz on Xx satisfying

Bt := sup
x∈x

∑
t∈t

‖Kt‖Lip(Xx) <∞, Bx := sup
t∈t

wx
∑
x∈x
‖Kt‖Lip(Xx) <∞,

then
Cx ≤ 4BtBx‖K−1

t,t
‖.

Proof. Let f =
∑
t∈t ctKt ∈ HK,t and x ∈ x. Then for u1, u2 ∈ Xx,

|f(u1)− f(u2)| =
∣∣∑
t∈t

ct
(
Kt(u1)−Kt(u2)

)∣∣ ≤∑
t∈t

|ct|‖Kt‖Lip(Xx)‖u1 − u2‖`∞(Rn).

Also,
‖f‖L∞(Xx) ≤

∑
t∈t

|ct|‖Kt‖L∞(Xx) ≤
∑
t∈t

|ct|‖Kt‖Lip(Xx).

These in connection with the Schwartz inequality tell us that

‖f‖Lip(Xx) ≤ 2
{∑
t∈t

|ct|2‖Kt‖Lip(Xx)

}1/2{∑
t∈t

‖Kt‖Lip(Xx)

}1/2

can be bounded by 2
√
Bt
{∑

t∈t |ct|2‖Kt‖Lip(Xx)

}1/2. Therefore we have∑
x∈x

wx‖f‖2Lip(Xx)
≤ 4Bt

∑
t∈t

|ct|2
{∑
x∈x

wx‖Kt‖Lip(Xx)

}
≤ 4BtBx‖c‖2`2(t).

But ‖c‖2
`2(t)
≤ ‖K−1

t,t
‖‖f‖2K. Then our conclusion follows. �

For the poor data situation, the integration error can be bad. In fact, if Kx,tc = 0
for some c ∈ `2(t), set f∗ =

∑
t∈t ctKt ∈ HK,t. Then f∗(x) = 0 for each x ∈ x.

Hence fx,γ = 0 and ‖fx,γ − f∗‖ = ‖f∗‖ for any γ > 0.
Summarizing, our main goal of the error estimate is to bound the difference

fz,γ − f∗ (either ‖fz,γ − f∗‖K or even ‖fz,γ − f∗‖L2
ρX

). But

‖fz,γ − f∗‖ ≤ ‖fz,γ − fx,γ‖+ ‖fx,γ − f∗‖.
Each of the two summands on the right is estimated separately, the first via The-
orem 4 and the second in two cases: λx,w > 0 by Proposition 4, and in general by
Theorem 5.

8. Convolution kernels

Some estimates for λx will be given for convolution kernels having ‖K−1
t,t
‖ <∞.

We consider now the setting with X = Rn, w ≡ 1 and t = Zn (the more general
situation of X ⊂ Rn can be analyzed as in the discussion in Section 3).

The convolution kernels on Rn take the form:

(8.1) K(s, u) = ψ(s− u) with ψ ∈ L2(Rn) being continuous and even.

For these kernels, K(s, s) = ψ(0) for any s. Then K is Mercer if and only if ψ has
nonnegative Fourier transform ψ̂(ξ) ≥ 0. See [6]. The Gaussian is an example of a
convolution kernel. More examples can be seen in [3], [8], [14], [27], [32].
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Proposition 6. Let X = Rn, t = Zn, and K be as in (8.1). Then both ‖Kt,t‖ and
‖K−1

t,t
‖ are finite if and only if for some 0 < a ≤ b <∞,

(8.2) a ≤
∑
j∈Zn

ψ̂(ξ + 2jπ) ≤ b, ∀ξ.

Note that the function
∑

j∈Zn ψ̂(ξ+2jπ) is 2π-periodic. From Proposition 6, one
can easily find “kernels” which satisfy our standing hypotheses but are not Mercer
kernels on X : take ψ whose Fourier transform is not nonnegative but satisfies (8.2)
for positive constants a, b.

The proof of Proposition 6 follows from the expressions for ‖Kt,t‖ and ‖K−1
t,t
‖

in Lemma 1, which give the sharp bounds for a and b.

Lemma 1. Let t = Zn and K(s, u) = ψ(s−u) with some continuous even function
ψ ∈ L2(Rn) satisfying (8.2) for a, b > 0. Then Standing Hypothesis 1 holds. In
particular,

(1) ‖Kt,t‖ =
∥∥∥∥∑j∈Zn ψ̂(ξ + 2jπ)

∥∥∥∥
L∞
≤ b.

