SEMIOPHYSICS.

A SKETCH

RENE THOM

Aristotelian Physics
and
Catastrophe Theory
A SKECH

SEMIO PHYSICS

RENE THOM
Library of Congress Cataloging-in-Publication Data

Thom, René, 1923--

ISBN 0-201-50060-4
1. Physics—Philosophy. 2. Catastrophes (Mathematics)
3. Aristotle. 1. Title.
QC6. T52513 1989
501—dc:19 89-30695
CIP

Copyright © 1990 by Addison-Wesley Publishing Company
Originally published by InterEditions, Paris, 1988

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America. Published simultaneously in Canada.
In this volume, the book Stabilité Structurelle et Morphogénèse (by René Thom, second edition, InterEditions, Paris, 1977) is referred to by the abbreviation SSM. Notes and references to other works are placed at the end of each chapter and are cited in the text by numbers in parentheses, e.g., (4). Quotations of Aristotelic are reprinted and translated in a separate chapter at the end of the book (beginning page 221); quotations are referenced by numbers in brackets, e.g., [9].

I would like to thank my translator, Vendla Meyer. At the cost of months of hard work, and thanks to the rigor and precision of her reading, she has picked out many inaccuracies and imprecisions scattered through the French text Esquisse d'une Sémiophysique. I wish to express here, with my gratitude, the total satisfaction I have drawn from our collaboration.

Rene Thom

The work presented here cannot be said to follow directly on from Structural Stability and Morphogenesis. Mathematicians, in particular, will find in it neither theorem nor new algorithm (except perhaps for the metaphor in section B, Chapter 3, which may inspire some of them). And practitioners of the natural sciences, physicists or biologists, will doubtless be disappointed to see mentioned here only classic facts, most of which have been around for a long time and are more or less common knowledge. This work is rather intended to take up the succession of a dead discipline, namely "natural philosophy". So that it can not be expected to contribute—even a little—to scientific progress, in the modern sense of the term.

To begin with, why this neologism. Semiophysics? I wanted to refer to an expression used by Jean Petitot in his thesis (1), where he presented the use of models in catastrophe theory as the "physics of meaning" (physique du sens). At the time, the expression hardly appeared justified to me, since physics has very precise quantitative laws (they are its characteristic feature...) whereas the same could not be said for models of signification. However, a deeper analysis of the notion of genus—in the sense of Aristotle's ἕνωσις—revealed to me a richer structure in these "semantic fields" than I had at first suspected. In these spaces there reigns a certain generativity, incomplete and abortive to be true, but present all the same.

What then is the object of this Semiophysics? Semiophysics is concerned in the first place with the seeking out of significant forms; it aims to build up a general theory of intelligibility. In fact the problem is quasi-experimental. Put someone in a projection room and project a film for him that represents some abstract morphology in evolution. Then ask your guinea-pig whether what he sees has any meaning for him, and, if so, to describe it. The hypothesis put forward here is that only certain configurations of elements really make sense and can be used as a basis for an intelligible construction that allows linguistic description. It's a
In this volume, the book *Stabilité Structurelle et Morphogénèse* (by René Thom, second edition, InterEditions, Paris, 1977) is referred to by the abbreviation SSM. Notes and references to other works are placed at the end of each chapter and are cited in the text by numbers in parentheses, e.g., (4). Quotations of Aristotle are reprinted and translated in a separate chapter at the end of the book (beginning page 221); quotations are referenced by numbers in brackets, e.g., [9].

I would like to thank my translator, Vendla Meyer. At the cost of months of hard work, and thanks to the rigor and precision of her reading, she has picked out many inaccuracies and imprecisions scattered through the French text *Esquisse d'une Sémiophysique*. I wish to express here, with my gratitude, the total satisfaction I have drawn from our collaboration.

Rene Thom

The work presented here cannot be said to follow directly on from *Structural Stability and Morphogenesis*. Mathematicians, in particular, will find in it neither theorem nor new algorithm (except perhaps for the metatheorem in section B, Chapter 3, which may inspire some of them). And practitioners of the natural sciences, physicists or biologists, will doubtless be disappointed to see mentioned here only classic facts, most of which have been around for a long time and are more or less common knowledge. This work is rather intended to take up the succession of a dead discipline, namely "natural philosophy". So that it can not be expected to contribute—even a little—to scientific progress, in the modern sense of the term.

To begin with, why this neologism, Semiophysics? I wanted to refer to an expression used by Jean Petitot in his thesis (1), where he presented the use of models in catastrophe theory as the "physics of meaning" (physique du sens). At the time, the expression hardly appeared justified to me, since physics has very precise quantitative laws (they are its characteristic feature...) whereas the same could not be said for models of signification. However, a deeper analysis of the notion of genus—in the sense of Aristotle's γένος—revealed to me a richer structure in these "semantic fields" than I had at first suspected. In these spaces there reigns a certain generativity, incomplete and abortive to be true, but present all the same.

What then is the object of this Semiophysics? Semiophysics is concerned in the first place with the seeking out of significant forms; it aims to build up a general theory of intelligibility. In fact the problem is quasi-experimental. Put someone in a projection room and project a film for him that represents some abstract morphology in evolution. Then ask your guinea-pig whether what he sees has any meaning for him, and, if so, to describe it. The hypothesis put forward here is that only certain configurations of elements really make sense and can be used as a basis for an intelligible construction that allows linguistic description. It's a
question of picking out of the spectacular stable elements in the shape of balls that will interact through contact, merge together, separate, be born and die (fade away) like living beings. These are salient forms. Such beings will also be able to interact at a distance thanks to invisible go-betweens like light and sound. If morphology presented only a tangle of teeming and ramifying forms, then it would be difficult to discern meaning in it—except by assimilating it to luxuriant plant proliferation or the chaotic disorder of a raging sea. In this direction we find what I call pregnant, propagating from salient form to salient form which invest as they go; the invested form consequently suffers a change of state (figurative effect) and can, as a result, re-embody the pregnancy which may or may not have been modified, (the “coding” effect).

Finally, Semiotics: A Sketch consists of two parts that are fairly distinct, even though they come out of common preoccupations and are linked by the same methodology. Chapters 1 to 5 expound this theory of salience and pregnancy—in which I see the conditions both necessary and sufficient for an onto-morphology to be intelligible; Chapters 6 to 8 constitute our Aristotelian journey.

It was only quite recently, almost by chance, that I discovered the work of Aristotle. It was fascinating reading, almost from the start. I knew of course that the hylomorphic schema—of which I make use in catastrophe formalism—originated in the Stagirite’s work. But I was unaware of the essential fact that Aristotle had attempted in his Physics to construct a world theory based not on numbers but on continuity. He had thus (at least partly) realized something I have always dreamed of doing—the development of a Mathematics of the continuous, which would take the notion of the continuum as point of departure, without (if possible) any evocation of the intrinsic generativity of numbers.

The philosophical program I had in mind for Catastrophe Theory, namely the geometrization of thought and linguistic activity, was more than merely sketched out in Aristotle; it was already largely achieved. And this at the cost of a few terminological equivalences such as: \mathbb{D} categorial and the transition genus \rightarrow species = bifurcation.

However, Aristotle is little thought of among mathematicians; he suffers from comparison with his master Plato who enjoys, in this domain, a reputation that is perhaps usurped. For hundreds, maybe thousands, of years, Aristotle has been the only one to think in terms of the continuous. To my mind, that is his chief merit. Naturally, this supposes a somewhat particular way of seeing geometrical entities. Neither Dedekind nor Cantor have taken that road; it is a geometry founded uniquely on the intuition of continuity. Here the segment of a straight line is not made up of points, but only of sub-segments. The single isolated point (say O on the axis x'), exists only "potentially"; it aspires to actuality by duplicating itself in two points O_1, O_2, O_1 adhering to the left, O_2 to the right. These two points then being distinct even though they are together ($O_1 O_2$), the two half-segments so limited attain full existence, being in actuality (2).

This view of things, which allows the existence only of bounded closed sets of maximum dimension (balls in fact) may appear surprising. It takes up again an old idea of Poincaré (3): to define dimension by the property a surface has of disconnecting three-dimensional space, by a break. One wonders whether this idea—the replacement of a point by a little oscillator that duplicates itself—might not be of a nature to furnish a useful vision of the quantum world. If I add that I found in Aristotle the concept of genericity ($\delta \varepsilon \epsilon \tau \sigma \lambda$, the idea of stratification as it might be glimpsed in the decomposition of the organism into homoecomerous and anhomoecomerous parts by Aristotle the biologist, and the idea of the breaking down of the genus into species as image of bifurcation, it will be agreed that there was matter for some astonishment.

Besides, the very style of Aristotle, far from the axiomatic precision one might expect of a logician, is that of a thinker who is feeling his way, often retracing his steps and perpetually struggling with his object. This evidence of constant effort filled me with a feeling of immense sympathy.

I have proceeded, then, with a catastrophist reading of Aristotelian Physics (Chapter 6), followed by an exposition of Aristotelian Biology (with the problems it is still raising (Chapter 7)), and, in fine, Chapter 8 devoted to the logico-semantic aspects of Aristotelian theory. It is shown how certain modern linguistic models (the continuous models of Hans-Jakob Seiler, for example) might very well enter into this framework. An appendix completes this presentation with a discussion by an informed Aristotelian, Mr. Bruno Pinchard, and the exchange of views it occasioned. To those who may suppose Aristotle’s doctrine to be basically obsolete, I would point out that in him we find a philosophy that is both materialist (existence requiring a material substrate) and nevertheless governed by force and final causes. An association rarely encountered in modern times. We deal with this point in a brief Conclusion, which closes on the necessity of resting—by appropriate minimal metaphysics—some kind of intelligibility to our world.

Notes and References

(1) Jean Petitot, *Morphogenèse du sens*; Vol. 1, p. 293 (last word), PUF 1985
(2) Cf. our "little phrase" in Met Z (13) 1039a, 3–7, quotation [2]. For a fine example of modern incomprehension of the Aristotelian point of view, see Jean Dieudonné's criticism of Φ VI, 231a, 22, in Pour l'Honneur de l'Esprit Humain, p. 229, Hachette, Paris 1987

(3) Henri Poincaré, La Valeur de la science, p. 97, Ernest Flammarion, Paris, 1914
CHAPTER 3. THE NOTION OF PREPROGRAM, BIOLOGICAL AND TECHNICAL MORPHOGENESIS

A. General theory of interaction in an intelligible ontology .. 41
B. The notion of preprogram: obstacle in the way of a flow .. 43
C. Examples of realization of archetypal singularities .. 46
D. Mobile preprograms ... 49
E. Mill-wheel theory .. 51
F. The Van der Poly-Liénard system .. 52
G. Technique and nature ... 53
H. Duplication of the hysteresis loop in purposeful activities ... 55
I. Algebraic models of duplication ... 57
J. Genetic constraints and catastrophe theory ... 60
K. The instrument as extension of the organ ... 61
Notes and references .. 64

CHAPTER 4. ANIMAL EMBRYOLOGY

A. General remarks on the morphology of living beings ... 66
B. Animal Physiology ... 68
C. Dynamics of predation, or the predation loop revisited .. 71
D. The generation of animal dynamics ... 77
E. The germinal path oD .. 80
F. The problem of plane cycle duplication ... 82
G. Vertebrate embryology ... 84
 1. Amphibian embryology .. 84
 2. Remarks on smoothing .. 88
 3. Neurulation and neurogenic induction ... 91
 4. Symmetries of the vertebrate organism ... 94
 5. Cephalization: head-coelome homology .. 96
H. Lie groups and their ontogenetic simulation ... 98
I. Appendix: Cellular Biology .. 99
Notes and references .. 102

CHAPTER 5. THE GENERAL PLAN OF ANIMAL ORGANIZATION

A. Introduction .. 104
B. Organization and the principle of the "connection of parts" 105
C. The Cuvier-Geoffroy Saint-Hilaire controversy ... 106
D. Some remarks on E. Geoffroy Saint-Hilaire .. 108
E. Epigenetic landscape and law of recapitulation ... 109
F. The physiological blastula and space ... 113
G. Metamorphosis and dedifferentiation .. 114
H. Representation of physiological functions in the PB ... 116
I. Oogenesis Oα. Genetics .. 118
J. The main plans of organization ... 119
K. The directive gradients of embryology and their modulation: metamericism 124
 1. The gradients of oogenesis ... 124
 2. Metamerism .. 125
 3. The case of mollusks ... 126
L. Outside milieux and their gradients .. 127
M. Insects and vertebrates .. 129
N. Pyramidal decussation and the "turn-over" ... 133
O. The human brain .. 138
P. Conclusion .. 139
Notes and references .. 140

CHAPTER 6. ARISTOTELIAN DYNAMICS SEEN AS SEMIOPHYSICS

A. Axiomatics .. 144
B. τελειος, τελος and τελευτη: birth and demise of an entity .. 146
C. "Potentiality" defined by mental experience .. 147
D. Homoeomerous parts ... 148
E. Homoeomerous, anhomoeomerous and catastrophe theory 149
F. Axioms of actuality ... 149
 1. Zerovalent sentences ... 150
 2. Univalent sentences ... 150
 3. Divalent sentences ... 151
G. Theory of the transitive act ... 152
H. The act, the acts, and their telos ... 152
I. Genesis and death ... 154
J. Contingency of the act ... 155
K. Examples of complex acts ... 157
 1. Housebuilding ... 157
 2. Embryology .. 159
Notes and references .. 163

CHAPTER 7. PERSPECTIVES IN ARISTOTELIAN BIOLOGY

A. The primordial topological intuitions of Aristotelianism: Aristotel and the continuum .. 165
B. Actuality, the boundary of potentiality ... 169
C. The case of Biology: The axiom ABP in Biology, its limitations 171
D. Act, boundary and potentiality. General discussion .. 175
E. Anhomoeomerous parts and their hierarchy ... 180
CHAPTER 1

SALIENCE AND PREGNANCE

A. Introduction: the a priori problem

One of the weakest points of the classical approach to the notion of the a priori—that is to say the constitution of a table of categories in the manner of Aristotle or Kant—is now said to lie in the project of legislation ad aeternum, whereas everything leads us to believe that the human psychic structure has changed over the course of time. Man springs from animal, and yet it would be surprising to attribute to animals the same cognitive capacities as to man. In this sense, all epistemology must be "genetic": it must take into account the effect of evolutionary transformations to which the human lineage has been subjected for thousands of years.

Nevertheless, this finding should not lead to total relativism. Even the most "evolutionist" of the epistemologists of evolution is forced to admit the perennial nature of space, this framework within which the process to be described is actually happening. (Who is to tell us of the intrinsic variations of time in ages past?) In the same way, the a priori constant validity of the structure of Euclidean space, even space-time, will be conceded for our purposes. Objections raised to the Kantian a priori of Euclidean geometry after the discovery of non-Euclidean geometries, and the theories of twentieth century physics (restricted and general relativity, quantum mechanics) appear to me irrelevant to the problem before us, for they deal with an ontological region (infinitely small and infinitely large, singularly reunited in fundamental physics) which lies outside the usual cognitive activity of ancient man. Such objections are inspired by the spirit of logicism in an attempt to provide the categories with a formal a priori basis.

So it is in our usual space-time, basic framework of all human experience, that the analysis of the original psychic mechanisms of our species which we propose to construe, will have its roots. These basic tools of
Salience and Pregnancy

The primary experience in any receiving of phenomena is discontinuity. But discontinuity presupposes the continuous. As our first experience of the continuous is that of consciousness, i.e., that of time, the most original auditive discontinuity will be, for example, the eruption of a sound in the midst of silence. The tinkle of a bell is perceived as an autonomous form, filling the gap between two empty zones of silence. I shall call *salient form* any experienced form clearly separate from the continuous background against which it stands out. If we move from time to space, then a salient form can be said to be any visually perceived object clearly distinct from and contrasting with its background, the "substrate" space in which the form dwells. Generally, a salient form that is seen will have an *interior* in the field of vision, and will present a boundary, its apparent outline.

Empty forms, such as curves in a plane, surfaces in a three-dimensional space, can hardly be looked on as "forms", lacking as they do the character of autonomy, of individuation, proper to beings perceived as legitimate entities. For them we shall keep the term of *features* (1).

The simplest feature is the punctual discontinuity geometrically represented by a point dividing the real straight line R into two half-lines ---. Timewise, it would be the onset of noise in relation to silence. Visually, the point could separate two regions having different visual characteristics, two colors for example.

In the plane R^2, any finite set of isolated points, any curve, may be considered as a *feature*. The same goes for (non-closed) surfaces in R^3. The simplest individuated forms are *balls*. In dimension one it is the tinkle of a bell, in dimension two the disk circumscribed by a simple closed curve, in dimension three the ball inside its boundary sphere. Sometimes the interior can be very thin and there may then be a certain ambiguity as to the nature of the form; should we rather look on it as a feature? Take lightning, for instance.

