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RENÉ THOM’S WORK ON GEOMETRIC HOMOLOGY AND
BORDISM

DENNIS SULLIVAN

By the early 1950’s algebraic topology had reached great heights with Serre’s
thesis and the calculations in the seminar of Henri Cartan of the cohomology of
spaces with one nonzero homotopy group in terms of Steenrod operations. There
was also the appearance of the new characteristic classes of vector bundles, Pon-
tryagin classes (Z coefficients) and Chern-Weil classes (coefficients in R) joining
those of Stiefel Whitney (Z mod 2 coefficients).

René Thom absorbed all this structure, made vigorous use of it, and added a
geometric perspective that combined to revolutionize topology, manifold theory,
and algebraic geometry. For the unexpected and fertile results in bordism (closed
manifolds mod boundaries of manifolds) of the 1954 paper [1], Thom received the
Fields Medal at Edinburgh in 1958. Many more applications of Thom’s ideas came
even later.

1. Thom’s isomorphism and his work on Steenrod’s Problem

Thom’s (1951) thesis about spherical fibrations and cohomology [2] showed a new
cohomology isomorphism between the (compact) base of a vector bundle and the
one point compactification of its total space (now called the Thom space). Thom’s
isomorphism was effected algebraically by multiplying an arbitrary class in the total
space (which deformation retracts to the base) with a certain cohomology class on
the total space with compact support (now called the Thom class). Geometrically
the isomorphism in terms of homology could be seen by intersecting a relative cycle
in the total space (mod ∞) with the zero section to obtain a cycle in the base.

The latter perspective shows that the Thom class of the oriented normal bun-
dle of an oriented submanifold in an oriented manifold determines by pullback the
cohomology class Poincaré dual to the homology class of the submanifold.

Thom then showed how the Stiefel Whitney classes of the vector bundle could
be obtained by applying Steenrod operations to the Thom class in the Thom space
and then using the Thom isomorphism to get back to the base,

(1 + Sq1 + Sq2 + ...)(U) = (1 + w1 + w2 + ...) · U (U = Thom class).

In the next paper (1954)[1], Thom’s celebrated results about classifying mani-
folds up to cobordism appeared. As remarked above, the revolution these results
caused earned René Thom the 1958 Fields Medal at Edinburgh. The seed of the
development in the paper was a geometric question - What do homology classes
look like? In particular there was Steenrod’s Problem - Is every homology class in
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any finite polyhedron the image of the fundamental class of a closed manifold by a
map of that manifold into the polyhedron?

It is interesting that Thom made deep use of Steenrod’s cohomology operations
to prove both positive and negative results about Steenrod’s Problem. Besides the
natural attraction of the question, Thom was interested in it because of a potential
relationship to a celebrated unresolved problem in algebraic geometry - Is it possible
by blowing up to resolve the singularities of an arbitrary algebraic variety? (See
§3.)

The big step in Thom’s approach to Steenrod’s Problem beyond the vigorous
use of the current algebraic topology was a geometric picture of duality - this
time Alexander-Lefschetz-Poincaré duality. This picture is now referred to as the
Pontryagin-Thom construction because of Pontryagin’s use of the same idea in a
related special case [3]. Besides many uses related to Thom’s original one, the
construction was important in the discovery of exotic spheres by Milnor [14]; the
manifold classification theory (Browder-Novikov-Wall) [4], [5], [6]; the early proofs
of the Atiyah-Singer index theorem [7]; and very recently in the (geometric) proof
of Mumford’s conjecture about the stable cohomology of Riemann surface moduli
space (Madsen-Weiss)[8].