(2) ‖K−1
t,t
‖ =

∥∥∥∥(∑j∈Zn ψ̂(ξ + 2jπ)
)−1
∥∥∥∥
L∞
≤ 1

a .

Proof. Note that

< Kt,tc, c >`2(t) =
∑
t,t′∈t

ψ(t− t′)ctct′ = (2π)−n
∫
Rn
ψ̂(ξ)

∣∣∣∣∑
t∈t

cte
iξ·t
∣∣∣∣2dξ

= (2π)−n
∫

[−π,π]n

(∑
`∈Zn

ψ̂(ξ + 2`π)
)∣∣∣∣∑

t∈t

cte
iξ·t
∣∣∣∣2dξ ≥ 0.

Then Kt,t is positive. From the identity{
(2π)−n

∫
[−π,π]n

∣∣∑
t∈t

cte
−iξ·t∣∣2dξ}1/2

= ‖c‖`2(t), ∀c ∈ `2(t),

we see that the upper bounds for the norms hold. The lower bounds can be seen by
taking for each ε > 0, a sequence c ∈ `2(t) whose Fourier series is the characteristic
function of the set {ξ ∈ [π, π]n :

∣∣F (ξ)| ≥ ‖F‖L∞−ε}. Here F denotes the function
F (ξ) =

∑
j∈Zn ψ̂(ξ + 2jπ) or

(∑
j∈Zn ψ̂(ξ + 2jπ)

)−1. �
Remark. The same norm expressions hold when one scales the set Zn by a con-
stant H > 0: if t = HZn and Ψ(ξ) :=

∑
j∈Zn ψ̂(ξ + 2jπ/H) ≥ 0, then ‖Kt,t‖ =

H−n
∥∥Ψ
∥∥
L∞

and ‖K−1
t,t
‖ = Hn

∥∥Ψ−1
∥∥
L∞

.

Turn to the Shannon example. Here K is a convolution kernel generated by
the sinc function φ whose Fourier transform φ̂ is the characteristic function of the
interval [−π, π].

Example 4. Let n = 1 and ψ(x) = φ(x) = sin(πx)/(πx) be the sinc function
and K given by (8.1). Then for t = Z, {Kj}j∈Z is an orthonormal basis of HK,t,
‖Kt,t‖ = ‖K−1

t,t
‖ = 1, and

HK,t =
{∑
j∈Z

cj
sinπ(x− j)
π(x− j) : c ∈ `2(Z)

}
.
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Moreover, as subspaces of L2(R), we have

HK = HK,t = V := {f ∈ L2(R) : f̂(ξ) = 0 ∀ξ 6∈ [−π, π]}.

Proof. Take the inner product on V to be the one inherited from L2(R). We see
from the Plancheral formula and the fact ψ̂(ξ) = χ[−π,π] that

< Kt,Ks >L2= (2π)−1 < K̂t, K̂s >L2= (2π)−1

∫
R
|ψ̂(ξ)|2eiξ(t−s)dξ = ψ(t− s)

which is K(t, s). Thus, < Kt,Ks >L2=< Kt,Ks >K . Also, K̂t = e−itξψ̂(ξ) is
supported on [−π, π]; hence Kt ∈ V for any t. Moreover, for each f ∈ V , we
have f̂ supported on [−π, π] and given on this interval by

∑
j∈Z cje

−ijξ for some
c ∈ `2. Hence f̂ =

∑
j∈Z cjK̂j , and f =

∑
j∈Z cjKj . Therefore, HK = HK,t =

(V, ‖ · ‖L2(R)). �

Denote Cn,α := 2n
(
1 + nα/2/(α− n)

)
. For L ∈ (0, 1/4), we set the following:

C− :=
(
cosLπ − sinLπ

)n
, C+ :=

(
2− cosLπ + sinLπ

)n
.

We expand the setting now where we do not have a kernel. In this new setting,
just a continuous function ψ ∈ L2(Rn) (not necessarily even) is involved. Then the
operator Kx,t is replaced by Cx,t : `2(t)→ `2(x) defined as

(8.3)
(
Cx,ta

)
x

=
∑
t∈t

ψ(x− t)at.