Salience may present a hierarchized aspect related to "contextual effects" between forms. For example, a gap in a periodic sequence of "pips" will be felt to be salient. (There exist neurophysiological criteria

* The French term *pregnance*, particularly in the special sense used by René Thom, is difficult to put into English. I apologize for translating it rather flabbily by "pregnancy" but hope that the reader will have adopted it into his everyday language by the end of the book (Translator's note).
for this kind of phenomenon, known as the P-300 effect (2). Generally speaking, every discontinuity is translated into a discontinuity in the subjective sensorial state (sometimes with enormous amplification). This is a very general phenomenon in propagative partial differential equation theory, the wave equation, for instance. The discontinuity of a solution is then propagated by the Hamilton-Jacobi equation associated with the symbol operator. However, even in the most general couplings between systems \(S \) and \(S' \), a discontinuity in the state of \(S \) will usually produce a discontinuity in the state of \(S' \). (This is what, in a nutshell, I have called the "principle of catastrophe contagioness".) Subjectively experienced discontinuity is but the echo within an organism of a physical discontinuity outside it. This argument should carry some weight as an answer to idealism, which claims that the mind can have no knowledge whatsoever of things. In this permanence of discontinuity throughout the course of its propagation, some have even discerned a possible objective basis for the notion (otherwise so confused) of information. Certainly, Peircean "Firstness" (3) may be perceived as the pure manifestation (reduced to its bare existence) of a shock inflicted on our psychism by the outside world. As we shall see in Chapter 8, the impact of discontinuity is doubtless no stranger to Aristotle's logos apophaticos, that which gives semantic autonomy to a nuclear sentence.

Many of the discontinuities we perceive probably do not give rise to judgments; for that it is necessary for some pragmatic or communicatory interest to focus our attention on the fact. We will come back later to this point which is linked with the notion of pregnancy to be introduced in the next section.

One difficult question in the theory of salience arises from the notion of individuated form. It is perhaps permissible to see in the isolated point on the line \(R \) a sort of "organizing center" of the form defined by the interval \(l \rightarrow 1 \). (Vary \(\varepsilon \) from 0 to 1 in \(x = \varepsilon \).) Mathematically speaking, the individuated form appears to be more stable than the "line". But there may be degrees in the individuated character of a form. For instance, a simple arc separating two colors that run into each other at the edges presents a certain individuation. The (topological) connectedness of the line appears as a necessary general condition of individuation. There are exceptions, however: (1) when the non-connected entity answers to a functional definition (e.g., place laid on the dining table, business concern in economy, etc.); (2) when the unity of a form is re-established from suitably arranged fragments. We are dealing with mechanisms of perception generally linked with the prolongation of straight lines, or with the three-dimensional interpretation of a plane figure. Gestalt theorists have furnished abundant literature on these phenomena (4). I would be tempted to see in these apparent exceptions a further justification of the principle of the connectedness of forms, for they show how strongly the mind is attracted to connection.

Another major problem attached to form individuation lies in the decomposition of a form into "features". The human body, for example, is decomposed, as an individuated form, into parts that can be presented in a hierarchized graph (Figure 1.1).

It may be thought that this decomposition is not an arbitrary one, and that it reflects to a certain extent the ontogenetic process of embryology. Conversely, an individuated form may be "annihilated" by analysis proceeding from the whole to the parts. This would amount to saying that there can be no individuation without a certain form of "concept", that is to say a class of equivalence between forms referent to the same concept. As the Beocitian would say when confronted with a picture of modern art, "It doesn't mean anything". However, that may be, the frequently hierarchized character of individuation is evident in the preceding example.

We also have to consider separately the case of ramifying forms (such as a spark, fungus mycelium, etc.) where individuation is diluted in the
topological complexity of the teeming form. Here again we are coming close to the domain of “pregnancy”.

C. Pregnancy

Although salient forms can have a certain impact on a subject’s sensory apparatus (a flash of lightning can dazzle), this effect remains transient and short-lived. Salient forms are likewise registered in the short-term memory(5), but have no long-term effect on the behavior of the subject (human or animal) or on its physiological state. The situation is different where forms that carry a biological significance for the animal are concerned. Among these are the forms of prey for the (hungry) predator, of the predator for its prey, and of a sexual partner at the appropriate time. The recognition of these forms gives rise to a very ample reaction in the subject: the freeing of hormones, emotive excitement, and behavior designed to attract or repulse the inductive form. I will call such forms pregnant, and this specific character of theirs pregnancy.

Of course, all pregnant forms are ipso facto salient. But we note that the “pregnant” effect can be triggered in a subject by a sensory stimulus with very little “figuration”, an olfactory stimulus for instance. So there are at least some grounds for dissociating the “pregnancy” from the salient forms which start it off. I believe that the failure of classical Gestalt theory to make this distinction is a serious shortcoming, the gestaltist concept of Pragnanz having more to do with the individuation criteria of a perceived form. Nevertheless we shall see that when animal pregnancy is generalized in the direction of human conceptualization, “conceptual or individuating pregnancies” will be revealed, the nature of which is close to “salience”. In higher animals (birds and mammals, to be more precise) the pregnancies encountered are rather few: hunger, fear, sexual desire. But because of their connection with Pavlovian conditioning, these great biological pregnancies affect the whole of behavior.

D. Pavlovian conditioning: subjective investment

Let us recall Pavlov’s classic experiment. A nice piece of meat is presented to a hungry dog and a bell is rung at the same time. When this association is repeated often enough, the sound of the bell is in itself sufficient to bring on in the dog behavior related to an appetite for food (it will salivate). We will interpret this fact in terms of pregnancy and salience.

The meat, a salient form, is also pregnant: it carries an alimentary pregnancy. When the association meat → bell ringing has been repeated often enough (and simultaneously reinforced by the satisfaction of hunger), the sound of the bell alone will appear to the dog as a salient form rich in alimentary pregnancy. In anthropomorphic language, we can say that, for the dog, the tinkle of a bell will evoke the image of food—of meat in this particular instance. The alimentary pregnancy of the meat is said to have spread by contiguity to the salient auditory form constituted by the ringing of the bell. We shall express this as follows: The salient form that is the sound of the bell is invested by the alimentary pregnancy of the meat.

Classic conditioning experiments (6) show how this process can be iterated: the tinkle of the bell can act as an inductive source to invest a second salient form with alimentary pregnancy, and so on. (It remains to be seen whether a chain so constructed can stretch very far: feats of training higher animals show that it is possible to build up fairly complicated sequences of “actions” invested with pregnancy, each action then being equivalent to a perceived salient form.) So we can look on a pregnancy as an invasive fluid spreading through the field of perceived salient forms, the salient form acting as a “fissure” in reality through which seeps the infiltrating fluid of pregnancy. This propagation takes place according to the two modes “propagation by contiguity” and “propagation by similarity”, which John G. Frazer used to classify the magical actions of primitive man in The Golden Bough (7). We shall come back later to the linguistic implications of this pregnancy propagation.

For the moment let us simply observe that contiguity and similarity call, respectively, on the topology and geometry of our macroscopic space; in this sense, Pavlovian conditioning can be said to have an underlying geometrical basis.

Pavlovian conditioning is often considered to be a pure manifestation of neurophysiological (or psychic) automatism. That is the impression given by behaviorists like Skinner. It was probably not Pavlov’s own opinion, for he was conscious of the profoundly purposive character of this phenomenon. The mere fact that a salient form placed before reinforcement is more quickly and thoroughly invested than if it comes “after”, shows, as it were, a desire to simulate physical causality (8) (at least, that is, if one is a realist with regard to causality). Hume would say, on the contrary, that we believe in causality because we have been conditioned phylogenetically to do so by the regularity with which phenomena succeed one another in the physical world. Be that as it may, the attempts of neurophysiologists to explain Pavlovian conditioning by
some acquired modification in the states of neurons or synapses are
hardly convincing because they do not tackle the initial question: What
is there to distinguish the way the organism deals with a pregnant form
from the way it deals with a form which is only salient? Why does a
pregnant form invest its neighbors whilst a simply salient form does
not?

E. Formalization of subjective pregnancies

If we suppose that \(A = \text{meat}, B = \text{tinkle of a bell}, \) the conditioned state of
Pavlov's dog can be represented by the arrow

\[B \rightarrow A \] (meaning: where \(B \) is a sign of \(A \))

We shall say that form \(B \) refers symbolically to form \(A \). Here I am mak-
ing use of a notion taken from the axiomatics of G.G. Granger (9) ex-
tended from a human situation to an animal one. If, moving on from \(B \),
the pregnancy has invested a third form \(C \), we can write:

\[C \rightarrow B \rightarrow A \]

and conclude that the transitivity rule applies:

\[C \rightarrow A \]

This shows that, at a given moment, the state of a subject with regard to
a given pregnancy can be described by such a system of arrows between
forms (what algebraists call a category, in mathematics) (10). We shall
denote \(J_P \) the category associated in this way with a pregnancy \(P \). These
"pregnantial" categories are not arbitrary. They satisfy the following
property:

PROPOSITION. A pregnantial category \(J_P \) has no cycles. Here follows
what I would not be so rash as to call a demonstration of the propo-
sition, but rather the argument that does furnish some justification for it.

Let us denote by \(R(X) \) the set of physiological reactions triggered in a
subject when it perceives the form \(X \). If

\[B \rightarrow A \]

it is reasonable to suppose that \(B \) provokes less reaction than the form \(A \);
hence \(R(B) \leq R(A) \) as a subset.

Then if we had a cycle of the form:

\[A_0 \rightarrow A_{n-1} \rightarrow A_{n-2} \rightarrow \ldots \rightarrow A_1 \rightarrow A_0 \]

we could deduce from it that

\[R(A_0) \leq R(A_{n-1}) \leq R(A_{n-2}) \leq \ldots \leq R(A_1) \leq R(A_0) \]

So all the \(A \) forms would produce the same set of reactions, which, from
the behaviorist point of view, means that they all have the same "signifi-
cation".

COROLLARY (pure algebra). On every pregnantial category \(J_P \), there
exists a function \(\lambda \) (pregnancy intensity) such that if \(X \rightarrow Y \) in \(J_P \) we have

\[\lambda(X) < \lambda(Y) \].

F. Source forms and individuating pregnancies

DEFINITION. A form \(S \) extreme in \(J_P \), that is, for which there exists no
other form \(T \) such that \(S \rightarrow T \), will be called a source form of \(P \). The
function \(\lambda \) is maximal on every chain containing \(S \), at which point it
reaches its maximum.

In a biologically well-regulated situation, every symbolic reference
that can be traced back to a source form encountered in reality leads to
reinforcement: alimentary satisfaction or "punishment" for regulatory
pregnancies such as fear. In the latter case it is a matter of reflex avoidance
of the source form seen as dangerous (a predator, for instance).

A category \(J_P \) does not show only converging arrows:

\[\rightarrow \]

if such were the case, a category \(J_P \) not containing a cycle, would be a
union of trees (considered as an oriented graph → where the symbol
\(B \rightarrow A \) means that \(B \) is a sign of \(A \)). Each then has a single source
form \(S \). We shall say in this case that the pregnancy \(P \) is individuating,
or, in other words, that \(P \) is the individuating pregnancy of the source
form \(S \).

We have seen earlier on (section B) that an organism generally has an
individuating pregnancy which implies its "salient features" or significant
parts; we shall see how, in human linguistics, a peculiar localizing
pregnancy may even be attached to every locality.

A pregnantial category, though bounded "above" by its source forms,
does not generally have lower-boundary elements where \(\lambda \) would be
minimal. (More precisely, every salient non-pregnant form could be said
to have zero \(\lambda \) intensity.) The propagative nature of Pavlovian condi-
tioning shows that any pregnancy can be modified in its least pregnant
forms at its lowest levels of intensity.

The structure of a pregnancy can be visualized by changing the sign
of \(\lambda \), supposing, for example, that \(V = k - 3 \), where \(V \) would be seen as
G. Genetics and pregnancy

One wonders, then, whether the “generic” structure of a pregantial category is genetically determined, in particular whether the source forms of such a pregnancy are genetically programmed. For higher animals, the answer must surely be no. While it is easy enough to imagine that there may be innate signals of an olfactory nature (these being chemical), it is doubtful whether genes alone would be able to code a visual form. An object in three-dimensional space has an infinity of apparent contours, and neither DNA nor any other chemical support contained in

the egg would ever hold enough information to code them all. Whence the necessity of invoking cultural transmission, linked with the social or family organization of the community.

H. Social animals and communication

The problem of cultural acquisition is particularly acute in gregarious animals. We can lay down as a principle that social communication has a regulatory function in the body of society. Consequently the signals used in a collectivity are vectors of pregnancy; they transfer a pregnancy from one member of the community to another, or to several others, so promoting the collective behavior required to capture food, to ward off predators or escape from them. The capacity to emit certain types of signals by means of appropriate organs is genetically programmed. The formation of these organs can here be explained only with reference to the global morphogenetic schema of a species.

What genetics can program in a pregnancy, on the other hand, is the global topological structure of the potential well and in particular the global schema of its descending valleys. Thus divergence leading to a ramification of source forms may be programmed in advance...

We shall see (in Chapter 2) that the origins of human language are to be sought in this direction. From this angle, the source form would be defined, not as a visual form, but as the abstract abode of a category I_p, a “black hole” to be filled with the first sensorial experiences of the newborn infant. Thus we find in global pregnancy organization a sort of “tendency” to diverge or to converge, more or less genetically programmed; the filling-in of the sinks, of the “black holes”, would be more of a cultural acquisition (or at least an “epigenetic” one). The phenomena of imprinting brought to light by ethologists (12) can be understood in this way. We can also find here an explanation for those very strange “supernormal releaser” phenomena. Take the goose that prefers to sit on a rugby ball rather than an egg of its own species: the visual form of the species not being genetically coded, all that is programmed is a general ovoid shape linked with the “body schema” and the brooding state; and better, after all, to choose a big egg than a little one.

It would be as well to draw a distinction here between imprint and conditioning. An imprint is a genetically programmed phenomenon producing an irreversible effect that no subsequent experiment can undo (I owe this precious observation to Doctor Jacques Miernong). Very strongly marked in birds, where it was discovered long ago, this phenomenon is less evident in mammals. In man, the acquisition of language may be considered as the effect of an imprint that can be
modulated by social environment; it is true that the mother tongue is
memorically very stable. This point will be considered in the next
chapter.

We have to conclude that the innate morphogenetic schema contains a
priori the social structure of the species. This is particularly evident in
the case of social insects (ants, termites, bees) in which the very con-
titution of the organism depends on the social role (or caste) of the
individual. Algebrasists say that within a category there are identical
morphisms \(A \to A \); any signal is to be associated with the identical
morphism of a source form. When a symbolic reference is traced back
to a source form, no further association is possible and the only possible
issue is generally a motory one: to carry out the regulatory reflex
that will bring satisfaction. In a social group, one individual's encounter
with a source form \(S \) may give rise to a dilemma: whether to pursue the “indi-
vidual interest” which consists in using the regulatory reflex that will
result in selfish satisfaction, or to follow the altruistic community strategy
by uttering the cry that will carry the pregnancy \(S \) to the other
members of the community; such a cry is then the signal by which the pregnancy
\(P \) of \(S \) experienced by individual 1 can be transferred to another individual
2. One example of this is the cry of alarm transporting the pregnancy
four. It sets in motion the defensive reflex of banding together or of tak-
ing flight, but it also incurs the risk of attracting the predator's attention.
In the case of an alimentary pregnancy, the dilemma facing the individu-
al who has come upon a source of food consists in whether to keep the
information and benefit for himself or, on the contrary, to communicate
the news to the group so as to share the good fortune. (This dilemma
exists well and truly in our society. Witness the scruples most honest cit-
zizens have in making a true declaration of their taxable revenues.) In
presenting this strictly regulatory vision of animal language, I expect to
hear the usual objections put forward in similar instances: that it is an
unduly reductionist view of language, since language is used in so many
other situations with quite different aims—mating or parading songs, for
example, all varieties of affective demonstration (aggression between
individuals, marks of affection, etc.). I do not, of course, deny these
other activities: affectivity, be it pleasurable or painful, is a motor of
pregnancy propagation. Unless an association \(B \to A \) is reinforced, it
fades out after a while (13). Thus affectivity serves to “spout arrows” in
the category (cf. Chapter 4, section C); it can also be expressed directly,
thus serving to inform the rest of the community of the emitting
subject's affective state.

The existence of a signal that can be given to transmit the pregnancy \(S \)
raises new problems. First comes the question we have already dealt
with: Is the source form determined genetically, or is it acquired through
culture? The example of wild geese (as well as of certain primates),
whose cry of alarm varies according to the nature of the predator (aerial,
terrestrial or arboreal) (14) seems to show that the signal is determined
more by a collective defense reflex than by a strictly defined form.
Again, the fact that certain primates raised to sexual maturity in isola-
tion are then unable to perform the sexual act would indicate that in
these species cultural acquisition is indispensable, even for such a bio-
logically important regulation as reproduction.