Here is the Pontryagin-Thom construction adapted to the study of Steenrod’s
Problem and illustrating the basic duality between geometric covariant objects and
algebraic contravariant objects. For each closed manifold V mapping to a poly-
hedron X by f , a covariant geometric object in X , one can form a contravariant
algebraic object on a space dual to X by the following steps: 1) Approximate f by
an embedding of V into a neighborhood N of X in a high dimensional Euclidean
space. 2) Collapse the boundary of N to a point and map by further collapse the
quotient N/∂N to the normal bundle neighborhood of V with its boundary col-
lapsed to a point ν/∂ν (the latter can be identified with Thom space of the normal
bundle ν). 3) Induce by the Gauss map the normal bundle of V from the tautolo-
gous bundle over the Grassmannian of k-planes (k=codimension of V ) and consider
the associated map on Thom spaces. 4) Form the composition of 2) and 3) to get
a map

(N/∂N = neighborhood of X/boundary)
Df→ (universal Thom space)

which is a contravariant object on N/∂N dual to the covariant object in X , V
f→ X .

Conversely, given a contravariant object N/∂N → (universal Thom space), apply
the geometric Thom isomorphism with N as a relative cycle transversally intersect-
ing the zero section to obtain a covariant object, a closed manifold, say V ′, inside N
which then deformation retracts to X . One obtains a bijection between manifolds
mapping to X up to cobounding in X x I and homotopy classes of maps of N/∂N
into the universal Thom space.

The beauty of this equivalence is that the homotopy class of the big map of
N/∂N into the universal Thom space is completely determined by the map near
V ′, the complete preimage of the zero section, because the entire complement of the
neighborhood of V ′ in N is mapped to a contractible part of the universal Thom
space, the part near infinity.

In summary, Thom has replaced via the geometric Thom isomorphism Steenrod’s
geometric question - Which homology classes in X are represented by manifolds?
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by a dual question in algebraic topology or stable homotopy theory - Which coho-
mology classes of N/∂N (N=neighborhood of X in a high dimensional Euclidean
space) are pullbacks of the Thom class from the universal Thom space by maps of
N/∂N into that Thom space?

There are immediate negative consequences of Thom’s dual formulation for
Steenrod’s Problem using odd primary coefficients. For these coefficients the stable
cohomology of the oriented Grassmannians and thus their universal Thom spaces
are spaced in every 4th dimension. So any cohomology operation with odd primary
coefficients of dimension not congruent to zero mod 4 must vanish on the Thom
class of the universal Thom space and so also on any class induced from it (in
N/∂N say). Steenrod himself produced many such operations, like the Bockstein
of reduced pth powers, e.g. βP 1 of dimension (2p-1).

The (Alexander) dual of a cohomology operation which raises dimension is a
homology operation which lowers dimensions (H.(X) ' H ·(N, ∂N)). So we can say
that homology classes which admit nonzero homology operations (odd coefficients)
of odd degree must carry singularities. Roughly there are essential singularities in
the cycle which represent these nonzero homology operations.

The first example is a codimension 5 nonremovable singularity corresponding to
the operation βP 1 for the prime 3 (5=2p-1). This first Thom example occurs in
7-dimensional homology.

Thom then went to the positive side of Steenrod’s question - again using coho-
mology operations constructed by Steenrod - the celebrated Steenrod squares Sq1,
Sq2, .... Now the situation is very different. Thom had already calculated the action
of those operations on the Thom class of the universal bundle and found the Stiefel
Whitney classes in the 1951 paper [2]. By calculating this action in detail Thom
showed the Steenrod operations acted freely (modulo their universal relations on
all spaces) on the mod 2 cohomology of the nonoriented universal Thom space.
Using the viewpoint of Serre and the Cartan Seminar, Thom could deduce a stable
homotopy model for the universal Thom space as a product (or one point union,
which is the same in the stable range) of spaces, each with one nonzero homotopy
element. There was one such factor for each partition of any integer into parts not
a power of two less one.

This calculation gave two corollaries: 1) Any mod 2 homology class in any
space is represented by a closed manifold (possibly nonoriented) mapping into the
space. 2) The stable homotopy groups of the universal nonoriented Thom space
were calculated to be a direct sum of Z/2’s with one Z/2 in stable dimension n for
each partition of n into parts, none of which is a power of two less one.