The constant λx is also defined similarly by

(8.4) λx := inf
v∈`2(t)

‖Cx,tv‖`2(x)/‖v‖`2(t).

Theorem 6. Let 0 < L < 1/4, t = Zn, h > 0 with 1/h ∈ N, and u = {uj}j∈Zn
satisfy ‖uj −hj‖`∞(Rn) ≤ Lh for every j ∈ Zn. Suppose ψ is an L2 function on Rn
satisfying

(8.5)
∣∣ψ̂(ξ)

∣∣ ≤ C0(1 + |ξ|)−α ∀ξ ∈ Rn

for some C0 > 0, α > n. Define Cu,t by (8.3) and λu by (8.4) with x = u. Then

(8.6) ‖Cu,t‖ ≤ 2C+C0Cn,αh
−n/2.

If, moreover, for some 0 < c0 ≤ C0, h ≤
( C−c

2
0

5C+C2
0Cn,α

)2/(2α−n)
and

(8.7)
∑
j∈Zn

∣∣ψ̂(ξ + 2jπ)
∣∣2 ≥ c20 ∀ξ,

then the constant λu can be bounded from below as

λu ≥
C−c0

2
h−n/2.

Note that C0 depends on α. For general x, we get the following consequences.

Corollary 6. Let t = Zn, and ψ be an L2 function on Rn satisfying (8.5) and
(8.7) for some α > n, 0 < c0 ≤ C0. If x is ∆-dense for some 0 < ∆ ≤
L
2

( C−c
2
0

5C+C2
0Cn,α

)2/(2α−n) and 0 < L < 1/4, then

λx ≥
C−c0

21+n/2
Ln2 ∆−

n
2 .
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Proof. Since ∆/L ≤ 1, we can choose some h satisfying ∆ ≤ Lh ≤ 2∆ and
1/h ∈ N. Then x is Lh-dense. For each j ∈ Zn, there is some uj ∈ x such that
‖hj − uj‖`∞(Rn) ≤ Lh. It means that u := {uj}j∈Zn satisfies the requirement in

Theorem 6. As h ≤ 2∆/L ≤
( C−c

2
0

5C+C2
0Cn,α

)2/(2α−n), we conclude by Theorem 6 that
for each c ∈ `2(t),

‖Cx,tc‖`2(x) ≥ ‖Cu,tc‖`2(u) ≥
C−c0

2
h−

n
2 ‖c‖`2(t).

Hence λx ≥ C−c0
2 h−

n
2 ≥ C−c0

21+n/2L
n
2 ∆−

n
2 . �

Now we can see that Proposition 1 follows from Corollary 6: (3.11) in connection
with (3.10) tells us that

∑
j∈Zn |ψ̂(ξ+ 2jπ)|2 ≥ |ψ̂(ξ)|2 ≥ c20 for ξ ∈ [−π, π]n; hence

(3.10) holds.
Standing Hypothesis 2 requires the norm ‖Kx,t‖. In the current general setting,

we can estimate the norm Cx,t which involves the separation of x, defined as

Sepx := inf
x 6=y∈x

‖x− y‖`∞(Rn).

Corollary 7. Let t = Zn and ψ be a function on Rn satisfying (8.5) for some
C0 > 0, α > n. For any discrete set x ⊂ X and 0 < L < 1/4, we have

‖Cx,t‖ ≤ 2C+C0Cn,α

(
max

{ 4
Sepx

,
2
L
})n/2

.

Proof. Let h be a positive constant with 1/h ∈ N, which will be determined later.
Take a set of multi-integers Σ :=

(
[− 1

4L −
1
2 ,

1
4L + 1

2 ] ∩ Z
)n. We separate the

set x into {x(α)}α∈Σ where x(α) = x ∩ (hZn + hΩα). Here for α ∈ Σ, Ωα =(
(−L,L]n + 2Lα

)
∩ (− 1

2 ,
1
2 ]n. Then∥∥∑

t∈t

ctψ(x − t)
∥∥2

`2(x)
=
∑
α∈Σ

∥∥∑
t∈t

ctψ(x− t)
∥∥2

`2(x(α))
.