1. Sign and genitive

One might indeed wonder with respect to the alarm call, if there is a ge-
etically programmed source form of predators. Many species (luckily for
them) are unaware of the identity of their predators (especially the
rare ones); and, when the hunt is always successful, it is hard to imagine
how the victim would be in a position to picture the hunter to himself.
One may guess that when a community member is caught and torn to
bits by a predator, the remains of the meal will have a repellent effect on
the surviving members so that the place where it happened will become a
“black spot” in the territory, somewhere to be avoided, the object of a
repulsive localizing pregnancy. Should the predator reappear in the same
place in quest of the same prey, he will be indubitably with a repellent preg-
nancy due to his very presence there. When the cat of the house proud-
ly brings indoors the mouse it has caught outside, it probably does so
(whatever its owner may think) not so much in the hopes of a reward as
to clear away from mouse territory the corpse or remains that might re-
veal a killer's visit. Man's horror of death might well find its ancestral
origin in just such a situation.

A problem perhaps essential to understanding the origins of human
language is the question of “clues” or signs. If a member of the collect-

 "Sign and genitive

One might indeed wonder with respect to the alarm call, if there is a ge-
etically programmed source form of predators. Many species (luckily for
them) are unaware of the identity of their predators (especially the
rare ones); and, when the hunt is always successful, it is hard to imagine
how the victim would be in a position to picture the hunter to himself.
One may guess that when a community member is caught and torn to
bits by a predator, the remains of the meal will have a repellent effect on
the surviving members so that the place where it happened will become a
“black spot” in the territory, somewhere to be avoided, the object of a
repulsive localizing pregnancy. Should the predator reappear in the same
place in quest of the same prey, he will be indubitably with a repellent preg-
nancy due to his very presence there. When the cat of the house proud-
ly brings indoors the mouse it has caught outside, it probably does so
(whatever its owner may think) not so much in the hopes of a reward as
to clear away from mouse territory the corpse or remains that might re-
veal a killer's visit. Man's horror of death might well find its ancestral
origin in just such a situation.

A problem perhaps essential to understanding the origins of human
language is the question of “clues” or signs. If a member of the collect-

 "Sign and genitive

One might indeed wonder with respect to the alarm call, if there is a ge-
etically programmed source form of predators. Many species (luckily for
them) are unaware of the identity of their predators (especially the
rare ones); and, when the hunt is always successful, it is hard to imagine
how the victim would be in a position to picture the hunter to himself.
One may guess that when a community member is caught and torn to
bits by a predator, the remains of the meal will have a repellent effect on
the surviving members so that the place where it happened will become a
“black spot” in the territory, somewhere to be avoided, the object of a
repulsive localizing pregnancy. Should the predator reappear in the same
place in quest of the same prey, he will be indubitably with a repellent preg-
nancy due to his very presence there. When the cat of the house proud-
ly brings indoors the mouse it has caught outside, it probably does so
(whatever its owner may think) not so much in the hopes of a reward as
to clear away from mouse territory the corpse or remains that might re-
veal a killer's visit. Man's horror of death might well find its ancestral
origin in just such a situation.

A problem perhaps essential to understanding the origins of human
language is the question of “clues” or signs. If a member of the collect-

 "Sign and genitive

One might indeed wonder with respect to the alarm call, if there is a ge-
etically programmed source form of predators. Many species (luckily for
them) are unaware of the identity of their predators (especially the
rare ones); and, when the hunt is always successful, it is hard to imagine
how the victim would be in a position to picture the hunter to himself.
One may guess that when a community member is caught and torn to
bits by a predator, the remains of the meal will have a repellent effect on
the surviving members so that the place where it happened will become a
“black spot” in the territory, somewhere to be avoided, the object of a
repulsive localizing pregnancy. Should the predator reappear in the same
place in quest of the same prey, he will be indubitably with a repellent preg-
nancy due to his very presence there. When the cat of the house proud-
ly brings indoors the mouse it has caught outside, it probably does so
(whatever its owner may think) not so much in the hopes of a reward as
to clear away from mouse territory the corpse or remains that might re-
veal a killer's visit. Man's horror of death might well find its ancestral
origin in just such a situation.

A problem perhaps essential to understanding the origins of human
language is the question of “clues” or signs. If a member of the collect-

 "Sign and genitive

One might indeed wonder with respect to the alarm call, if there is a ge-
etically programmed source form of predators. Many species (luckily for
them) are unaware of the identity of their predators (especially the
rare ones); and, when the hunt is always successful, it is hard to imagine
how the victim would be in a position to picture the hunter to himself.
One may guess that when a community member is caught and torn to
bits by a predator, the remains of the meal will have a repellent effect on
the surviving members so that the place where it happened will become a
“black spot” in the territory, somewhere to be avoided, the object of a
repulsive localizing pregnancy. Should the predator reappear in the same
place in quest of the same prey, he will be indubitably with a repellent preg-
nancy due to his very presence there. When the cat of the house proud-
ly brings indoors the mouse it has caught outside, it probably does so
(whatever its owner may think) not so much in the hopes of a reward as
to clear away from mouse territory the corpse or remains that might re-
veal a killer's visit. Man's horror of death might well find its ancestral
origin in just such a situation.
fable). The “genitive”, a syntactical form that denotes the proximity of a being whilst denying its immediate presence, perhaps made its appearance in order to resolve this dilemma. The alarm was in fact given upon sighting a trace but with an affix to say that the predator was not actually there, thus permitting a more graduated defense strategy. However that may be, the presence of a signal associated with a source form S can be considered as a first form of concept, class of equivalence between salient forms. Those forms are equivalent whose perception causes the signal to be given.

J. Subjective investment and objective investment

The transmission of pregnancy by signals in animal collectivities introduces an essential distinction into the analysis of pregnancy functioning. Let us compare the situation of Pavlov’s conditioned dog with that of the group sentinel giving the alarm cry on sighting a predator. In the first case, the form “ringing of the bell” is said to be imbued with alimentary pregnancy. But this transformation only occurs in the psyche of the conditioned dog. Nothing in the phonetic structure of the signal has changed intrinsically; the only objective aspect concerns the dog itself, the subject, whose psyche is going to run through the whole associative chain of the category T_p in order to reach the source form. (When this chain includes actions on the part of the subject, then we have the principle of training or dressage.) There is then no intrinsic modification of the form; the subject, on the contrary, undergoes a considerable change when inverted by the subject’s the “objectively” investing pregnant form, as may be seen from its physiological state (the dog salivates). In the case of the look-out raising the alarm, there is also an objective investment of the animal by the pregnancy “fear”; the animal emits the cry of alarm, a salient form which is also a pregnant form for the group.

Thus the pregnant character of a form is always in theory relative to a receiving subject (or group of subjects). But for the “trigger” character of the pregnant form we can provide a model inspired by the “tunnel effect” well-known in quantum mechanics. The “ground” state of the receiving subject may be considered as a non-absolute minimum, surrounded by a ring of basins the bottoms of which are lower than the ground state. The perception of a pregnant form creates a “tunnel effect” which precipitates the representative point into a peripheral basin, thereby liberating energy. The indetermination of pregnant forms can be looked on as due to the attraction held by a pregnant form in space of forms where distance would be a sum of Euclidean space-time distance and a Gestaltist distance (difference in the aspect of forms). It might seem paradoxical that the excited states, in this model, should be situated below the ground state, in contrast to what happens in a physical system, like a hydrogen atom for example (Figure 1.3). This is because in living beings the excited states have a part to play in biological regulation and determine regulative action. Now affectivity can be seen as an agent distorting regulation structure. Pregnancy, which is nothing but the memory of earlier satisfaction or pain, is, at the same time, the anticipation of similar satisfaction or pain. The action set in motion by the pregnancy aims to obtain this satisfaction or to avoid this pain.

In the potential well a “virtual” affectivity like the one that comes from anticipation has an effect on the form of the potential opposite to the effect linked with satisfaction (positive result of regulative action). The hungry animal in search of prey is excited; once the prey has been caught and ingested, affective satisfaction lifts the level of the excited state basin and eventually annihilates it. The animal then returns to the ground state (it falls asleep). When it awakes and begins to feel hungry again, the well of the excitation basin re-forms, below the ground state level (cf. Chapter 4, section C). This phenomenon is related to the paradox of the hungry predator, one with its prey, and the model of the predation loop (perception catastrophe described in SSD). This model gives an account of the interaction between predator and prey; during the bimodality period, their regulative potentials are in opposition to each other. We will draw a distinction here between “potential” investment by a pregnancy (the hungry animal looking for its prey is potentially invest-
ed by hunger, and "actual" investment, which comes in after the perception catastrophe (recognition of an external prey which the predator starts to pursue). Men (as well as prehominids) were early incited by group living to build up some representation of the behavior of their kind, a representation, in particular, of the paths of their affective regulation. As a result, any external entity thought of as being individuated tends, by empathy, to be imagined after the manner of a living being. It is one of the fundamental tenets of our theory that the Aristotelian opposition substance-predicate always tends to be experienced as the opposition ground state ↔ excited state of a dynamical system. The predicate is then associated with the transition and symbolizes the qualitative (perhaps even quantitative) characteristics which belong to it. From this angle, the general formalism of all intelligible ontology can thus be characterized.

K. Intelligible ontologies

1. An intelligible ontology is characterized by a space where all the beings considered reside: the substrate space. We shall see it as a Euclidean space (or a differentiable manifold) of arbitrary dimension B.

2. Within B the beings of this ontology are divided into two classes: salient forms and pregnancies.

A salient form is a closed set F on the space B. If the form is individuated, it will have an interior S, where the closure \bar{S} of S is a ball. The individuated form is said to be "organized" if it has a canonical model of closed sets contained in S which are themselves organized, the total organization being described by the tree T_F of an individuating pregnancy. Two distinct salient forms are topologically disjoint. Pregnancies are non-localized entities emitted and received by salient forms. When a salient form seizing a pregnancy, it is invaded by this pregnancy and consequently undergoes transformations in its inner state which can in turn produce outward manifestations in its form; we call these figurative effects.

A frequent (though not universal) case of figurative effect is the re-emission by an invested form of the same pregnancy that invests it. Take for example the phenomenon of contagion: an infection contaminates healthy subjects who may in turn become contagious and re-emit the same infection in their environment.

* In Aristotelian terminology (cf. Chapter 6), potential investment would be a privation (sterile); the apparition of the prey triggers "aim" (meletēhēa), and so movement (metabolē).

In this case the infection is always supposed to have some material support: virus, bacteria, uni- or pluri-cellular parasites. But ailments of a psychic character are known to have been transmitted just by imitation (15). With animals, communication is often achieved by means of undulatory sound or light signals.

The ideal of contemporary science—and of positivism—is to reduce everything to salient forms, with no interaction allowed other than collision between salient forms, and to do away entirely with pregnancy. It manages to do so (as in quantum mechanics) only by foregoing intelligibility. For the particle, which is a salient entity, is identified with the field, which is a pregantal entity. Quantum mechanics does however give us the notion of exchange particle, monstrous hybrid born of salience and pregnancy. It is worth noting, however, that Pauli principle fermions take after salient forms in their inseparability, whereas bosons are typically "radiative" (like the photon).

We note that this presentation of intelligible ontologies can be made at a pre-verbal level: intelligibility is thus a property of phenomena (taken as Gestalten) prior to any conceptualization in the strict sense.

But the main interest of the "Semiophysics" sketched here lies in the study of language and of the qualitative, non-mathematised sciences based thereon.

NOTES AND REFERENCES

(1) Lines. This observation, decreeing curves and surfaces in favor of volumes, can be likened to Aristotle's commentaries on the use of geometrical entities in the description of nature. "How (... could a line or plane be animate?" Quotation [20] Met M 1077b 29–30.

(2) The P-300 effect describes a lowering of electroencephalogram activity that occurs between 200 and 300 milliseconds after the impact of stimulus. It is thought that this effect shows a weakening of attention in the higher centers of the cortex. Mentioned in Audition by R. Buser and Michel Imbert, Hermann, Paris, 1987, p. 322.

(3) Collected Papers of Charles Sanders Peirce, by Charles Hartshorne, Paul Weiss and Arthur W. Burks, Cambridge (Massachusetts), Harvard University Press, 1935–36. We shall come back to Peircean Thirdness in Chapter 8, section E.

(4) Our use of the word pregnancy comes of course from the German Pränitz, which we owe to the Gestalt theory school. The vocable is said to be due to Max Wertheimer, who theorized its significance in "Untersuchungen zur Lehre von der Gestalt". Psychische Forschung,
1922, I, 47–58. We quote W. Köhler’s *Die physischer gestalten in Ruhe und in stationären Zustand. Eine naturphilosophische Untersuchung.* Erlangen, 1920: “Where a physical form of homogeneous material properties can yield sufficiently to the systematic forces acting upon it, it seems to be a general rule that very simple and regular spatial arrangements are reached in the stationary state.

This behavior of physical systems in their progress towards stationary states has been emphasized by the physicists P. Curies and Mach. Curie writes that before natural processes can take place “it is necessary that certain elements of symmetry be absent. Asymmetry creates natural processes”.

The laws exemplified in cases of this sort may be called the tendency towards simple Gestalten, or the law of Pragnanz—provided, of course, that we consciously leave the terms somewhat indefinite as a means of reminding ourselves that the theoretical physical problem is as yet unsolved.

This designation comes from Wertheimer, not as a description of inorganic physical behavior, but of phenomenal and therefore also of physiological process structure. Nevertheless it is possible to apply the terms to physical phenomena also, for the general tendency and line of development observed by Wertheimer in psychology and designated by him as the law of Pragnanz is obviously the same as we have here been discussing.”

This very interesting text shows how these authors were perfectly aware of the theoretical breadth of their conceptions, since they were hoping to make use of an “isomorphism” of psychological processes with underlying neurophysiological processes (in conformity with an old idea of B. Riemann’s). Present-day theoreticians who speak of self-organization and of the order of dissipative structures as though they were something new are doubtless unaware of how old these concepts are. We simply observe that if Pierre Curie is quoted here there is perhaps a misunderstanding. For the phenomena mentioned are in violation of Curie’s principle, rather than examples of its application. In any case it is probably true to say that the problem considered here is not much nearer a solution than it was in 1922.

It is understood that we are not using the term “pregnancy” in the same way as the Gestalt theorists. Considered dynamically, as above, it is more a question of factors that trigger and regulate progression towards the stationary state than of the morphology of the stationary state itself.

(6) There is an immense amount of literature on Pavlovian conditioning. I shall mention here, for its usefulness, J.P. Le Ny’s *Le conditionnement et l’apprentissage*, PUF, 1961, 1980 reedition. Information is to be found in this book on:

—simple conditioning, p. 25
—(reinforced) propagation on secondary sources (secondary reinforcement), p. 151
—the role of similarity between induced forms, pp. 88–90.

(8) For the influence of delay between conditioning stimulus and reinforcement, see Le Ny quoted in note 6, p. 33. The optimum duration between the end of the induced salient form and the beginning of the pregnancy stimulus is 0.5 s: no conditioning stimulus can be obtained after reinforcement. This is an example of the stimulation of causality presented by Pavlovian conditioning.

(9) The axiomatic idea on significant association was suggested to me by Gaston-Gilles Granger’s *Langages et épistémologie*, Klincksieck, Paris 1979; the author there expounds a set of axioms on symbolic reference.

(10) Category theory. The word category as it is used in modern algebra has nothing to do with categories in philosophy (in the sense of Aristotle and Kant). The term appeared in 1945 in a “seminal” article of Eilenberg-Mac Lane (Transactions of the American Mathematical Society, 58, 1945, 231–294). We find it presented in *Foundations of Algebraic Topology*, by S. Eilenberg and N. Steenrod, Princeton University Press, 1952, pp. 106–110. Behind a superficially terrifying formal apparatus lies a notion that is really quite simple: namely, the set of paths that can be described in an oriented graph (accepting punctual paths which do not come out of a vertex). I do not urge the reader to study this theory which has since enjoyed a considerable formal development. It will be sufficient for him to know its definition and geometrical interpretation in terms of oriented graphs, or particularly those issued by discretization from an underlying continuous dynamic system.

(11) Waddington’s *epigenetic landscapes*. This metaphor (which played a primordial role in the origin of Catastrophe Theory) first appeared in
Imprinting. This classic phenomenon was discovered by Heinroth (1911) in geese. Since then, it has been popularized by Lorenz. Cf. Animals as Social Beings. Adolf Postmann, Harper Torchaks, Harper and Row, New York 1961, p.113.

The imprint is characterized by its irreversible nature, associated with a limited period of sensitivity. It has a very marked effect where the sensitive period lasts for 6 to 24 hours after hatching; it seems as though the separation of hatching out of the egg has to immediately compensate for by a very strong attachment to the visual image of the parent. In (viviparous) mammals, where the newly-born is in very close contact with the mother’s body, the imprinting mechanism has a more graduated form closer to Pavlovian conditioning.

Extinction. See Chapter 4, pp. 70-73 in Le Nô’s book referenced in note 6. The phenomenon of relatively quick recuperation of an investment that has disappeared through non-reinforcement, and reactivated by subsequent association, could be interpreted as due to residual lowering of the threshold separating the satellite basin of the treated form from the minimal basin of the source form. Generally speaking, a repeated association between two non-pregnant salient forms (A and B) produces a topological modification by contiguity-similarity in the space of salient forms: (A) and (B) come close together, with the rest that if one of them (A) becomes pregnant, the other (B) will also share the pregnancy. Extinction through absence of reinforcement may be interpreted as a moving away from the source form; and if an invested salient form (X) is associated with another salient form (Y) in the absence of reinforcement, (Y) becomes inhibiting, that is to say, it behaves like an auxiliary source form—or like a preprogram that modifies the flow of the phenomenon from (X) towards the source by deviating it toward auxiliary well (Y) (cf. Le Nô’s book given in note 6, pp.126-127).