In a third discussion Thom combined the prime 2 and odd primary discussions
to show that for any integral class some odd multiple (bounded by the dimension of
the class) can be represented by a manifold.

This splitting of Steenrod’s Problem over the primes by Thom used Serre’s idea
of calculating modulo a class of Abelian groups. Later these ideas led to a complete
localization of unstable homotopy theory at the primes and over Q [9]. Also the
stable Thom spaces and Thom’s arguments led to the construction of the stable
homotopy category whose objects are called spectra [24]. The model idea of the
Thom space for unoriented bundles was successful later again and again for oriented
bundles, spin bundles, and complex bundles..., but it took a lot of hard work by
Adams, Milnor, Novikov, Wall and Brown-Peterson....
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2. Resolving singularities and bordism

Thom’s spectacular results above on Steenrod’s Problem still don’t say what
the general homology class looks like. How bad must the singularities be? What
do manifolds with singularities really look like? Thom discussed general locally
compact finite dimensional manifolds with singularities in the 1969 BAMS article
[10]. Thom arrived at the following picture: first the expected - a locally finite
partition into manifolds (stratum) of varying dimensions, partially ordered by X <
Y iff X is contained in closure Y and otherwise X doesn’t intersect closure Y ; then
the key new insight: each stratum has a neighborhood which is a locally trivial bundle
over the stratum whose fibre is the cone on a compact manifold with singularities
whose partially ordered set of strata has smaller depth.

By a further stratification one can assume the cone bundles on strata are actually
trivial, e.g. in a simplical complex stratified by the open cells. Now the first
singularity going down has a product normal bundle whose fibre is the cone on
a closed manifold L. If the manifold L is the boundary of a manifold W , one
can replace each fibre, cone on L, by a copy of W and thereby smooth over this
singular stratum. Proceeding inductively, any singular cycle representing homology
can be resolved by replacing the normal cones of the top singularity stratum by
manifolds bounding the links unless links of singularities are encountered which are
not boundaries (for more on this see [11]).

This works in general to represent all cycles by manifolds with codimension at
least 5 singularities. The transversal links of the top singularity may be closed
4-manifolds which don’t bound, e.g. the complex projective plane CP 2 (which
doesn’t bound because it has odd Euler characteristic).

For example, Thom’s 7-dimensional counterexamples to Steenrod’s problem can
be represented by a 7-manifold with one 2-dimensional stratum of singularities, a
closed 2-manifold whose neighborhood is a cone on CP 2 bundle and which repre-
sents the result of the dual operation of βP 1 for the prime 3. A second singularity
is not required until dimension 11 [11].

Thus smoothing the singularities of manifolds with singularities leads to the idea
of classifying manifolds up to cobounding or bordism, X ∼ Y iff X union Y with
opposite orientation is the oriented boundary of a manifold of dimension one higher.
The geometric Thom isomorphism duality of §1 already contains the answer to this
classification, for by taking X to be a point, the (Pontryagin) Thom construction
identifies bordism classes of manifolds with homotopy classes of maps of spheres
(N/∂N for X a point) into the universal Thom space (stable range).

The mod 2 calculations and the calculation mod Serre’s class of torsion groups
leads to the two famous results of the 1954 paper: a) the oriented bordism ring ⊗Q
is a polynomial algebra over Q on one generator in every dimension 4,8,12,...; b)
the nonoriented bordism ring is a polynomial algebra over Z/2 on one generator in
every dimension except powers of two less one 2,4,5,6,8,9,10,11,12,13,14,16....

Here the product is a Cartesian product of manifolds on the covariant side and
a Whitney sum of vector bundles on the Thom space side.

We have described Thom’s papers in this order because as a way to classify
closed manifolds, both the definition and possible calculation of bordism were un-
expected. Yet both appear naturally from Thom’s analysis of Steenrod’s question
- What do representatives of homology classes look like? (However, Jean-Pierre
Serre has pointed out that Thom also learned the definition of cobordism from the
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Pontryagin’s school’s attempt around 1940 and later to use it to calculate homotopy
groups of spheres.)