The definition of Sepx tells us that for each α ∈ Σ and j ∈ Zn, the set x(α) ∩
(hj + hΩα) contains at most S := ([(2Lh)/Sepx] + 1)n points. Thus we can divide
the set x(α) into S subsets {x(α)

k }Sk=1 such that x(α)
k ∩ (hj + hΩα) contains at most

one point for each j ∈ Zn.
Fix α and k. Then there are J ⊆ Zn and {θj} ⊂ [−L,L]n such that

x
(α)
k = 2Lαh+ {hj + hθj}j∈J .

Let u(α) = {hj + hθj}j∈Zn where θj = 0 for j 6∈ J . Consider the linear opera-
tor Cu(α),t defined by (8.3) with x replaced by u(α) and ψ by ψ(2Lαh + ·). As
|ψ(2Lαh+ ·)̂(ξ)| = |ψ̂(ξ)|, we apply Theorem 6 and conclude that∥∥∑

t∈t

ctψ(x− t)
∥∥
`2(x

(α)
k )
≤ ‖Cu(α),tc‖`2(u(α)) ≤ 2C+C0Cn,αh

−n/2‖c‖`2(t).

This is true for each α, k. Therefore,

‖Cx,tc‖2`2(x) =
∥∥∑
t∈t

ctψ(x− t)
∥∥2

`2(x)
=
∑
α∈Σ

S∑
k=1

∥∥∑
t∈t

ctψ(x− t)
∥∥2

`2(x
(α)
k )
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can be bounded by (2 + 1/(2L))nS
(
2C+C0Cn,αh

−n/2‖c‖`2(t)

)2. Hence

‖Cx,t‖ ≤ 2C+C0Cn,α
(L+ 1

Sepx
+

2 + 1/(2L)
h

)n/2 ≤ 2C+C0Cn,α
( 2

Sepx
+

1
Lh
)n/2

.

When Sepx ≥ 2L, we choose h = 1 and obtain ‖Cx,t‖ ≤ 2C+C0Cn,α
(
2/L

)n/2.
When Sepx < 2L, we choose some h satisfying 1/h ∈ N and Sepx/(2L) ≤ h <

Sepx/L and obtain ‖Cx,t‖ ≤ 2C+C0Cn,α
(
4/Sepx

)n/2
. This proves Corollary 7. �

Remark. Note that λx ≤ ‖Cx,t‖. Then we see from the lower bound for λx given in
Corollary 6 and the upper bound for ‖Cx,t‖ stated in Corollary 7 that our estimates
are sharp up to a constant depending on the ratio ∆/Sepx.

Remark. The lower bound in Corollary 6 and the upper bound in Corollary 7 can
be established for general convolution kernels without the decay (8.5).

Remark. One may consider more general t. For example, choose t to be a subset of
Rn such that {e−iξ·t}t∈t is a Riesz system in L2([−π/H, π/H ]n) for some H > 0.
Then similar upper and lower bounds hold with constants depending on H . Here
for a Hilbert space H, we say that a sequence of elements {φt : t ∈ t} ⊂ H is a
Riesz system in H if there are two positive constants C1, C2 > 0 such that

C1‖c‖`2(t) ≤
∥∥∑
t∈t

ctφt
∥∥
H ≤ C2‖c‖`2(t), ∀c ∈ `2(t).

The Riesz system is called a Riesz basis of H if, moreover, span{φt}t∈t is dense in
H.

To prove Theorem 6, we need Kadec’s 1
4 -Theorem. See [30], and [24] for the

multivariate version:
Let L < 1/4. If ‖xj − j‖`∞(Rn) ≤ L for each j ∈ Zn, then

(8.8) (2π)nC2
−‖f‖2L2([−π,π]n) ≤

∑
j∈Zn

∣∣∣∣< f, e−iξ·xj >L2([−π,π]n)

∣∣∣∣2
≤ (2π)nC2

+‖f‖2L2([−π,π]n), ∀f ∈ L2([−π, π]n).

This is the frame property of the Riesz basis {e−iξ·xj}j∈Zn of L2([−π, π]n).

Proof of Theorem 6. Notice that∑
j∈Zn

(1 + |j|)−α ≤ Cn,α.

Let x, t ∈ Rn. Applying the inverse Fourier transform, we obtain for c ∈ `2(t),∑
t∈t

ctψ(x− t) = (2π)−n
∫
Rn

(
ψ̂(ξ)

∑
t∈t

cte
−iξ·t

)
eiξ·xdξ.