Alarm cries that differ according to the terrestrial or sal nature of the predator are to be found in gregarious birds and in primates. For the location of food, the dance of bees (von Frisch) is classic. Vervet monkeys in East Africa have three different calls for three different types of predators, each evoking a different response that is appropriate to the situation (Strubsaker, 1968) and two warning calls of sagit monkeys are specific to aerial or ground predators (Winter, Plug and Latta, 1966)”. Extract from “Private Communication,” Neurones Research Program Bulletin, 7, 5, November 1969, p. 443. According to M. Bremond, who directs an ethology laboratory in Neuv-le-Roi, many Passeriformes have a system of two distinct alarms, one that creates a state of alert, announcing the presence of a distant predator, and the other to warn of an immediate danger from a predator that is identified and close at hand.” Information kindly contributed by M.P. Buser, University of Paris VI.

(15) We are reminded of hysteria, which was, in Charcot’s time, a phenomenon of collective pathology with no underlying biological root.
CHAPTER 2
LANGUAGE

A. From animal to man

We have seen that, in animals, a pregnancy tends to spread from form to form. If there were nothing to hinder this propagation, we would very soon reach the catastrophic state of a predator for which any external form is prey. But in fact corrective mechanisms come into play quite early: unless an accidental association between forms is reinforced by repetition it becomes weaker and weaker and eventually disappears. Besides, animals are subject to only a few great regulative pregnancies—fear, hunger, sexual desire. And although these pregnancies have large propagative capacities, the associations thus created are themselves liable and reversible.

Man, on the contrary, can be invaded by a great number of pregnancies: one might say that there is a pregnancy attached to every one of his concepts, the propagative capacity of which is, however, strictly controlled. For it is this set of controls over the concatenation of symbols which sanctions the semantic acceptability of an expression: if X and Y are two concepts, the genitive X of Y makes sense (in a usual context) if and only if the pregnancy of Y can invest a generic reference of X. For example, if Y is an organized form and if X is a necessary “feature” of Y, the genitive X of Y makes sense. There is a great difference, then, between animal communication systems and human language. How do we imagine this transition? Was it continuous or, on the contrary, broken, “catastrophic”? Naturally we can only speculate in an area where no verification seems possible; research on the origins of language has notoriously bad press! Nevertheless we may at least invoke here the traditional law of recapitulation: ontygeny recapitulates phylogeny.

B. Ontogeny of a child’s acquisition of language

At the start, a new-born babe is completely imbued with the pregnancy associated with its mother’s body. An alimentary pregnancy if the child is breast-fed, but one that also comes, without a doubt, from something of the mother’s individuating pregnancy focused upon the part that constitutes the foetus. This pregnancy spreads rapidly and subjectively to parts of the mother’s body (breast, face). (Ever since Spitz (1) we have known how the shape of a face can catch the eye of a baby just a few days old.) Then “transitional” objects appear (Winnicott (2)), like the other people who feed and look after it. There is also the pregnancy attached to the baby’s own body, which becomes autonomous if the organism coenastesis is linked up with the external image of the body (mirror stage) (3). Outside objects acquire autonomy in so far as they can be objects of some action. We are witnessing a ramification of the mother’s original pregnancy exfoliating into a great number of beings and objects. At the same time the child hears words spoken by its parents and minds. By the process of deixis, the mother emits a quantum of her pregnancy which goes to invest the object indicated (through contact or visual prolongation of the pointing finger). At the same time she utters the corresponding word, and the pregnancy belonging to the object is soon stabilized by coupling with the auditive sign. The word heard acts as a tunnel effect for this individuating pregnancy of the object. The possibility the child has of causing the object to appear by saying the word reinforces the autonomy of this pregnancy which eventually dissociates itself completely from that of the mother.

In adult language, deixis is observed to be a ritualization of this process. The speaker, in making the ostensive gesture, emits a transitory pregnancy which invests the object shown and, conveyed by the designating word, ends by invading the hearer’s psyche. Indeed, towards eight or nine months, when this process is implanted in the child, he will himself ask his mother the name of an object as he points to it. We know there is a critical period (between one and three years old) when an infant must be talked to, or it will be condemned to profound mental disability. For children so deprived (“wolf children” as they are called) (4), dissociations from maternal pregnancy have not been stabilized and so autonomous pregnancies have not been set in place. As a result the psychism remains dominated by a small number of biological pregnancies of the animal type. During this sensitive period the potential well attached to the maternal pregnancy flattens and subdivides; it is a period of liability that is, without a doubt, genetically programmed (the psychic
equivalent of the axial mesoderm explosion leading to the formation of the vertebral axis). It may well be that animals also undergo a similar period of pregnancy latency. Recent attempts at teaching primates a language seem, even if their interpretation is controversial, to demonstrate the existence of such a period in the life of the juvenile primate. But the naming of salient forms is just one aspect of language. Even more important is the syntactical pattern permitting the description of processes.

On the subject of man’s acquisition of language, it is classic to mention the two-term pivot-topic sentence (5) of the type: “Carry Daddy” or “Daddy gone”. It would be most interesting to analyze the semantic content of pivot terms. The four main types of singularity referred to in Chapter 3, section B, as organizers of biological morphogenesis, namely: beginning, end, ramification and confluence, would certainly be shown to symbolize the content of these pivots in an adequate way. A confluence, for example, will first be expressed by a preposition like “with” (“chez” in French) before being expressed by a specific “divalent” verb, to use Teshière’s terminology. Only at a later stage do we learn to master the verb and, concomitantly, the genitive (preposition “of”). I shall not here reiterate the typology, proposed in “SSM” (6), of “archetypal” space-time processes which can be described by a single verb. I believe that my list of sixteen archetypal morphologies should be extended to include some verbs of a static character, like “contain” and “surround”, expressing the fact that one entity “bonds” another and stops it from spreading outwards, and also perhaps such “negative” words as “pierce” and “dissolve”. Further on, we shall discuss the semantic structure of the verb in general. As regards language ontogeny in the child, I would tend to believe that verbs which describe complex semantics implying the transfer of an invisible pregnancy from subject to object are mastered at a later stage than verbs with an immediate “salient” meaning, like “fall” and “break”. (Although it is true that essential biological pregnancies such as “life” must appear fairly early. “Kill” is also probably acquired relatively quickly.)

C. Phylogeny

Let us now move on from ontogeny to phylogeny. If we impute, as we have just done, the essential task of language acquisition to parental deixis, we find ourselves wondering what “parents” could possibly have taught the language we use to our primate ancestors, the prehumanoids. There is no shortage of teacher-gods in our mythologies, some of them, like Prometheus, cruelly chastened. I would be rather tempted to believe that natural phenomena include ramifying forms which represent a kind of “natural deixis”. Lightning—one of Zeus’ major attributes—is a typical example of these ramifying forms, that will later give rise to Teshière’s zero-valent verbs (7). Biological pregnancies have turned little by little into objective pregnancies, physical in modern terms. Light, for instance, is a pregnancy that has its own source forms (light sources), and that, when emitted by a source, transforms the objects on which it falls into secondary sources (it lights them up). Heat is a pregnancy emitted by fire which invests all the bodies it warms. The mechanisms of propagation and investment of subjective pregnancies—which act objectively on living beings—have been projected by empathy onto things.

The most surprising thing is that this process, a priori arbitrary, should have turned out to be such an amazing success with regard both to intelligibility and to its efficient action on the world. The discrete decomposition of naturally continuous processes into isolated facts is not just an illusion of the mind: the distinction between salience and pregnancy is fundamental, even if sometimes it tends to be blurred: spreading and ramifying objects such as smoke from a fire, or chemical diffusion (oils), are pregnancies which sometimes have a salient aspect; the phase transitions of matter, from salient solid to purely pregnant gas, provide an example of the modification of bodies which can be interpreted as due to conflicts between local pregnancies (even in science: look at Van der Waals’ model for liquid-gas transition) (8). (The form of a solid is a “figurative effect” of its “individuating pregnancy” and at the same time its definition!) So it is easy to understand why exceptional natural forms (laus naturae), such as rocks resembling human faces, were endowed with a pregnancy that is half religious, half magick, an undifferentiated pregnancy in which Durkheim saw the origin of the modern notion of energy (9). On this subject, see Casstrer’s theory of symbolic forms (10). It is striking to note that even the most paradigmatic of physical theories, quantum field theory, has rediscovered, with the confinement of quarks responsible for the stability of atomic nuclei, something tantamount to a focalization of a salient nature. In the Nouvel Esprit Scientifique (11) Bachelard comments ironically on the “prescientific” models put forward by early eighteenth century physicists in order to explain the properties of the magnet (which bears in French the suggestive name of “aimant”), namely, the presence in a magnet of a sponge-like structure where iron is mingled with an attracting fluid. It is plain here that the scientific mind was trying to visualize materially the pregnancy that is a magnetic field by blending it intimately with the salience of matter.
D. **Syntactical structures**

In human as in animal action, there is as it were a “thickening” of abrupt (catastrophic) transition between the virtual investment of a subject by a pregnancy and the “satisfaction” resulting from the act. There can scarcely be any doubt that the essential function of that part of speech we call “verb” is to symbolize this transition. Thus the typical transitive sentence (The cat eats the mouse) describes a process that can be formalized as follows:

1. The subject is assaulted by a virtual pregnancy (desire with no immediate object).
2. The object appears. The subject then emits in its direction a “local” pregnancy which reaches and invests the object (unless there is failure).
3. Following this investment there is conflict in the state of the object between its own individuating pregnancy and that received from the subject.
4. The result of the conflict—seen as a transformation of the state of the object—is implicit in the meaning of the verb expressing, in particular, the subject’s “satisfaction” (Figure 2.1).

When the “verb” is used to describe the processes of inanimate nature, part of this process tends to disappear: everything, in particular, that deals with the intentionality of the subject and its satisfaction. But the initial part of the process, its topology, subsists as a plan of interaction. No one familiar with Feynman’s graphs (12) will contradict me here. Immense problems are of course raised by the “objective” definition of what, in linguistic terms, is known as a “fact”. There is the fact in the process of being accomplished, and there is the result of the action which is also considered to be a fact (“perfect” in classical grammar). I would be inclined to think that syntactical structures probably have their origin somewhere in social necessity. As soon as the leadership of a human (or pre-human) group was taken over by one individual, a “monarch” in the etymological sense, it became necessary for him to occupy a more or less central position in the group and he was no longer able to keep watch over the entire surroundings. The “sentries” placed on the outskirts were then required to report back to the leader and describe, precisely enough for practical purposes, any new fact of importance to the group (like the presence of potential prey or of an enemy in such and such a part of the territory). Thus the localization of external facts appeared as an essential part of social communication. Now localization, for salient forms, is the ultimate end of naming, in effect the containing relationship (metonymy): X is in Y is a basic form of investment (the localizing pregnancy of Y invests X). When X is invested with a ubiquitous biological quality (favorable or hostile), then so is Y.

Language

From there on, a divalent syntactical structure became absolutely necessary if a conflict between two outside acts was to be reported. Trivalent structures appear only when the pregnancy between subject and recipient is itself conveyed (incarnate) in a salient “messenger” form. Whence the ambiguous character of a gift, the means by which the donor can impose his pregnancy on the receiver (cf. Marcel Mauss and the German Gift). It may seem like an over-simplification to see the origins of language in the informational necessities of “military” intelligence. But it would not be the only time that the requirements of the art of war have contributed to the progress of humanity. Of course, what we said in Chapter 1 about having to modulate one’s perception of an enemy sign by an affix of the “genitive” type points exactly in the same direction.

Alongside this wholly pragmatic necessity of transmitting an often vital piece of information, one might consider a more subtle interpretation. The description of syntactical structures I proposed in SSM still answers to the following definition: the signification of a verb can be
represented in a suitable control space, as a class of trajectories transversal to a catastrophe hypersurface, describing the abrupt transition from a stable state 1 to another state 2. This hypersurface may be seen as a "shock wave" between the two states. Now the structure of a shock wave (in the theory of "soliton" for example) is characterized by a path in an auxiliary differential model between a singular point a representing state 1 and a singular point b representing state 2 (15). In general the salient discriminant carrying essential information—Aristotle's *logos apophantikos*—has an internal structure of the trajectory landscape type (a graph), of stable or unstable cells coming from singular points. From the organizing center of the whole structure, we define a sequence of "small" transitions which make this path transversal to the catastrophe locus.

An explicit description of this dynamic will enable us to verify the principle of Thirdness proposed by Charles S. Peirce. The primary stage affirms the impact on the mind of a stimulus of outside origin P; the secondary stage concerns verbal localization in the semantic field where the conflict is taking place; finally the ternary stage is the saturation of verbal knot valences by acts which have to be located (or identified). Thus the unification of sentence is similar to embryological development, going from the abstract to the concrete. Here we start with the predicative knot in its pre-state, localized in verbal form in its semantic field, and subsequently molded into acts which will later be localized (determined). We will come back to this point in Chapter 8, section E.

E. Pregnancy taxonomy

To begin with, we shall classify pregnancies according to the more or less subjective (less or more objective) nature of the space in which they propagate. We will denote by Ox the semantic axis subtending the opposition objective-subjective. At the objective extremity (\(x < 0 \)), the semantic space is none other than the usual Euclidean space; at the subjective extremity (\(x > 0 \)) we have the axis spanning the fundamental biological oppositions, such as (Life, Death), (Good, Bad). Then come the auxiliary pregnancies of linguistic activity, such as the deictic pregnancy of the object indicted. Between the two, we have semantic fields such as color impressions, deriving at the same time from spatial extent, from the physics of light and from the physiological filter of color presentation, the spaces of material qualities (heavy, fluid...) and moral qualities (rich, wily...). A second axis Oy measures the character more or less free, less or more controlled, of pregnancy propagation. Certain

Figure 2.2 Pregnancy Diagram

Physical pregnancies are very freely diffused (heat, sound); others are propagated in a more controlled manner like light (luminous rays) or like pregnancies attached to material bodies (conservation of kinetic momentum, see Chapter 3, section A2). Geometrical forms have no other propagation than by self similarity. Material pregnancies present the same hierarchy: gas, liquid, solid. Sensory pregnancies are likewise arranged in a similar hierarchy (smell less controlled than color). Conceptual pregnancies are strictly controlled. This brings us to the general table of Figure 2.2.

As the linguist H. Seiler observed (16), adjectives qualifying an actant are placed (in certain languages) in a fixed order. Thus in the German syntax we have: *Diese erwähnten zehn schönen roten Holzkügeln*, where pregnancy order follows roughly the diagonal of the table, going from the vertex S: free-subjective to the vertex G: fixed-objective.

Of course all these considerations have only a limited impact on linguistics proper. What interests the linguist is not what is common to languages, but what brings about their differentiation. Specialists in linguistics often evince considerable suspicion when it comes to the
question of universals (we will come back to this point in Chapter 8, section A). They are convinced that whatever is said on the subject can hardly be more than trivial. The pregnancy diagram in Figure 2.2, on the contrary, postulates a certain universality in the organization of their semantic universe for speakers of the most varied tongues. Obviously the semantic universe of a Bororo is not quite the same as that of a Frenchman; the distinction between magical pregnancies and physical fields is much more sharply drawn by the latter than by the former, the direction of the world's objective constraints more clearly perceived. But that does not make it impossible to translate from one language to another, nor does it prevent broad mutual understanding. However, it may be useful to try and see exactly how (modern) science has been able to fix a certain part of our semantic universe and to show precisely where scientific knowledge differs from belief in magic.

F. Science and magic: causality

First we have to make clear in what way the notion of "pregnancy" is indispensable to causality. Consider a simple causal chain between a phenomenon C, the cause, and a phenomenon E, the effect. Place these phenomena as forms in their space-time setting (x,t). C and E are salient forms. There are two possible cases. Either:

1. C and E are two sections in time $t = t_0$, $t + t_1$ of the same salient spatio-temporal form F (Figure 2.3a). In this case, causality can be reduced to the trivial form of the object's permanence ("All beings tend to persevere in their being", wrote Spinoza (17), in a more general context), or:

2. C and E are separated in space-time by a gap. The causality which gave rise to E, out of C, is action from a distance. The mind will always try to bridge this gap by restoring some morphological continuity between cause and effect (Figure 2.3b). It will be supposed that the phenomenon C has given out invisible "influences", propagated through space-time to a domain where they have created the effect E or contributed to its creation. These influences could be "particles", salient forms too small to be detected, or "waves" of rarefied ether filling up space, or actions about whose nature no conjectures can be made (like magical actions). Such non-localized entities, alike only in the effects they have on salient forms, are typically objective pregnancies.