3. Singularities in algebraic varieties

As mentioned above Thom was interested in singularities of algebraic varieties.
Two questions Thom considered were:
a) Can singularities be resolved by blow up?
b) Can singularities in a fixed ambient space be deformed away, say locally?

Now question a) in characteristic zero was resolved affirmatively in the tour
de force thesis of Hironaka (1963) [12] but is still open in positive characteristic.
Ten years before Hironaka’s solution Thom considered question a) in the light of
Steenrod’s question because algebraic varieties over C have fundamental homology
classes and resolution of singularities implies these homology classes are represented
by manifolds. Perhaps Thom’s approach can shed light in the positive characteristic
case of question a) (using étale homotopy theory to pass into algebraic topology)
even though Hironaka’s work shows Thom’s obstructions are not realized for com-
plex algebraic varieties.

Regarding question b) both René Thom and Andre Weil [27] considered the
following variety in CP 5, the rank one 2x3 matrices up to scaling, a 3-dimensional
variety V defined by three equations (three minor determinants are zero). The
complex cone on V in C6 has an isolated singularity whose intersection with the unit
sphere S11 defines an element in the homotopy group of the universal Thom space
for C2-bundles, π11(MU2). A characteristic class calculation (see Hartshorne’s
book) shows this element is nonzero mod 2 and overQ. Thus the linking submanifold
in S11 of the singularity does not bound a stably almost complex submanifold in the
twelve ball. This means the cone singularity cannot be deformed away. It also
means the 3-fold in CP 5 is not a hyperplane section. Thus it cannot be defined by
two equations.

4. Embedded and immersed submanifolds representing homology

It was known classically to Poincaré that codimension one integral homology
classes in a manifold are represented by embedded submanifolds. In codimension
two this is also true and known to Thom’s generation. In higher codimensions there
are obstructions which can be described by Thom’s duality picture - a homology
class in M is represented by a submanifold of M of codimension k iff the Poincaré
dual cohomology class in M is induced from the Thom class by a map of M to the
Thom space of the universal k-bundle.

The free structure of the rational cohomology (all the powers of the universal
Thom class are nonzero for k even) implies all of Thom’s realization obstructions
are finite. So Thom gets the result that any ray in the rational homology of any
dimension in any manifold is represented by an embedded submanifold. One can
add the information that the normal bundle of the submanifold may be taken to
be trivial in odd codimension always and in even codimension iff the intersection
of the homology class with itself is zero.

Using Thom’s method and the thesis of Robert Wells [13], one can also always
represent a ray in even codimension by an immersed submanifold with trivial normal
bundle.
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5. Thom’s signature invariant of bordism, exotic spheres, and the

formulae of Hirzebruch and Atiyah-Singer

A beautiful and simple argument (Thom [2]) combining Poincaré-Lefshetz du-
ality for a 4k + 1 manifold W with boundary and the exact sequence of the pair
(W,M) where M = ∂W

→ H2k+1(W,M) i→ H2kM
j→ H2kW →

shows that the signature of the middle dimensional intersection form of M is zero.
(Proof: i and j are adjoint maps under Poincaré duality so that (image i) = (ker j)
has 1/2 dimension H2kM . But two 2k cycles in M which bound in W clearly have
zero self-intersection numbers. Thus (ker j) is a self-annihilating subspace of 1/2
dimension, and this means the signature of the form is zero.) Thus the signature
which is multiplicative for cartesian products defines a ring homomorphism to Q
from (oriented bordism) tensor Q (Thom [1]).