Denote c̃(ξ) :=
∑
t∈t cte

−iξ·t, g(ξ) := ψ̂(ξ)c̃(ξ). Then the above expression is

(2π)−n
∫
Rn
g(ξ)eiξ·xdξ =

∑
`∈Zn

(2π)−n
∫

[−πh ,
π
h ]n

g(ξ +
2`π
h

)eiξ·xei
2`π
h ·xdξ.

If we denote for ` ∈ Zn,

I`(g) :=
{∑
j∈Zn

∣∣∣∣(2π)−n
∫

[−πh ,
π
h ]n

g(ξ + 2`π/h)eiξ·ujdξ
∣∣∣∣2}1/2

,
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then ‖Cu,tc‖`2(u) = ‖
∑
t∈t ctψ(u − t)‖`2(u) can be bounded from above and below

as
I0(g)−

∑
`∈Zn\{0}

I`(g) ≤ ‖Cu,tc‖`2(u) ≤ I0(g) +
∑

`∈Zn\{0}
I`(g).

Let us first derive upper bounds from (8.5) by means of Kadec’s 1
4 -Theorem

(8.8). The condition on u tells us that {uj/h}j∈Zn satisfies the condition for (8.8).
Applying the upper bound of (8.8) to the functions g(ξ/h+ 2`π/h), we know that

I`(g) ≤ (
√

2πh)−nC+‖g
( ξ
h

+
2`π
h

)
‖L2([−π,π]n), ∀` ∈ Zn.

As c̃(ξ) is 2π-periodic, c̃(ξ + 2`π/h) = c̃(ξ) because of 1/h ∈ N. Then we see
that h−n/2‖g(ξ/h+ 2`π/h)‖L2([−π,π]n) is∥∥∥∥g(ξ +

2`π
h

)
∥∥∥∥
L2([−πh ,

π
h ]n)

=
∥∥∥∥ψ̂(ξ +

2`π
h

)c̃(ξ)
∥∥∥∥
L2([−πh ,

π
h ]n)

≤
{ ∑
s∈[−1/(2h),1/(2h)]n

∥∥ψ̂(ξ + 2sπ +
2`π
h

)c̃(ξ)
∥∥2

L2([−π,π]n)

}1/2

.

If we set the quantity Aψ` as

Aψ` :=
{ ∑
s∈[−1/(2h),1/(2h)]n

∥∥ψ̂(ξ + 2sπ +
2`π
h

)
∥∥2

L∞([−π,π]n)

}1/2

,

we find that

I`(g) ≤
(√

2πh
)−n

C+A
ψ
` ‖c̃(ξ)

∥∥
L2([−π,π]n)

≤ h−n/2C+A
ψ
` ‖c‖`2(t).

By decay condition (8.5), we have Aψ0 ≤ C0

√
Cn,α , and∑

`∈Zn\{0}
Aψ` ≤

∑
`∈Zn\{0}

(
1/h+ 1

)n/2
C0

(
1 +
|`|π
2h
)−α ≤ hα−n/2C0Cn,α

which yields ∑
`∈Zn\{0}

I`(g) ≤ hα−nC+C0Cn,α‖c‖`2(t).

Thus, we have

‖Cu,tc‖`2(u) ≤ I0(g) +
∑

`∈Zn\{0}
I`(g) ≤ 2C+C0Cn,αh

−n/2‖c‖`2(t).

This proves (8.6).
Next we provide a lower bound for I0(g). Applying the lower bound of (8.8) to

the functions g(ξ/h), we find

I0(g) ≥
(√

2πh
)−n

C−‖g‖L2([−π/h,π/h]n).

Observe that

‖g‖L2([−π/h,π/h]n) ≥
∫

[−π,π]n

∑
s∈[− 1

2h+ 1
2 ,

1
2h−

1
2 ]n

∣∣ψ̂(ξ + 2sπ)
∣∣2|c̃(ξ)|2dξ.
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But for ξ ∈ [−π, π]n,∑
s6∈[− 1

2h+ 1
2 ,

1
2h−

1
2 ]n

∣∣ψ̂(ξ + 2sπ)
∣∣2 ≤ ∑

|s|≥1/(2h)

C2
0 (1 + |ξ + 2sπ|)−2α ≤ C2

0Cn,αh
α.

This in connection with (3.10) implies

‖g‖2L2([−π/h,π/h]n) ≥
(
c20 − C2

0Cn,αh
α
)
‖c̃‖2L2([−π,π]n).