EXAMPLE. When a magnet is moved in the vicinity of a compass, the needle tends to turn towards the magnet; a phenomenal and ubiquitous being will be introduced—the magnetic field—depending on, and
acting on, both the needle and the magnet. The variations of this field will explain the causal effect of the magnet on the compass. *

Fields in physics are indeed the paradigm of objective pregnancies in modern science. We admit the existence of these entities because we are theoretically capable of calculating their variations in space-time. They are described locally by mathematically defined objects (vectors, tensors, etc.). In the standard case, variation is defined by a partial differential equation (the wave equation, for example, or Klein-Gordon's equation). In quantum mechanics and in quantum field theory, the effects can be determined only statistically, and propagation is defined, not in the space itself, but in a functional space, so that there is a non-local character of causality attached to the starting-point space.

In the last analysis, the "scientific" nature of physical pregnancies rests on their measurable and quantitative character, itself dependent on a geometric definition of space-time. Whence the saying, "Physics is a form of magic controlled by geometry" [SSM].

These considerations are essential if we are to draw a clear distinction between science and magic. Prescientific man must have had an implicit knowledge of the geometry of space-time. He was able to move about in it, move objects with particular aims in mind, and fashion mechanically operational tools. But only with the advent of Greek geometry was this knowledge to attain an explicit, hence a deductive, form. And Euclidean demonstration relied on no more than generativity of a qualitative character regarding the position of figures, i.e. of solid bodies. It was not until the great revolution of the early seventeenth century, the invention of real numbers as unlimited decimal numbers (Stevin-Vikth), that the notion of function emerged, followed by that of differential calculus. The concept of physical law as a quantitative relation between values then offered considerable possibilities of prediction and a more precise control over the movements of material bodies (mechanics).

There is scant doubt but that this increase in human power was preceded (indeed caused) by a considerable extension of the scope of man's imagination. In the notion of group (in the algebraic sense) we find the most perfect example of controlled arbitrariness. Could the notion of a free monoid with k generators even have come into existence had we not believed in man's free will? The relationship between magic and science appears essentially as the relationship between two modes of controlling the imaginary. In the first case (magic), the imaginary world of pregnancies is controlled by the will of man (or rather of certain men, the magicians, experts in efficient practices); in the second (science), control is determined by the internal generativity of formal language describing external situations, a generativity on which man has no hold, once the initial conditions are laid down.

In astrology we have a situation somewhere between the two. Here human situations are supposedly ruled by the mathematically determined course of the heavenly bodies, a belief for which geocentrism was no doubt largely responsible. For a harmonic function defined on the disk D², boundary data determine the interior. Kepler earned his living as a mathematicus (astrologer).

In conclusion, the distinction between science and magic is to be sought neither with reference to a prelogical mentality (à la Lévy-Bruhl) nor—as many would naively have it—in the fact that science works much better than magic. It is to be looked for in the way we represent space with constraints so much greater than they could have been for primitive man. In branches of science like biology where the generativity of geometry (or of mathematics) cannot easily unfold, magical thinking still has the upper hand, even in our time. * This is currently raising a set of problems: the role of causality in modern science.

G. Causality in modern Science

Positivists would have had us believe that the notion of cause was only a metaphorical residuum to be dissolved in the more general notion of scientific regularity ("nomology"). This meant forgetting that if all science is necessarily general, the analysis of phenomena, on the other hand, whether theoretical or pragmatic, is always local. After all, in the notion of cause there is a locality constraint which is hard to forego without falling into magic. (Even in quantum mechanics, the causality which is non-local in the (q₁)-space remains local in the (p₁)-space.) In biology, the only way to deal with physiological regulation with some degree of precision consists in building "cybernetic" diagrams made up of interacting systems where the arrows are in alternate states of activity (excitation) or repose (inhibition). Now these concepts (excitation, inhibition) reflect the transport of causality in a practically pure state, after the manner of Aristotle's logos apophaticalós (which, as we have said, ensures the conveyance of knowledge about an actual situation, i.e. a piece of information). The problem of establishing a link between cybernetic formalism and the differential formalism of dynamics ought to

* Physical theory tells us that there is perfect reciprocity here: in moving the needle we act on the magnet, although the effect is more difficult to observe because of the disproportion in mass.

* I am alluding here to the use of concepts such as genetic information and the semiotic role of enzymes in biochemistry.
be, in my opinion, the essential task of “natural philosophy”. One cannot do without causality when one is trying to find out what causes (or prohibits) a phenomenon.

But causality is hard to express in terms of dynamic formalism, because dynamics deal precisely only with isolated systems, whereas the essence of the cybernetic diagram is to deal with the actions of one system on another (as Mario Bunge (18) very rightly notes in the axiomatics of his *Exact Philosophy*). If we want to move towards a synthesis, I believe we need to look in the direction of catastrophe theory formalism. We have seen that the transitive sentence can in certain cases be represented by a class of trajectories transversal to a catastrophe hypersurface (“The cat eats the mouse”). In the same way, a sentence like

“Heat melts ice”

exemplifying efficient causality, will be represented by the path \overrightarrow{ab} transversal to the solid-liquid separatrix of the water phase diagram (Figure 2.4).

In Chapters 3, 4, and 5, I will develop a formalism aiming to describe both the embryology and the comparative anatomy of the different phyla of the animal kingdom; in all these cases I attempt to explain both organogenesis and physiology, starting from a unique dynamical structure (originating in the predation loop) which subsequently becomes more and more complicated, so as to account for breaks in causality brought about by catastrophic discontinuities in the structure of the predator-prey system.

The biology theorist Robert Rosen proposed in a recent work (19) an interpretation of Laplacian determinism in terms of Aristotelian causality: the differential law M, \dot{X} would depend on formal causality and the initial condition on material causality. It is a fact that it is much easier to displace a solid body than to create it ex nihilo. Efficient causality appears only in the origin of the formal expression of the differential system. Newtonian dynamics, for instance, may be considered as an intelligible ontology, the salient entities of which are the material points (or solids, which are rigid systems of material points) and the pregnancies of which are kinetic momentums $J = mV$ and force F. When a force F invests a material point of mass m, it creates there the figurative effect defined by the formula

$$F = \frac{dJ}{du}.$$

The law of gravitation can be interpreted as follows: each material point emits a pregnancy defined by a force F whose intensity at P decreases in inverse ratio to the surface area of the sphere of radius OP (as the flow of pregnancy were conserved). Thus, if it is to be explained, formal causality requires an ontology of salient forms and pregnancies interacting according to a probable mode that is mathematically determined.

A description of major scientific theories from the salience-pregnancy angle can be found in my article “Le problème des entitôlogies régionales en Science” (20), to which I invite the reader to refer for a more complete list of examples.

II. Scientific progress seen as objective of a subjective pregnancy

The clearest example of efficient causality is that of a *a tergo* causality (kick in the behind), in other words, an impact. Now when you analyze the elastic shock of two balls A and B along an axis as a function of their respective speeds V_A, V_B, and you describe it linguistically as it appears in a mobile frame of reference of constant speed u on this axis, you find that the Ou axis is practically decomposed into five distinct regions according to the phenomenological nature of the shock (A and B bump into each other, A hits B, B hits A, etc. see Chapter 3, section A1). When a moving ball strikes a fixed ball, it is always the mobile element that is the grammatical subject and the fixed element that is the object. In collision the subject imparts all (or some) of its kinetic momentum to the object. Thus the kinetic momentum is the subjective pregnancy, emanating from the subject and transmitted to the object in the course of impact.
We know that in modern terms the conservation of kinetic momentum is a formal consequence of invariance according to Galilean symmetry. In itself the phenomenon has no irreversibility. The apparent irreversibility is due to the choice of reference linked to the observer. How, starting from an empirical observation of collisions, did we end up with the notion of kinetic momentum? I believe that it came about through a process of empathy: when the observer watches a collision, he identifies himself either with the subject or with the object. In the first case he feels satisfied at having removed an obstacle; in the second he feels the pain of being hit.

Note that if it is directed towards the observer’s own body, the kinetic momentum of a mobile material body is endowed with biological pregnancy. Anticipating the path of the object, he will try to move out of the way. This process of empathy can be symbolized by the proportion (Aristotelian, not mathematical)

\[
\begin{align*}
\text{Objective pregnancy} & \quad \text{Subjective pregnancy} \\
\text{Gedankenexperiment} & \quad \text{Real affective experience}
\end{align*}
\]

Thus the observer’s capability of putting himself in the place of things could well be at the origin of any important scientific progress.

1. Determinism and contingency

One point should be made clear: the salience-pregnance model does not aim to predict phenomena. When a subject proposes to act on an object, the success of the action is never certain \textit{a priori}. When a pregnancy attains a salient form, we never know whether it will succeed in investing this form, \textit{or} what figurative effects will result if it does so. All this means that the description of the universe in terms of this formalism is not stable but constantly subject to revision. It is the function of Aristotle’s \textit{logos apophaniesis} to keep the mind ever aware of changes in the state of salient entities, of pregnancy invasions and of their effects.

The origin and the more or less permanent flow of this \textit{logos} might be problematic. I mean—and this precious remark I owe to a Swedish friend, Pehr Sällström—that salience can be explained only by the presence of a universal source of “luminous” pregnancy. A salient form has to be lit up before it can be seen. This situation explains the paradox in verbs of sensation: when I look at a thing C, that thing is the grammatical object of the verb “to look at”. So I emit a “subjective” pregnancy towards C which invades it. But in order to see C, my eye has to receive the photons it emits. The physical objective pregnancy (light) and the subjective linguistic pregnancy are here moving in opposite directions (cf. Aristotle’s \textit{Nous pathêtikos} and \textit{Nous poëtikos}, described in the treatise \textit{De Anima}, Chapter 3, section 5).

Some may wonder, in this connection, whether darkness should be looked on as a pregnancy; indeed it should, for the propagative virtues of darkness are evident. But light and darkness are antagonistic pregnancies whose conflict is controlled by optics. We see that science here is doing its best to get rid, as thoroughly as possible, of the fundamental qualitative indetermination of the model.

J. Pregnancies in cultural life: paradigms and ideologies

All ideologies, that is to say all systems of belief that are socially (though not necessarily intellectually) coherent, are built in the beginning upon a small number of principles from which all the rest follows; these “principles”, the conceptual nature of which can vary considerably, play the role of “source forms” for a pregnancy which invests all those who put their faith in the ideology. Generally they are vague concepts whose propagative power comes precisely from their fuzzy and ill-defined character. They serve as passwords; the follower who invokes them at every turn (and even out of turn) is demonstrating his allegiance to an ideology. We can tell, by his use of these flag words, to what particular ideology a person subscribes (\textasteriskcentered). The same analysis holds for scientific paradigms in Kuhn’s meaning of the word (21). A paradigm is born following some initial achievements in a domain of experience D, its “nuclear” domain. But the paradigm is forever living above its means; it proposes to explain more than it could reasonably hope to do. The signification of concepts successfully \textit{used} in the nuclear domain is subsequently extended, stretched in a way that is both ambitious and impractical. The supporters of the paradigm will then invoke the flag words in the sort of conditions we have described. Yet such abusive extensions are not arbitrary. The entire Levi-Straussian structuralism is hinged on the formal constraints regulating mythological systems. In the same way, constraints are implicit in today’s paradigms. No doubt, as the expression of underlying dynamic archetypes, these constraints reinforce the system’s power of evidence and cohesion.

* Note that this is in no way incompatible with the sincerity of the statement; the intellectual dishonesty lies in the system itself—not in the mind which may simply be victim of the system.
A fascinating (though probably difficult) subject of research would be
the description in terms of “pregnancy effects and conflicts” of the way
mentalities evolve in a society and of how the principal components of
the Zeitgeist intervene all the time. In this respect the phenomena of
fashion arising out of the “mimetic desire” dear to René Girard(22) may
well be interpreted in terms of pregnancy. The act of appropriating a
desired object imbues this object with a pregnancy, the same pregnancy as
that which is associated with the act by which “satisfaction” is obtained.
Small wonder then that this pregnancy should be propagated by imitation,
through the mere sight of “superior” individuals in whom it is mani-
ifest. In a sense, the pleasure derived from looking forward to a
satisfaction can surpass that obtained from the satisfaction itself. This
helps to explain how the most blatantly erring beliefs and doctrines
should have been able to seduce societies century after century (their
pragmatic failure in real terms having allowed them to escape the indif-
ference that goes with satiety as well as the ordeal of actual existence).

NOTES AND REFERENCES

(1) After Mélanie Klein, psychoanalysis put a great deal of emphasis on
the primal identification of the new-born infant and its mother’s body.
A more scientific approach is that of René A. Spitz in De la naissance à
la parole, la première année de la vie, in collaboration with W. Godfrey
Cobliner (translated by Liliane Cobliner), third edition, PUF, Paris,
1971.

(2) Winnicott, Donald W., “Objets transitionnels et phénomènes trans-
itionnels”, De la pédiatrie à la psychoanalyse, Payot, 1969, p. 109–125

(3) “Le stade du miroir comme formateur de la fonction du Je, telles
qu’elle nous est révélée dans l’expérience psychanalytique”, in Jacques

(4) On children deprived of language as a result of having no human
contact at a critical period, see Lucien Matson, Les enfants sauvages,

(5) Infant language. The two word sentence. The pivot-topic distinction
appears to be due to Brain (1963). A rather short analysis of this child-
lish grammar is to be found in E. Lenneberg’s Biological Foundations of
Language, John Wiley, New York, 1967. See also F. François, La syn-
taxe de l’enfant avant cinq ans, Larousse, Paris, 1975, and Wildgen and
Mottron, Dynamische Sprachtheorie, ed. Bockmeyer, Bochum, 1988,
Chapter 4.

(6) R. Thom, Modèles Mathématiques de la Morphogénèse, Christian

(7) L. Tesnière, Eléments de syntaxe structurale, Klincksieck, Paris,
1966.

(8) Van der Waals model. Here we have a fluid whose state equation is
\((p + aV^2)(V - b) = RT\), the application of Landau’s theory, where the
liquid-gas separatrix is given by Maxwell’s convention, leads to a cusp
catastrophe.

(9) Durkheim opposed Lévy-Bruhl’s theory on primitive mentality, arg-
uing the existence of concepts uniting physical “energy” and what is
sociologically “sacred”. See infra, section E.

“La force impersonnelle dont le totem est le symbole se retrouve chez les Mélanesiens sous le nom de mana, une notion qui est l’équivalent exact du Wakan des Sioux, de l’orenda iroquois” (in “Les Forces élémentaires de la vie religieuse”). Extract from the article “Durkheim Emile” of the Dictionnaire Critique de la sociologie, by R.

(10) Cassirer, Ernst, Theorie des symbolischen Formen, three volumes
(1923–29). English translation: The Philosophy of Symbolic Forms, Yale
University Press, New Haven, 1953.

(11) G. Bachelard, Le nouvel esprit scientifique, 1934, reedition PUF,
1946.

(12) Feynman graphs. Richard Feynman, Lectures on Physics, Addi-
son-Wesley, three volumes, 1963–65. French translation: Le cours de
physique de Feynman, five volumes, InterEditions, Paris, 1983.

(13) Marcel Mauss, “Essai sur le don”, in Sociologie et Anthropologie,

(14) This vision of the origins of syntactic structure has been objected to
on the grounds that the military organization of human societies came
after urbanization and is therefore relatively recent (20,000 years at the
most?). That would of course be a bit short to account for the syntactic
structures of grammar; a more general motivation therefore seems nec-
essary and is not at all improbable, for the localization requirement is
not exclusively military.

(15) In the theory of the one-dimensional soliton on the axis \(OX\), we
consider a propagative process defined by the partial differential equa-

\[u_t = f(u, u_x) \]

(E)
We look for a solution u of form $\phi(x - vt)$, with v constant. We obtain for $\phi : -v^2 f'_{t}(\phi, \phi')$, that is an ordinary differential equation (E) depending on the parameter v.

A shock wave is a path connecting the stationary values of the field, two stationary solutions u_1, u_2 of (E). We then have to determine the value of v for which the two solutions u_1, u_2 are connected by a separatrix for the differential field defined by (E). In a sense we again find the smoothing theory described infra in Chapter 4 (a local externalization of internal variables).

(17) Spinoza, Ethics, part 3, proposition 6.

CHAPTER 3

THE NOTION OF PREPROGRAM:
BIOLOGICAL AND TECHNICAL
MORPHOGENESSES

A. General theory of interactions in an intelligible ontology

We have shown in Chapter 2 that our vision of the world is broken up into comparatively distinct disciplinary fields. A disciplinary region is specifically constituted only when some regional ontology, made up of salient forms and pregnancies, has been associated with it. Let me remind the reader of this structure.

Salient forms are individuated forms in a substrate space which we shall, as a rule, consider to be Euclidean. Pregnancies are propagative actions emanating from salient forms and investing them. Such investment causes transformations in the state of these forms which we call figurative effects. When trying to describe interactions taking place between these entities we have to consider the following four cases:

1. SALIENCE ⇔ SALIENCE. This is collision. Since our hypothesis does not include action at a distance, all we can consider here is collision, competition for space between two salient forms. The problem is to ascertain whether there are pregnancies that intervene in the interaction. If there are, then they are conveyed via the surface of contact between the two forms.