One corollary of this is the celebrated Hirzebruch Signature Formula, which can
be proven [25] by checking it on any string of manifolds like CP k, k = 2, 4, 6, ...
which generate (as shown by Thom) the bordism ring ⊗Q. If my memory doesn’t
fail, I remember Fritz Hirzebruch telling that he received Thom’s C.R.A.S. note
in the morning post at the IAS in Princeton and had his signature formula by
the same afternoon. The fact that Pontryagin’s classes were integer classes and
Hirzebruch’s formulae for the signature (the L-polynomials P1/3, (7P2−P1

2)/45, ...)
had nontrivial coefficients allowed Milnor to produce the invariants needed to prove
his spheres carried exotic smooth structures [14].

A similar but more elaborate statement to Hirzebruch’s formula is the Atiyah-
Singer Index Formula for the index of elliptic operators, which can be proven by
showing the index is a cobordism K-theory invariant and then checking the formula
on a Q basis, e.g. the signature operator with coefficients in a vector bundle. This
was perhaps the first proof.

The signature invariant of 4k-manifolds was introduced in the 1920’s by Herman
Weyl in a paper written (in Portuguese) for a Portuguese mathematics journal [26].
Weyl said the signature invariant should be an interesting invariant of manifolds.
(Sources J-P. Serre and H.E. Winkelnkemper).

6. Thom’s combinatorial rational characteristic classes, K-theory

refinements, intersection homology, and elliptic homology

In the middle 50’s the characteristic classes of smooth manifolds were defined to
be invariants of the tangent bundle. They could be defined (Chern-Weil) by con-
nections, e.g. the Levi-Civita connection, as traces of even powers of the curvature
tensor (real coefficients) or with Z-coefficients by pulling back Schubert cycles by
a Whitney classifying map into the Grassmannian (Pontryagin).

Thom gave a totally new method [2] for defining characteristic classes (Q-coeffi-
cients) for combinatorial manifolds with certain singularities, and these objects
don’t have tangent vector bundles. This uses Thom’s duality picture and the
Serre calculation that rationally there is an equivalence between k dimensional-
cohomology of any finite polyhedron X and homotopy classes of maps of a high
suspension of X into spheres,

N -fold suspension of X → N + k sphere, N >> k.
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Thom considered the geometry of the polyhedral transversal pullback, V say, of
a point in the N + k sphere. Clearly, the (local structure of V ) x RN+k is just the
(local structure of X) x RN . For example the local homology sheaves are the same
with a shift. (Thus if X is an oriented n-dimensional pseudomanifold, then V is
an oriented n − k dimensional pseudomanifold and we have a picture of the map
HkX → Hn−kX which is cap product with the fundamental class of X). Varying
the choices makes V vary by a “cobordism” in X x I with similar local structure
statements.

One immediate corollary is a purely combinatorial definition of Hirzebruch’s
L-classes for a polyhedron whose local homology sheaves are those of an oriented
manifold (Q coefficients). Namely each V n−k is also a local homology manifold
(Q coefficients). So it has a signature which is a “cobordism” invariant for these
singularities (see the argument in §5), and Thom gets a signature homomorphism
from HkX → Q (when n − k = O(mod(4)). One obtains Thom’s rational homol-
ogy characteristic classes. Their Poincaré duals are the combinatorial Hirzebruch
L-classes (because the normal bundle of V in X x Rn is trivial, consistency can be
checked with the smooth case from Hirzebruch’s signature formula).

Thom’s argument is so good one wants to squeeze it harder. For example, what
properties of the local homology sheaves of X (and therefore V ) imply that V
has a signature which is a “cobordism” invariant? It turns out there are several
interesting answers and directions to follow that are related to this question. (See
also p. 230 of Springer Lecture Notes in Math. 197, p. 137 of [17], and p. 1067 of
[30].)

I) Jeff Cheeger’s work on L2 harmonic forms in metric spaces with metric conelike
singularities (e.g. polyhedron) leads to a picture involving an inductive choice of
self-annihilating subspaces in homology to have correct L2 boundary value problems
for harmonic forms. Since the L2 theory automatically satisfies Poincaré duality,
one can repeat Thom’s argument. This L2 version of Thom’s argument is not
published completely as far as I know, but see [15].