It follows that
I0(g) ≥ h−n/2C−

√
c20 − C2

0Cn,αh
α‖c‖`2(t).

When hα−n/2 ≤ C−c20/(5C+C
2
0Cn,α), we have c20 − C2

0Cn,αh
α ≥ c20/2, and∑

`∈Zn\{0}
I`(g) ≤ (1− 1/

√
2)I0(g), I0(g) ≥ c0√

2
C−h

−n/2‖c‖`2(t).

Therefore,

‖Cu,tc‖`2(u) ≥
1√
2
I0(g) ≥ C−c0

2
h−n/2‖c‖`2(t).

Hence λu ≥ C−c0
2 h−n/2 and the proof of Theorem 6 is complete. �

We study for the convolution kernel the last quantity Cx required by (7.4). We
shall apply Proposition 5 involving the decay of the kernel.

Example 5. Let X = Rn, t = Zn, X = (Xx)x∈x be the Voronoi associated with
x and wx = ρX(Xx). If ρX is the Lebesgue measure, x is ∆-dense, and ψ is a
continuous even function on Rn satisfying

∑
j∈Zn ψ̂(ξ + 2jπ) ≥ c0 > 0 for every ξ

and
|ψ(x)|+ |∇ψ(x)| ≤ C0(1 + |x|)−α

for some C0 > 0, α > n, then for the kernel K(s, u) = ψ(s− u) we have

Cx ≤ 8(1 + n)(4n)α
(
2αCn,α + 3n

)(
Cn,α + 1

)C2
0

c0
(∆ + 1)2α.

Proof. Let t ∈ t and x ∈ x. Then the decay condition tells us that ‖Kt‖Lip(Xx) is
bounded by

C0(1 +
√
n)
(
1 + inf

u∈Xx−t
|u|
)−α ≤ C0(1 +

√
n)
(
1 + max{0, |x− t| −

√
n∆}

)−α
.

It follows immediately that

Bt ≤ C0(1 +
√
n) sup

y∈[0,1]n

∑
t∈Zn

(
1 + max{0, |y − t| −

√
n∆}

)−α
is bounded by C0(1 +

√
n)
(√
n(∆ + 1)

)α(2αCn,α + 3n
)
.

Concerning Bx, we fix t ∈ t and see from wx = ρX(Xx) that∑
x∈x

wx‖Kt‖Lip(Xx) ≤
∑
x∈x

C0(1 +
√
n)
∫
Xx

(
1 + max{0, |x− t| −

√
n∆}

)−α
dρX

can be bounded by C0(1 +
√
n)
∫
X

(
1 + max{0, |y − t| − 2

√
n∆}

)−α
dρX . As ρX is

the Lebesgue measure, the integral is bounded by∫
Rn

(
1 + max{0, |y| − 2

√
n∆}

)−α
dy ≤ (2 + 4

√
n∆)αCn,α + (4

√
n∆)n.
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Therefore,
Bx ≤ C0(1 +

√
n)(2 + 4

√
n∆)α

(
Cn,α + 1

)
.

Then the estimate for Cx follows from Proposition 5 and Lemma 1. �

More general decay conditions such as the Wiener amalgam spaces [15], [2] can
be used for condition (8.5) on ψ or the decay of ρx.

9. Estimating the operator norms for compact domains

When X is compact, the richness λx can be easily bounded from below. More-
over, it will be shown that λx →∞ when x becomes dense. Denote

Nσ(x) := sup{d ∈ N : for x ∈ X , there are (xi)di=1 ⊂ x satisfying |xi − x| ≤ σ}.

Proposition 7. Let t = (ti)si=1 be finite. Then for sufficiently small σ > 0 there
holds

(9.1)
∣∣K(u, t′)−K(t, t′)

∣∣ ≤ 1
2s‖K−1

t,t
‖
, ∀t ∈ t, u ∈ X with |u− t| ≤ σ

for each t′ ∈ t. In this case,

λx ≥
√
Nσ(x)

2‖K−1
t,t
‖
.

In particular, λx →∞ when Nσ(x)→∞.

Proof. The continuity of K tells us that for sufficiently small σ > 0, (9.1) holds for
each t′ ∈ t.