In mechanics, we know how to deal with collision. In the purely theoretical situation of elastic collision, we know that the conservation of the kinetic momentum $\Sigma m_i v_i$ and of kinetic energy $\Sigma 1/2 m_i v_i^2$ is enough to determine the kinetic state resulting from collision. In situations closer to reality where plasticity and friction are involved the description we have is far from equally satisfying. We may, however, observe that, here again, kinetic momentum and kinetic energy can be considered as pre-
The Notion of Preprogram: Morphogenes

3. PREGNANCY → SALIENCE. Here we are talking about the figurative effects due to the investing of a salient form by a pregnancy. A comprehensive theory has yet to be put together. The simplest case is where the investing pregnancy is re-emitted by the invested form (as in microbial contagion for instance). Sometimes the pregnancy may be re-emitted in a more intense form or, on the contrary, in a weaker one (light diffused by opaque objects). Sometimes the invested form undergoes a morphological transformation; it can even be purely and simply destroyed (as when your fist shatters a pane of glass); or it may re-emit a different pregnancy. A general theory of such effects is one of the tasks facing semiophysics. Nevertheless, ontological autonomy docs suggest a certain permanence in the pregnancies involved (or in the appearance of degraded pregnancies such as heat in thermodynamics, where heat is a degraded form of energy in comparison with kinetic or electromagnetic energy).

4. PREGNANCY ↔ PREGNANCY. In so far as pregnancies share the same substrate space, it might be interesting to know to what extent the presence of one pregnancy can influence the propagation of another. In a conflict between individuating pregnancies we again find the catastrophe model, with collision as the limit. Field theory in physics shows how difficult the problem is: the quantification of a field is attributed to the fact that it can be represented by salient forms, individuated more often than not, but the associated formalism is far from transparent! In a sense, the interactions associated with syntactical structures are also of the pregnancy-pregnancy type. This would be the case for "species" competing within a genus according to Aristotle's concept of motion as imparted by a "mover" to the "moved" (cf. Chapter 6, section C).

B. The notion of preprogram: an obstacle in the way of a flow

Now let us come back to the ways in which a salient form can act upon a pregnancy. The salient form may allow itself to be invested, very briefly, before re-emitting the pregnancy in a directional mode different from the mode of invasion. Or else it may "obstruct" the propagation of a pregnancy from outside. We become aware of the existence of things in so far as we see and touch them. In both instances we are receiving pregnancies re-emitted by an object. So there is a transformation brought about by an object on the flow of an ambient pregnancy (light in the first case, the "kinetic momentum" of my hand in the second). These are particular cases of the principle of the obstacle as a source of ontology (2),

Figure 3.1 Collision of two equal balls

In all these cases the ball that is immobile (or has low kinetic momentum) is the patient (grammatical object), the faster-moving ball is the agent (grammatical subject). This example is particularly significant because it brings out the interconnection between objective pregnancy (kinetic momentum $\bar{m}b$) and subjective pregnancy (the quality of agent or of patient). Note that the two forms in contact can exchange pregnancies other than the purely mechanical ones we have mentioned. Such is the case in the example from Chapter 6, section C: "The mother warms her child": here continuous contact results in an exchange of quantities of heat (a new type of pregnancy); infection provides further examples of pregnancy transmission through contact.

2. SALIENCE → PREGNANCE. THE NOTION OF PREPROGRAM. This is in reality the way one pregnancy can act on another via a salient form. We shall go on to develop the theory of this type of interaction, of considerable biological and technical importance, by introducing the notion of preprogram.
An important instance is that of a mobile salient form interacting with an external pregnancy flow. Take the case where this flow is the current of a fluid inside a canalization. Upstream we will suppose the current in a section of the tube to have a density μ which is positive and zero on the boundary, like the bell-shaped function (Figure 3.2).

In this fluid we place a solid body S which can be moved according to position parameters q_i, $1 \leq i \leq 6$ forming a space Q. Downstream from the obstacle $S(q_i)$, the current will take on an asymptotic density defined by a density function $\mu(q_i, y)$, where y denotes some parameterization of a downstream section Y. Although there is no theorem in hydrodynamics which affirms that the downstream current should adopt an asymptotic regime, we shall assume that such an asymptotic regime defined by the function $\mu^*(q_i, y)$ does in fact exist, and, what is more, that this function $\mu^*(q_i, y)$, considered as a function $\tilde{\mu}$ of the (q_i) parameters, is a continuous map (in topology C^k, with k sufficiently large) of the space Q in the function space $C(Y)$ of the smooth densities $\mu(y)$. If we are interested only in the "number" of currents due to the obstacle, that is to say, in the cardinal number of connected components of the downstream section Y

Figure 3.2

where μ is strictly positive, then for every path $q_i(u)$ in the space Q there will be a corresponding graph F that associates, with every value $u \in [0,1]$, the discrete set of points defined by the centers of gravity in Y of each of the "currents" in the section.

One consequence of the hypothesis of continuity formulated above is the following metatheorem (3):

For almost all paths connecting two points $s_0, s_1 \in Q$, the associated graph F admits only the four types of singularities shown in Figure 3.3.

These singularities are indeed those which can be observed on the level manifolds of a smooth real function F with n variables when one passes through a generic critical point (i.e., a non-degenerate critical point), this point being of index 0 (minimum), 1 (dichotomic scission), $n-1$ (dichotomic confluence), n (disappearance).

The validity of these considerations reaches far beyond the relatively concrete (but exemplary) area we have been looking at. In particular, the dimension n of the ambient space does not intervene, any more than does the dimension of the control space Q. The "philosophical" importance of this "metatheorem" lies in the fact that it allows some control over the "generation" and "corruption" of entities (to use Aristotle's terminology) in so far as individuality has been reduced to no more than topological connectedness of the substrate.

If one were to consider variations of S involving more than one parameter, one would be able to obtain more complex singularities, for example triple vertices \rightarrow or intersections \times. (These singularities would require Q to be of dimension at least equal to three.) Such a solid body S, the position of which can cause "archetypal" transformations in
the topology of a flow, will be called a preprogram. We will show how this notion plays a fundamental part in animal morphogenesis as it does in human technology. Vital or technical realizations of archetypal singularities will be reviewed.

C. Examples of realization of archetypal singularities

TERMINAL CATASTROPHES 1 and 2. If we forego a temporal interpretation of the parameter \(x \) in favor of a spatial value, then singularities 1 and 2 are none other than the boundary singularity. This singularity, realized by \(x \geq 0 \), defines all situations where a flow is *channeled*, that is, not allowed to spread over into \(x < 0 \). This is a phenomenon more often than not the boundary is thickened into an organ of rigid texture, like the dike holding back a river, the arterial wall containing blood, the skin enveloping an organism, the membrane around a cell. Every individual entity (every individuating pregnancy) requires a surface able to control exchanges with the outside in an efficient way.

From a mathematical viewpoint many of the forms existing in biological morphogenesis and in technology are “almost effaceable”. We say that a form \(F \) in the space \(\mathbb{R}^d \) is *almost effaceable* if a homeomorphism \(h: (\mathbb{R}^d, 0) \to (\mathbb{R}^d, 0) \) can be found allowing an arbitrarily small deformation \(\delta h \) such that \(h + \delta h \) is a morphism admitting \(F \) as set of critical values. For example, \(x \to y = x^2/3 \) is such a homeomorphism deformed into \(x \to x^2/3 - \varepsilon \) where \(\varepsilon \) is arbitrarily small \(> 0 \); then the set of critical points of \(h + \delta h \) is defined by \(x^2 - \varepsilon = 0 \), it is the curve \(x = \pm \sqrt{\varepsilon} \), and on the target axis we have the end segment \(\pm [-2/3, +2/3] \). The almost effaceable form of \(\mathbb{R}^d \) with a straight line as core gives rise to cylinders, to the innumerable canalizations that abound in the living world and in technology—vessels, pipes, electric conductors, cables, wires, etc.; the organs that ensure necessary connections.

An interesting case is that of a canalization-end (singularity of type 2). If the material flow cannot disperse outside (like smoke from a factory chimney), then it has to accumulate—at least for a time—at the end point. So this must be blown up spherically, just as the axis blew out into a cylinder. Applied to a vertical segment of \(\mathbb{R}^d \), this construction produces the *bottle* of Figure 3.4.

Generally, when there is inevitable disharmony in the circulation of a flow between production in \(\alpha \) and consumption in \(\alpha \), there must be points somewhere along the trajectory \(\alpha \alpha \omega \) where the flow material can be stocked. This will very often become through a dead-end diversion from the global circuit ending in a spherical collector. (Take the example of the liver for energy transit in an animal.) Many modern theoreticians—in the wake of Turing (4)—have sought to explain morphogenesis with the help of reaction-diffusion equations of the type \(\partial x/\partial t = F(x) + \lambda x \). In so doing they seem to forget that life is essentially a question of canalization, embankment and the struggle to stem dispersion. This is particularly easy to see in a phenomenon like the coagulation of blood, where a canalized liquid itself repairs gaps occurring accidentally in the vein wall. Similar processes are to be found in human technology (tubeless tires, for instance). The valve is a gap in the container wall stopped up by the pressure of the fluid itself and opening only as a result of stronger external pressure. In hydraulics, a fairly erosive water-course can, in a labile enough medium, make its own bed; the flow is then channeled by the very banks it has created.

Birth (singularity 1) raises a particular problem. If the created being is material, it cannot emerge from nothing (we are not concerned here with the materialization of energy in relativist physics!). In fact, in the typical case of a spring, or source, the water that wells up has a subterranean existence in the form of a vast underground network converging on the opening of the source (Figure 3.5). Matter hitherto invisible becomes visible. Most springs encountered in nature are of this type; they are due to a qualitative change in a material flow, occurring at the point where the flow converges. (The *funnel* is a device of this kind, creating a source from a diffuse flow.) The opposite kind of transformation, visible → invisible (singularity 2), may result from free diffusion or from a change of phase (Figure 3.6). Thus rivers like the Oued Draa, running southwards from the Moroccan Atlas, subsequently vanish in the Sahara, reduced to nothingness by evaporation and absorption into the sand. Singularity 3 can be realized in a watercourse, though this is rather exceptional (delta head). Later on we shall look at examples of the dichotomy of an asymmetrical energy flux; there is a natural course and an artificial one, obtained by some special operation like the creation of a diversion.
channel on a waterway, of which more will be said in section I. The sieve provides an example of qualitative scission. Singularity 4 of a material flow—the confluence of two streams—presents no great problem; in piped flows it is realized by means of the centralization section called in technical terms a "breeching" or Y-pipe (Figure 3.7). As the mixing of two fluids is an entropically favorable operation, two flows which are qualitatively different can merge together without difficulty (watering the wine.)

Generally, we will call *preprogram* any salient form immersed in a fluid flow, the movement of which can give rise to one or several archetypal morphologies in this flow. As a rule, if we can induce a singularity, we can also bring about the "opposite" singularity (by inverting the time arrow). A tap, for instance, permits the *birth* or *death* of a flow according to whether it is on or off. The reversible character of the operation can be seen in the Hamiltonian nature of the movement (rotation of a spindle transformed into a translation by the thread of a screw). In this example, the operator exercises direct control; but even so a tap is more often very slightly on than completely off, as anyone with a house in the country will tell you—and, moreover, as genericity requires.

D. Mobile preprograms

A preprogram, subject to certain fixed connections, may be entrained by the current. If its control space is of dimension one, it may be drawn into a periodic movement, like rotation in the case of the mill-wheel. This can happen naturally too. A rock loosened from the bank of a torrent may be swept into a stable whirlpool and there hollow out a groove in which it continues to turn, so forming a pothole or giant's kettle. But a natural mobile preprogram of this kind serves no useful purpose, whereas the mill-wheel, as it turns, furnishes energy pumped from the current that moves it.

Mobile preprograms are amongst the oldest instruments known to man. Axe and knife, for example, are tools that accomplish the scission catastrophe. In catastrophe theory they correspond to the dual cusp (Figure 3.8) which, projected at high speed onto a solid body, cuts it in two between the two faces.
which allows small particles to be sorted from larger ones (the size of the mesh constituting the dividing value). In the same vein, we note that the balance of scientific instruments actually achieves the stabilization of an unstable equilibrium: we obtain, by means of (artificial) control, the potential of Figure 3.8, known as the dual cusp. Here we have an application of the principle of the relativity of motion. Instead of a fixed obstacle separating a mobile material in two, the obstacle is projected onto an immobile body (like the axe on a log). Mankind did not have to wait for Newton or Einstein to be familiar (albeit incomprehendingly) with the relativity of movement. (The whole functional morphology of oral predatory organs is based on this principle.)

Propeller, pump and piston are so many mobile preprograms. In the more refined instances of technology, the position of the preprogram can, by coupling, cause the cocks which govern the admission or evacuation of the driving fluid to open or shut: think of the slide-valve of a steam-engine cylinder, or the valves of our internal combustion engines.

What is intended to ramify, in these last cases, is an energy flux. The emission morphology is no longer interpreted materially, but in terms of energy. There exists a natural flow whose energy goes to waste, but from which man, by inserting a mobile preprogram, will be able to extract a current of energy to use as he sees fit. We have mentioned the mill-wheel. Its most primitive form was the Middle-Eastern moria, the function of which was precisely to bring about an auxiliary bifurcation in the flow of a watercourse by means of a moving wheel fitted with buckets which emptied into a diversion canal serving to irrigate land near the river. It is therefore important, at this point, to take another look at mill-wheel theory.

E. Mill-wheel theory

Let us consider a mill-wheel in its simplest form with only one blade. This blade has two possible positions. Either it is (at least partly) immersed in the river water, or it is in the air. In the first case, the entrainment phase, it is driven by the current. In the second case, the rotation of the blade's axis is slowed down by various dissipations, by friction, or by the work required of machines fitted to the axis. Whence the theoretical "hysteresis loop" schema of Figure 3.9.

Transitions $\delta \alpha$ and $\beta \gamma$ are assumed to be very fast (catastrophic). The schema is that of a violin string vibrating beneath the bow. When the transversal speed u of the string has the same direction as the speed v of the bow (positive, for example), there is a strong friction coefficient and the string receives energy from the bow. When the string comes back in the other direction (negative in our example), the friction coefficient f is much weaker, and the string consequently loses less energy than it gains in the driven period. This energy gain keeps the string vibrating; its energy is dissipated in causing the ambient air to vibrate (and in thermal dispersion). The same schema holds for the escapement of a clock—a device invented in the Middle Ages, long before any theory of mechanics.
It is important here to review the theory of the link between the cusp catastrophe and devices such as these for maintaining oscillation by means of a continuous flow. This is the object of Van der Pol's equation theory which we are going to re-formulate in terms different from those in which it was originally presented.

F. The Van der Pol–Liénard system

We start from the fast dynamics defined by the gradient with respect to the metric \(g_o = dx^2 : X = -\nabla (x^4/4 + \mu x^2/2 + ux) \) which, when \(4u + 27\mu^2 < 0 \), gives rise to bimodality within the semicubic parabola \(P \). As for the (slow) dynamics, we may conveniently consider that it comes from a \(Y_3 \) dynamic, gradient of the polynomial \(x^4/4 + \mu x^2/2 + ux \) with respect to the hyperbolic metric \(dx^2 - \lambda du^2 \), that is to say a deformation of the initial dynamics \(g_0 \). Again, in order to end up with a Hopf bifurcation for \(\lambda = 1 \), we must have the potential \(x^4/4 + ux \) (for the gradient of \(ux \) with respect to the metric \(dx^2 - du^2 \) is the same as the symplectic gradient of \(u^2 + x^2 \) with respect to the symplectic form \(dx \wedge du \), that is, the linear oscillator). This shows that the coefficient \(u \) in \(X \) above, as a function \(u(\lambda) \) of the parameter \(\lambda \), has to satisfy \(u(1) = 0 \) and \(u(0) = -1 \). Hence we may suppose \(u(\lambda) = 1 - \lambda \). For \(\lambda = 1 \), the field \(S_1 \) presents the Hopf bifurcation in \(O \) when \(\lambda \) goes from \(1 + \epsilon \) to \(1 - \epsilon \); for \(\lambda = 1 + \epsilon \), the field \(S(\lambda) \) has in \(O \) a stable attractive point; for \(\lambda = 1 - \epsilon \), it becomes a stable attracting cycle around \(O \), which, when \(\lambda \) describes the interval from \(1 - \epsilon \) to \(0 \), is continuously deformed into the hysteresis loop associated with the cusp.