II) John Morgan working independently in surgery theory found an integral
refinement of the above subspace choices which also included the Arf-Kervaire in-
variant of quadratic forms over Z/2. Unfortunately none of this was published, but
see [16].

III) Happily, Goresky and MacPherson working at IHES (middle 70’s) under
Thom’s direct influence, especially stratifications and singularities in mappings,
considered geometric cycles bigraded by their degree of transversality to the local
homology strata and published an extremely fruitful paper [17] about a new kind of
homology called intersection homology. This new theory satisfied Poincaré duality
for a large class of manifolds with singularities (including those of complex algebraic
varieties) [17], and Thom’s argument yielding (ordinary) homology characteristic
classes goes through for these spaces (now the cap product goes from ordinary
cohomology to intersection homology).

A very nice denouement to this direction III) provides a general class of cycles
with singularities that have signatures using intersection homology, the Witt spaces
and exactly represent KO homology at odd primes [30].

The category of perverse sheaves arising from the Goresky-MacPherson paper is
the natural setting for intersection homology based on Verdier Duality, and there
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has been a rich development in many algebraic directions (D-modules, representa-
tion theory, algebraic analysis of PDE,...) using these sheaves.

IV) The original argument of Thom for local homology manifolds can be refined
integrally using another signature jewel besides its bordism invariance - namely the
signature of M4k is also defined if M4k has boundary and it is additive for glueing
along full boundary components (Novikov)[18]. Then one can define a signature
mod n for Z/n manifolds (those whose ∂ is divided into n isomorphic groups of
components) which is a Z/n-bordism invariant (by Novikov additivity). All this
works in the context of Q-homology manifolds [23].

One carries through Thom’s argument with those Z/n objects as well as the
closed Q objects to obtain two results for combinatorial Q-homology manifolds:

1) At the prime 2: the Thom (Hirzebruch) homology characteristic class over Q
has a canonical lift to integral (at 2) coefficients [16], [23].

2) At odd primes: the Thom (Hirzebruch) homology characteristic class over Q
has a canonical lift to KO-homology ⊗Z[1/2] [19], [23].

Note the refinement at the prime 2 corresponds to the original result of Thom
concerning Steenrod’s problem that manifolds represent all homology after taking
odd multiples, that is, all homology with coefficients in Z (localized at the prime
2 by making odd primes into units). The KO at odd primes refinement is related
to Thom’s negative result about representatives of homology requiring singularities
because of certain odd primary homology operations. Namely, if one allows all
singularities which preserve the fact that (4k) cycles still have a signature which is
a homology invariant for these singularities, then one obtains a homology theory
which is not usual homology but an extraordinary one which is isomorphic to KO-
homology (localized at odd primes by inverting the prime 2) [20], [30].

V) Imposing specific singularities on cycles and homologies defines other extra-
ordinary homology theories [11], [29], [31], including the Morava K-theories and
elliptic homology [21], [28], [31]. These are related to the current chromatic activ-
ity in stable homotopy theory-elliptic theory and modular forms; see [22], [29], and
the preface and references therein.

It would be interesting to find for Witten’s elliptic genus all the geometric cycles
parallel to those mentioned above for the L-genus and Thom’s signature. As I recall,
Witten’s work on the elliptic genus involved consideration of the multiplicative
properties of invariants of manifolds which are fibred, and this property for the
signature was discussed in [32], a 1957 paper of Kodaira, and a 1961 paper of
Atiyah.

Postscript: This text was originally written for the special issue of the Gazette
de la Société Mathématique de France dedicated to René Thom. It was improved
because of an enjoyable and interesting exchange of emails with Jean-Pierre Serre,
who conscientiously critiqued an earlier version. I am grateful for that and other
contacts with him and with René Thom during two decades at the IHES in France.
One can only admire and appreciate the scholarship and creativity of the French
mathematical tradition.
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