Let 0 < σ < 1
2Sept. By the definition of Nσ(x) =: N , for each t ∈ t there are

(u(j)
t )Nj=1 ⊂ x such that |u(j)

t − t| ≤ σ. As σ < 1
2Sept, we know that (u(j)

t )Nj=1 ∩
(u(j)
t′ )Nj=1 = ∅ when t 6= t′.

Fix j ∈ {1, . . . , N}. The set u(j) = (u(j)
t )t∈t satisfies |u(j)

t − t| ≤ σ. By (9.1), we
see that∣∣∣∣(Ku(j),tc

)
u

(j)
t
−
(
Kt,tc

)
t

∣∣∣∣ =
∣∣∣∣∑
t′∈t

ct′
(
K(u(j)

t , t′)−K(t, t′)
)∣∣∣∣ ≤ ‖c‖`2(t)

1
2‖K−1

t,t
‖√s

.

Therefore,

‖Ku(j),tc−Kt,tc‖`2(t) ≤
‖c‖`2(t)

2‖K−1
t,t
‖
, ∀c ∈ `2(t),

and

‖Ku(j),tc‖`2(u) ≥
1

‖K−1
t,t
‖
‖c‖`2(t) −

‖c‖`2(t)

2‖K−1
t,t
‖
.

It follows that

‖Kx,tc‖2`2(x) ≥
N∑
j=1

‖Ku(j),tc‖2`2(u(j)) ≥ Nσ(x)
( ‖c‖`2(t)

2‖K−1
t,t
‖

)2

.

Then our conclusion follows. �
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10. Extension to a setting without a kernel

Our study can be extended to a setting without a kernel K.
Let (H, ‖ · ‖H) be a Hilbert space of continuous function on X , finite or infinite

dimensional. Let {φt : t ∈ t} be an orthonormal basis. Then HK,t is replaced by H
and Kt,t by the identity operator on H; hence Standing Hypothesis 1 holds. Now
the linear operator Cx,t : `2(t) → `2(x) is given by the matrix

(
φt(x)

)
x∈x,t∈t, and

only Standing Hypothesis 2 is required, where Cx,t replaces Kx,t. The main results
are still true. For example, take σ2 :=

∑
x∈x σ

2
x

∑
t∈t(φt(x))2. Corresponding to

Theorem 1, we have

Theorem 7. Assume f∗ ∈ H with H, X, ρ, {φt}t∈t as above, y as in (3.3). If x
provides rich data, then the optimization problem arg minf∈H

∑
x∈x
(
f(x) − yx

)2
can be solved:

fz =
∑
t∈t

atφt, a = Ly and L =
(
CTx,tCx,t

)−1CTx,t.

Moreover, for every ε > 0, there holds

Prob
{
‖fz − f∗

∥∥2

H ≤
σ2

λ4
x

+ ε

}
≥ 1− exp

{
− ελ

2
x

2B2
log
(
1 +

ελ4
x

σ2

)}
.

Examples of finite dimensional spaces H include polynomial spaces for the pur-
pose of interpolation. Examples of infinite dimensional spaces include the Fourier
series (the most classical!), function spaces on a 2-dimensional rectangle (with eigen-
functions of Laplacian being the orthonormal basis), and wavelet spaces (with an
orthonormal basis of wavelets or shifts of refineable functions).

Next suppose that {φt : t ∈ t} is only a Riesz basis of H. Then the mapping
K : `2(t)→ H given by Kc =

∑
t∈t ctφt is an isomorphism. This isomorphism plays

the role of Kt,t. The setting is now similar to the one with Standing Hypothesis 1
satisfied. One example is generated by a (stable, but not necessarily orthogonal)
scaling function ϕ of a multiresolution analysis in wavelet analysis. Take k ∈ Z, t =
Zn, and φt = ϕ(2k · −t), the scaled shifts of ϕ. Then estimates for λx can be
given as in Section 8, which would lead to sample error estimates like Theorem 1.
The regularization error and integration error estimates can be obtained from the
approximation properties of multiresolution analysis [10], [23].

Remark. In this paper we study the error ‖fx,γ−f∗‖2 (regularization error or inte-
gration error estimates) under the assumption f∗ ∈ HK,t. It would be interesting
to have some estimates for the error without this assumption. One situation is
when HK,t is a closed subspace of an RKHS HK generated by a Mercer kernel K
and f∗ ∈ HK . One may study the error even for f∗ to be outside HK , as done for
the approximation error in [22], [26].
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