More precisely, the gradient of a function \(F(x, u) \) with respect to the hyperbolic metric \(dx^2 - \lambda du^2 \) is proportional to \(G = 1/\lambda \nabla F - \nabla u \) when \(\nabla \) denote the gradients with regard to the metrics \(dx^2 \), \(du^2 \) respectively (degenerate metrics, the unrepresented variable being taken as parameter in the gradient). Indeed, the scalar product of two vectors \((x, V, \partial x/\partial u, \partial u/\partial u) \) with respect to this metric, is \(x \partial x - \lambda \partial x \partial u \). This product must be equal to \(dF = F_x \partial x + F_u \partial u \). Hence, by identification,

\[
X = F_x, \quad -\lambda V = F_u, \quad \text{or} \quad X = F_x, \quad V = -\lambda - F_u.
\]

Applied to \(F(x, u) = x^4/4 + (-1/2 + 1/2) x^2/2 + ux \), this gives \(X = x^3 + (-1 + \lambda) x + u, \quad V = \lambda - \lambda \) or, after multiplication by \(\lambda \), \(G = \lambda [x^3 + (\lambda - 1) x + u] \). Hence, by identification,

\[
X = F_x, \quad -\lambda V = F_u, \quad \text{or} \quad X = F_x, \quad V = -\lambda - F_u.
\]

It will be observed that this field as function of \(\lambda \) never has more than one singularity, namely the origin \(O(x = u = 0) \). This point is an attractor for \(\lambda > 1 \), a repeller for \(\lambda < 1 \), with the classic Hopf bifurcation in \(\lambda = 1 \). Explicit integration of this differential system is achieved by the elliptic functions. P. and M. Diener (6) observed that for values between 0 and 1, \(1 > \lambda > 0 \), the field presents, apart from the attractive cycle arising from the Hopf bifurcation, "rivers" which prefigure the stable manifolds of the hysteresis cycle obtained for \(\lambda = 0 \) (Figure 3.10).

The appearance of the hyperbolic metric can be interpreted as follows. The variable \(u \), initially a pure control variable, ends up acquiring slow dynamics dependent on a potential whose energy must proceed, through partition, from the initial potential \(V \). This is the process of "internalization" of an external variable described in SSM, which was suggested to me by the formation of the mesoderm in vertebrate embryology. However, the coefficient \(\mu \) varies in such a way as to return to the organizing center (\(u = u = 0 \)) of the initial cusp.

This return to the organizing center plays a key role in the construction of biological models relating to embryology and physiology. We shall come back to this important point later on (Chapter 5, section II). But the problem can be approached from another angle.

G. Technique and nature

Throughout history technology has played an important part in our interpretation of vital phenomena. As early as the sixteenth century, when anatomy came into existence with the work of Vesalius and Harvey, the way different organs functioned was pictured by analogy with man-made instruments. The heart was seen to be a pump sending blood through vein and artery channels: the lungs were a pair of bellows; the limbs, with their articulations, lent themselves to obvious mechanical analogies. Thus came into being the Cartesian theory of the machine- animal... Such analyses have been pursued throughout the history of biology.

The most recent—and perhaps the most famous—has of course been the assimilation of neuron wiring in the brain to the structure of a computer (and let's not forget the application of the genetic code metaphor to chromosomal DNA). One cannot deny that there is something to be said for these analogies. Where they have turned out to be false it has been because they were incomplete and because a good part of the organic function had escaped the experimenter's eye. Aristotle, however, had pointed out, long before, that "It is not nature that imitates art, but indeed art that imitates nature" (Aristotle, Protreptikos, Fragment 11,
Waltzer). Thus was inaugurated a vitalist tradition which, from the Stagirite to Bergson, never quite died out. For the fact remains that an instrument is the material prolongation of an organ: it is the vector of a pregnancy of biological origin, the support of an action, and the outward extension of this organic activity. That is why there is nothing absurd—pedagogically at least—about making use of technical analogies in order to understand some of the most fundamental mechanisms of ontogeny.

H. Duplication of the hysteresis loop in purposeful activities

We have seen how the hysteresis cycle associated with the cusp appears in mill-wheel, vibrating string and clockwork escapement, whilst it plays a motory role in animal predation, the activities of which are accomplished by organs proceeding from the mesoderm (cf. the predation loop in SSM). But in order to attain something more like a global vision of physiological regulation, we would do well to complicate this basic structure a little. This can be done by a succession of new factors affecting the characteristic of the initial cusp. The return to an organizing center thus allows us to pass from the singularity \(V = x^2 \) to the singularity \(V = x^3 \), as the quadratic potential \(V = x^2 \) can be complicated into \(V = x^3 \).

This type of complication will present itself when we consider the mill-wheel technique. It was very soon realized that mill-wheel performance was improved when the current was faster. Whence the idea (which probably emerged in ancient times) of turning aside part of the current into a low-gradient diversion canal, thus creating an artificial waterfall below which the mill-wheel could be placed.

In mathematical terms, the construction of a diversion canal can be considered as due to the presence of a complete “backflow” \(CH + HB \) representing the containment effect of a dam which in part shutting off the normal course of the water by means of a sluice will feed the diversion canal (in \(B \)). The fall \(GC \) is the “catastrophe” and the backflow is the edge \(CH \); this is a fictitious counter-current that “symbolizes” the damming (Figure 3.11).

The mill-wheel \(O \) is also the center of the hysteresis loop inscribed in the rectangle \(CDEF \); \(FC \) represents the entry of the blade in the waterfall, \(DE \) its exit. The edge \(CD \) is the entrainment period, \(EF \) the period of dissipation.

In this device it is essential for the points \(G, C \) and \(F \) to be on the same vertical line, in other words for the catastrophic segments \(GC \) and \(FC \) to end up at the same point \(C \) on the horizontal \(HD \). The late lamenta-
The Notion of Preprogram: Morphogeneses

I. Algebraic models of duplication

It now remains to make clear in what probable mathematical structure a hysteresis loop can split into two cycles of the same type concatenated by the cofold rule. Since—according to a classic theorem of Poincaré—any vector field in the plane \mathbb{R}^2 which admits a closed trajectory or cycle admits at least one singular point inside it (a focus), the scission of the cycle G of focus O requires that the singularity O be first split into two points. This necessitates the preliminary stopping at focus O of local rotation around O (i.e., the stopping of the performing character of the process). We can then imagine two scenarios:

1. The focus O, its rotation reduced to zero, becomes a first order zero singularity and then divides into three critical points—two attractors and one repeller. From the repeller emerges an invariant curve (unstable manifold) that will later constitute the septum or wall separating the two cells resulting from this "mitosis". This version is not really satisfying, because of the highly "degenerate" character of the (first order) zero singularity we have to consider.

2. It is simpler to have the singularity O move to the actual boundary of the cycle. This is done by considering the flow deformed into a linear pencil of circles tangent to Oy in O, of equation $x^2 + y^2 - 2\lambda x = 0$, $\lambda > 0$ (Figure 3.12a).

By symmetry, such a figure generates the full pencil $\lambda \in \mathbb{R}$. The appearance of a new symmetrical cycle is thus a consequence of simple analytic continuation by reflection with respect to the straight line Oy. In the same way it will be observed that the gradient of the meromorphic potential $V = (x^2 + y^2)/2x = x^2 + y^2/2x$ is defined by $W = (x^2 + y^2)/2y$. The curves $W = \text{constant}$ are those of a pencil of circles orthogonal to the preceding one $V = \text{constant}$ (Figure 3.12b). It will be observed that these flows are flows of the symmetrical field of a dipole concentrated in O. Similarly we may have a flow associated with the quadrupole. The splitting up of this foursome made up of two couples $(a^*a^*) (b^*b^*)$ along the two lines of scission $(a^*b^*) (a^*b^*)$ or $(a^*a^*) (b^*b^*)$ is a model which could represent the cleavage of the DNA double helix.
a. Duplication of a plane cycle by degeneration into a pencil of circles

b. Degeneration into two orthogonal pencils of circles, Extract from Complexity, Language and Life: Mathematical Approaches

Figure 3.12

Figure 3.13 Intersection of a parabolic cylinder with a tangent cylinder

We should also note that these scenarios concern vector fields of the plane \mathbb{R}^2. As soon as one is in a space of, say, dimension ≥ 3, the splitting of a cycle becomes much easier, for it no longer requires a preliminary scission of punctual singularities. This has recently been studied by Coullet, Gambaudo and Tresser (8). As we shall see in Chapter 5, this preliminary scission is linked with the existence of the genome.

It remains to account for “cofold coincidence” in a saddle point of the duplicated dynamics. To the previous model of a pencil of circles we add a dimension z, and so form the parabolic cylinder Z of equation $z = x^2$; we then denote by π the projection $Z \to \mathbb{R}^2$ induced by $(x,y,z) \to (x,y)$. The counter-image π^{-1} of a circle Γ of the pencil is then, in the cylinder Z, a figure of eight which realizes the double concatenated loop quite well. (Note that on $Z < 0$ the direction of the induced flow has to be reversed (Figure 3.13).
In elementary catastrophe theory, a double hysteresis loop like that in Figure 3.11 comes from the butterfly singularity, associated with the potential \(V = x^3/6 + u x^2/4 + u x^2/2 + w x \). But to realize coidf coincidence, we must have, in the control space \((u,v,w)\) containing the “butterfly” curve, a rectilinear section that passes through the axial double point (Fig. 3.14).

J. Genetic constraints and catastrophe theory

During a talk I gave in 1968 at the Wistar Institute in Philadelphia (9), one of the audience of biologists raised the following objection: “In the morphogenesis theory of the theory of elementary catastrophes, memory, an effect of the past, plays no part (these morphologies being independent of the substrate).” Yet in biology all morphology is based on an effect of memory, a genetic acquisition, as is proved by the impossibility of spontaneous generation.”

K. The instrument as extension of the organ

Anticipating somewhat on what we shall have to say about embryology in Chapter 4, we recall the “predation” loop already introduced in SSM. In the canonical cusp \(V = x^3/4 + u x^2/2 = ux \) (Figure 3.15a), we consider a circle \(I \) of the control plane \(Out \), and we lift this circle into the slow manifold of equation \(x^3 + ux + v = 0 \). In the bimodality zone (inside of \(4u + 27v^2 > 0 \)), the two minima denote predator \(P \) and prey \(p \). The segment \(rij \) of Figure 3.15b designates the hungry predator, so alienated as to be one with his prey, a state we call \(P^p \). In the model “predation loop revisited” given in Chapter 4, section C, this state of “privation” is represented by a zone of bimodality (potential \(V \) with two minima, where the predator \(P^p \) occupies the highest minimum, the position of metastable equilibrium). Thus we have the statement “Privation is the beginning of metastability” which we will find again in Chapter 7, section D. The situation is that of Figure 3.15b: as soon as the predator \(P \) encounters a prey \(p \) that he recognizes as such, the perception catastrophe will take place. The prey’s pregnancy invades him, showing itself in a “tunnel” effect on the potential of Figure 3.15c. The predator \(P \) leaves the top minimum \(\eta \), dropping (through the tunnel) to the basic minimum \(m \). He is once more himself, \(Ego \), a predator, and the prey pursued \(p \) will occupy the high minimum \(\eta \) left vacant by the predator (cf. Figure 1.3). Then comes the pursuit of the prey \(p \) which, in the normal sequence of events (Figure 3.15b), ends up with capture at the fold point \(K \). During
The problem here is in understanding why this process should exist in primates and not in other animals. (We know, however, that certain birds do use stones to break eggs and stalks to get grubs out from crannies in the bark of trees.) It is quite likely that there was some invention at the start which was then "culturally" fixed. If we think of the upper half of the circle in Figure 3.15a, \(u > 0 \), as being that of sleep and dreaming, this trajectory transforms the satiated predator \(P^s \) into the hungry predator \(P^h \), alienated by the image of his prey. That is to say that this sleeping phase changes the material remains of the prey (in the thrones of assimilation) into a mental image of this same prey. If this process is somehow stimulated (in the sense of concept excitation described in Chapter 1), the prey may well take on an amplified appearance. The banana our chimpanzee cannot reach will become a "prosthetic" banana of coordinate length. When the dreamer awakens, comparison with the actual length will produce the idea of a capture "prosthesis", the transformation \(P^s \to P^h \). As Th. Adorno put it, "The means tip the scale to become an end in themselves". What is strictly speaking the end — to take the banana — must be set aside in order to concentrate on the means of getting
there. Thus a problem arises, a sort of vague notion altogether suggested by the state of privation.

The invention of an instrument appears to be a schematization (in the Kantian sense described very exactly by Jean Petiot) (11) of this difficult concept. If Kant was right in saying that schematism is a secret hidden deep in the human soul, then it is clearly useless to carry on this exploration of invention. As a science, heuristics does not exist. There is only one possible explanation: the affective trauma of privation leads to a folding of the regulation figure. But if it is to be stabilized, there must be some exterior form to hold on to. So this anchorage problem remains whole and the above considerations provide no answer as to why the folding is stabilized in certain animals or certain human beings whilst in others (the majority of cases, needless to say!) it fails.

NOTES AND REFERENCES

(1) This mental experiment is discussed by the author in: “Thème et sujet grammatical d’une phrase” (Table Ronde ATALA, Neuchâtel, 29–31, May 1980) in “Linguistique et Mathématiques ed. Peter Lang, Bern-Frankfurt, 1982.

(2) A study of the obstacle problem (looked at from the quantitative point of view, of course!) is to be found in V.I. Arnol’d, Catastrophe Theory, 2nd edition, Springer-Verlag 1980, 63–66.

(3) More precisely: the space $\mathcal{L}(Y)$ is endowed with a canonical stratified set H of codimension one defined as the set of all real smooth functions $\mu(y)$ which admit 0 as critical value. Then the morphism $\mu : Q \to \mathcal{L}(Y)$ has to be supposed smooth and transversal with respect to the set H in $\mathcal{L}(Y)$.

(11) Jean Petiot, Morphogénèse du sens, see Foreword, note 1.
CHAPTER 6

ARISTOTELIAN DYNAMICS
SEEN AS SEMIOPHYSICS

Here we shall be looking at Aristotle's doctrine from a "catastrophist" angle. To start with, we present a set of axioms from Aristotelian dynamics transcribed into the terminology of modern qualitative dynamics (1).

A. Axiomatics

I. The world is made up of entities (σώσσεια) (2).

II. All entities suppose the existence of a substrate (ὑποκειμένου). For what we call primary entities, this substrate is a material set and consequently spatial in $R^T \times T$ (T time). The non-primary entities, called secondary entities, have their substrate in an abstract space consisting of intelligible matter (μήλη νοητά) (3). Two entities with the same substrate are identical. The datum of the substrate in its ambient space characterizes the entity (hic et nunc). We shall denote by $|A|$ the non-empty substrate or support of the entity A.

III. DISJUNCTION OF ENTITIES. If $|B| \subset |A|$, B is said to be part (μέρος) of A (4).

IV. AXIOM OF SEPARABILITY. If two entities A and C have non-disjoint supports in the same space, then there exist two entities $A \cup C$, $A \cap C$ such that $|A \cup C| = |A| \cup |C|$ and $|A \cap C| = |A| \cap |C|$. An entity with connected support is said to be individuated (διπλώμα).

V. AXIOM OF LOCALITY. In general ($\delta \varepsilon \varepsilon \gamma \tau \sigma \pi \omega \lambda \nu$) individuated entities have non-empty interiors (balls, in fact); then if A and B meet and interact, this interaction has its support on the frontier σA of A and on that of B, hence in $\partial |A| \cap \partial |B|$. A and B are then said to be in contact (διάφορο).

VI. STATE OF AN ENTITY (διάφορο). Suppose it possible to find two primary entities A_1, A_2 such that there exists a Euclidean shift of $R^T \times T$, D such that $|A_2| = D|A_1|$ and that the displacement D transforms the whole neighborhood of A_1 into a neighborhood of A_2 insofar as the entities therein and their sensible properties are concerned. A_1 and A_2 are then said to be in the same state. (The state is characterized by phenomenal equivalence, modulo a Euclidean shift.)

VII. POTENTIALITY. The states of an entity A form a set $S(A)$. The entity A may be subject to various disturbances (movement or deformation). This deformation signifies only for primary entities (with material support); secondary entities are generally considered to be fixed. There is, in theory, no geometry in a space of semiotic nature like the space of a genus. But there is a mental continuum where deformation is possible. This means that the notion of potentiality can be applied to secondary entities. However, its substrate must be permanent (up to a homeomorphism) if the permanence of its individuality is to be ensured. We are thus able to define a class of entities associated with A (all those with representatives equal to deformations of A). This being so, we write (A, α) for each entity A in the state α. If there exists a temporal evolution which can conceivably be realized, transforming (A, α) into (A, β), then it will be said that (A, β) proceeds from (A, α) or that (A, β) is within the potential of (A, α) (notation $(A, \alpha) \rightarrow (A, \beta)$).

We now construct the oriented graph G_i obtained by joining vertex α to vertex β by an oriented arc $\alpha \rightarrow \beta$. We define a relation of equivalence ρ in G between two vertices (x, y) of G if there exists an oriented path from x to y in G, and likewise from y to x. Then the graph quotient $G_\rho = \bar{G}$ has no cycle and projects onto the time axis.

The irreversibility of certain transformations is thus made manifest: every man alive is a potential corpse, but the reverse is not true. This is not a true example in the spirit of strict Aristotelianism. Indeed, according to Aristotle, the corpse, deprived of soul, has lost the form of the living body, and is not an oûstia (cf. Meteorology IV, 390a, 24)).

VIII. NATURAL TRANSFORMATIONS (κατά φύσιν). Among the transformations affecting a being, we may distinguish those which are "natural" or "generic" ($\delta \varepsilon \varepsilon \gamma \tau \sigma \pi \sigma \lambda \nu$): they form a subgraph G_n. The
with its quotient Γ^z_A. States not belonging to Γ^z_A are said to be "accidents" of A (κοινάς). Every transformation $(A, \alpha) \rightarrow (A, \beta)$ in an accidental state requires the interaction of entities other than A, acting through contact with A. Inversely, most "solitary" evolutions of A are "natural" (but not necessarily irreversible: take the case of sickness). If an entity's support is required to be connected, then for each instant t the graph of Γ consists of all possible states at an "age" t.

Remark. Certain natural transformations of a being require the presence of other entities. For example, the passage newborn babe - child demands the presence of a nurse (the mother, usually). Such a presence is "natural". Moreover for a being to come into existence, the presence of at least one parental entity is required in order to provide a substrate that is then severed from the parent.

B. τέλος, τέλειον and τέλευτη: birth and demise of an entity

Since the only eternal entities are those of the supralunar world (the firmament and the stars), all entities here below have a beginning (γένεσις) and an end (φθορά). Whence a graph Γ limited in time, generally culminating in a unique vertex, the end (τέλευτη), sometimes identified with the τέλος. For man placed in the context of his species, we have the transformation man → child via the relationship of begetting. Whence the graph 6.1 of natural transformations of the species.

This time there is a cycle, and the "time" function reaches its maximum at the adult age. This is the τέλειον, the "perfect" state, to be clearly distinguished from the terminus (τέλευτη). The τέλος appears to oscillate between these two meanings, τέλειον and τέλευτη; an ambiguity which does not seem to bother Aristotle unduly but which often does raise a problem.

![Figure 6.1 Birth, telos and end of an entity](image)

Quotation [1] seems to indicate that the τέλος is in a way the central point of the existence of an entity or an act: it determines both what precedes (τὸ πρότερον) and what follows (τὸ εὐεξία). From the catastrophist viewpoint, the τέλος could thus be seen as the organizing center of a morphogenetic field of beings and events evolving in time. In this case the τέλος should always be distinct from the τέλευτη.

C. "Potentially" defined by mental experience

"Potentially" as we define it: $(A, \beta) \leftrightarrow (A, \alpha)$ or (A, β) within the potentiality of (A, α) requires the existence of a transformation changing A from state α into state β. In a more general way, the notion of potentiality is extended, in Aristotle, to "mental experiences"; the fact that one can conceive the possibility of such and such a transformation from α to β suffices for us to be able to say that β is within the potentiality of α. From this point of view there is a profound ambiguity in the expression "potential being" (τὸ δυνατόν ὅπως). For a being can be potential in the sense that it stems from a real being through an operation conceived to be possible, without being real itself, since the creative operation (ἔνεργεια) has not actually taken place and may never do so. Or we may say that a being is potential because, real in itself, it may develop unexpected possibilities, powers (δυνάμεις) or capacities (κατάλληλα) which could be realized in certain circumstances not at present obtaining. (It may be that Aristotle keeps the term τὸ δυνατόν for the first case only?) This distinction is nevertheless fundamental when we are dealing with the parts of an entity.

If indeed we consider an entity A of substrate $|A|$, we can imagine (essentially through a mental geometric construction) a part B whose support $|B|$ is limited in A by such a geometrical construction. For example if A is a material ruler parametrized by $-k \leq x \leq k$ on the Ox axis, I may consider the finite part $-k \leq x \leq 0$ to be part of Ox. But if this operation takes place only in my mind and is not in fact realized, then the entity I so create, B_A, (this half of a ruler) is a potential entity and not a real one. If, on the contrary, I saw through the ruler at the point $x = 0$, then the half-ruler becomes a separate entity (χωρία), and therefore real. Hence the affirmation: "Entelechy separates" of Met Z [2], where we again find the example of a point separating a straight line into two halves of a straight line (the point then being the actual trace of the point or awl, σημείο). This theory of parts in posse or in actu brings
us to the definition of homoeomerous parts (quotation [3]). Here the continuous character (ενσωματευμένος) of the substrate comes in.

D. Homoeomerous parts

An entity \(H \) is said to be homoeomerous if every part \(c \) of \(H \) is considered to be semantically (in other words phenomenologically) equivalent to \(H \). Quantitatively, \(c \) is of course less than \(H \), but as far as qualities (ποιότητα) are concerned, they are equivalent. It is the same as saying that \(H \) has an apparently homogeneous substrate. Water, oil, blood, fat, and bone (internally) are all homoeomerous.

All non-homoeomerous entities are called anhomoeomerous. The substrate of such an entity presents qualitative discontinuities: it has a form, a situs partium, whereas homoeomerous parts are intrinsically "harmless". We observe, nevertheless, that if the support \(c \) is of non-trivial topology (if it is not contractible), then difficulties may arise. For example, Aristotle qualifies as "homoeomerous" a specifically localized material homogeneous component (vein, intestine, etc.) as well as the "local phenomenological quality" characterizing homoeomerous parts (thus the elements, earth, water, air... are homoeomerous, with no form or localization of their own). In the modelization of animal organization presented in Chapter 5, section B, homoeomerous parts are strata which may have a form and a topology. Quotation [4] shows that Aristotle was aware of the difficulty. But as he rejected the notion of space, he could not formalize the difference. The "local quality" of a homoeomerous part is a quiddity, a logos (quotation [5]).

Where sets are concerned Aristotle distinguishes between totality (πᾶν) and whole (δύναμη); homoeomerous parts make up a totality, but a whole like a living body has "canonical parts" separated by well-defined surfaces which give it its form. The catastrophic set is an indispensable support of form (μορφή). The parts of the entity in actuality are limited by anhomoeomerous parts. (From this we have deduced in Chapter 5, section B, justification of Geoffroy Saint-Hilaire's principle concerning the unity of the composition plan.)

There is, then, an inferior form of existence, that of homoeomerous substances. Lacking form, often immobile, they have nevertheless a logos that Aristotle describes as hard to define [5]. This logos, though of a logical nature, would now be defined as the "internal structure of matter"; it is a mixture of elements (cf. quotation [6], where matter is defined by the notion δύναμη τοῦ λογοῦ. It is a case of τὸ τέλος εὐθύν, "quiddity" (the "genetic legacy"?).

E. Homoeomerous, anhomoeomerous and catastrophe theory

Whatever the case, if \(Y \) designates the space of "internal local states" of matter, the "state" of an entity \(A \) with representative \(|A|\), could be defined by a section \(\sigma : |A| \to Y \) of the fiber map \(|A| \times Y \to A\). For a homoeomerous part, this section is continuous; for an anhomoeomerous part, it is discontinuous on a set \(K \) of "catastrophe points"; this set \(K \) defines the morphological organization of the entity \(A \) (every actual part of \(A \) has its boundary in \(K \)).

Whenever there is an internal dynamic defined in the support of an entity, the section \(\sigma \) is endowed with a dynamical principle inherited from the dynamical systems both of \(Y \) and of its support \(X \). Catastrophe sets are where the homoeomerous logos adhering to the catastrophe point in question interact; they there undergo, in \(Y \), transformations defined by functional dynamic interaction which we shall describe later on. That is something clearly perceived by Aristotle (quotation [3]): homoeomerous parts carry dynameis properties, and in this sense they are potential, their potentiality being realized, becoming actuality, in the anhomoeomerous parts which are the seats of work and activity (εἰργασία καὶ πράγματος). In the case of the joint between two adjacent bones, we have a conflict between two "loce", each attached to one of the bones, the locus attached to \(B \), varying by rotation in the frame attached to \(B \). The surface of articulation is the corresponding anhomoeomerous part, coming into play in the two opposite movements of flexion and extension. In all these cases, then, there is a localization of actuality on a contact surface. In the same way the lung is an anhomoeomerous interface between air and blood. Such is the most simple, prototypical, situation in the "actual" interaction of two entities.

F. Axioms of actuality

1. All non-natural transformations \((A, \alpha) \to (A, \beta)\) require the presence of at least one different entity (the mover) \(M \) (τὸ μορφῶν), which comes into contact with \(A \), \(M \) then transmits a secondary entity to \(A \), a "species" (εἶδος) which modifies its state (cf. note 8: in our terminology this is a pregnancy).
II. Any actual state can be described verbally by a nuclear sentence (with only one verb). This means that building a theory of the act amounts to building a theory of the verb as part of discourse.

Remark. Some natural transformations are set in motion by contact with an outside entity usually considered not as an agent but as a patient. Thus coming upon a likely prey will trigger predation in the hungry predator. This is an effect of the subject's state of privation (στερηματική διαθέσεις).

Ever since L. Tesnière (5) we have known that a nuclear sentence is always associated with a verb \(V \). This verb is normally associated with 0, 1, 2 or 3 acts, their number being what L. Tesnière called the “valence” of the verb.

1) ZERO-VALENT SENTENCES. Zero-valent sentences, of the “it is raining” type, were apparently never considered by Aristotle. Perhaps he would not have granted them the status of “actuality” (always composite according to him), yet he could hardly have denied them a supporting role for the logos apophaticos, that is, for an expression which can be true or false. Possibly this omission can be explained by the periphrastic use of the classical Greek Zeus aei [Zeus rains]; in any case one would be hard put to it to tell what kind of substance “it is raining” as an attribute. Indeed, Aristotle’s philosophy requires there to be a certain permanency in the substrate of an entity, and when this substrate renews itself, like Heraclitus’ river, the Aristotelian vision of substance is in deep water. (Is it the water or the bed that is the substrate of a river? (6))

2) UNI-VALENT SENTENCES. These are sentences of the NP type (Noun-Predicate). The predicate may be introduced by a copula (The sky is blue) or it may consist of an “intransitive” verb. In whichever case it is a matter of capturing the image of the section \(\sigma : U \to G \) in the space of a genus \(G \) by means of dynamics internal to \(G \) (leading to an attracting minimum).

We shall suppose that with every genus—secondary entity—will be associated a substrate \(G \), and in this space we shall have a space of quality (internal state), usually \(R \), as in the case of opposites (hot-cold). Then \(G \) is defined as the union of the basins of potential \(V : G \to R \); the basin of a minimum is the substrate of a species (eidos). On the continuous space of color impressions, for instance (a three-dimensional space \(R^3 \), according to the classical theory), the adjective “blue” would be defined by a basin \(b \), with boundary \(\partial b \). The meaning of a predicative sentence like “The sky is blue” can thus be geometrized. The substrate of the “sky” is a heavenly semi-vault \(D^2 \); as far as color is concerned, the state of the sky is defined by a section \(\sigma : D^2 \to R^2 \times D^2 \), of the morphism \(R^2 \times D^2 \to D^2 \). The “sky is blue” is the actuality signifying that this section is “captured” by the basin \(b \); in other words, the section \(\sigma : D^2 \to G \) is entirely contained in the tube \(b \times D \), with the boundary of which \((\partial b \times D) \) it is “interlinked”. The ancients, who designated by συμπλοκή (interlinking) the relationship between a substance and its predicate, had little idea of how truly realist their geometrical metaphor was (Figure 6.2). (7)

3) DIVALENT SENTENCES. Here we have the transitive sentence SVO: an agent acts upon a patient which suffers the action. Aristotle views this kind of sentence on the collision model; the mobile body (agent or mover) moves, by impact, the immobile one (patient or moved body). We shall come back to this case in greater detail in sections G and H.

Transitive sentences involving the coming to be or the passing away of an act demand a special formalism. For the act there has a global topological effect on the creation or disappearance of an actant. Space \(G \) is then the usual space \(R^3 \) (the common substrate space), and on \(G \), taken as an internal space, we have a cusp catastrophe with control space \(R^3 \) (One). Here the “kronic” character of Aristotelian philosophy comes in; once the act is set in motion, it has to be accomplished—unless it is prevented from so doing (κρίνει μαλακώς τι ἐξυπόνοια). Apparently there is no theory of conflict to be found in Aristotle (7). Initiatives
taken by conflicting actants (in predation for example) may well interrupt the continuity of the movement and stop it from being accomplished (see [9] on continuous movement), yet Aristotle pays no heed to this. If, however, the act should fail to be realized—and if reality is contained in actuality alone—isn’t this disquieting for the becoming of the real?

G. Theory of the transitive act

The transitive sentence SVO is perceived by Aristotle as a competition between species within a genus [8]. In the space of genus G, the images \(\sigma(\{S\}) \), \(\sigma(\{O\}) \) of the entities S, O are subject to fiber dynamics which will realize the telos of the act. Paradigmatically, Aristotle sees in this a harmonization of opposites; confrontation will, more often than not, be appeased by the working out of a solution of compromise.

TYPICAL EXAMPLE (a modern one), “The mother warms the child”. Contact between the mother’s warm body and the child’s cold one will tend to equalize their temperatures; the child’s body cools the mother’s by “anticinesis” (διανεικυονυμία) and we move towards the final thermal equilibrium. In the case of visual perception, the same process of equilibration between an outside stimulus (an intermediary (μετασκευή) and a sensitive apparatus in a state of potentiality and therefore of total availability, leads to a faithful copy of the object perceived by the nous pathéticos [10].

Aristotle was not specifically interested in trivalent verbal patterns (or quardivalent messenger patterns). However he does mention cases (πνεύματι) as playing a part in the organization of an act [15]. He would probably have agreed that, in the last analysis, every complex act can be described by a concatenation of bivalent acts (as imposed by the genericity, i.e. the naturalness, of the underlying process). It is therefore useful to describe the structure of the general bivalent act.

H. The act, the actants, and their telos

If we accept the fact that there is no act that does not imply a primary entity, it is reasonable to wonder whether the act has a telos, and whether this telos is also that of one of the beings involved in the act (“actants” as they are called in modern linguistics). In acts associated

with a divalent verb (transitive sentence SVO), one has to ask oneself whether or not the act conforms to the nature of the actants. In Aristotle’s works, the concept of act always appears to be related to one (or several) actant(s). He does not seem to have considered it in isolation, to have seen it, as the moderns do, as a formal schema with places filled by actants. He did, however, tackle the problem of the internal structure of an act. For if the (intentional) aims of the actants conflict, as in the acts where agent and patient are in opposition, do we have to see the act itself as different according to whether we relate it to the one or to the other? On this crucial point, treated at length in ΦII 202a and b, there appears to have been some hesitation in the Stagirite’s thinking. In the end, however, he opted for the unity of the act: ἡ ἐνέργεια τῆς ἔνωσις ἡ ἔνωσις ἔνωσις (The actualization will be one; ΦII 202a, 36).

At the same time he had to give up the idea of attributing a definite telos to the act—where the expression energēs atēles used to describe the process of motion whereby actualization is accomplished. But the telos of the act does not necessarily have to be taken in a temporal sense; it could be more abstract. In the example of the point O dividing the axis Ox into two halves of a straight line (quotations [2] and [11]), we can already see that the mark of the point has the effect of separating the two halves. The geometrical form of the point O on Ox separates the two half-lines. Thus the logical eidos of separation (χωρίσμα) cannot be dissociated from the topological presence of the point, and this correspondence is timeless. In the same way, in Aristotle’s example (quotation [12]) “The road from Thebes to Athens and the road from Athens to Thebes are the same”, it may be said that the telos of the road is the connection of the two cities in abstracto, the direction of the route remaining unspecified. Only by considering the actant, through the injection of time experienced by the subject into this timeless structure, will it be possible to say what the direction of the action is.

Underlying the intentional telos of the actants, then, there would appear to be a telos which is outside time, morphological in fact, which catastrophe formalism alone is in a position to define. This would be the organizing center of a singularity unfolding in a control space of purely geometrical significance. For example in the bifurcation fork \(x = \lambda x \), the road from Athens to Thebes would be the splitting of a “milestone” O situated halfway between the two cities. The paths of the actants to which a direction associated with the telos of the “subjectivized” act is given emerge from the unfolding of this singularity. In this sense we may speak of tertiary entities, classifying by analogy certain types of actions belonging to isomorphic actantial schemata.
I. Genesis and death

Those acts which imply the coming into being and disappearance of an actant have a special status. For example, the capture of prey by a predator, represented by the diagram — is topologically isomorphic to the emission of an actant “begotten by” a parent . Only the time arrow distinguishes one morphology from the other, and here the time arrow is to be found in the meaning of the verb. We know how the pattern of capture is represented in catastrophe formalism by an oriented segment $\delta\omega$ transversal at a point k to the bifurcation curve $4u^3 + 27v^2 = 0$ associated with the cusp catastrophe (Figure 6.3).

In theory, emission could be obtained (see Thom’s SSM, page 312) by inverting the direction of the segment. In actual fact, having to cross a potential barrier would mean having to make a detour through the organizing center (or its neighborhood): capture is “thermodynamically” easier than emission. This cusp schema is thus the non-temporal basis of the catastrophes of genesis and disappearance.

It would be interesting to know whether the Aristotelian corpus contains an example where for two beings X and Y involved in the same actualization, a common syntagma is to be found of the type $X \text{ κρύφτης} \text{ ἐν τῇ ἐνέργειᾳ} X$ and $Y \text{ ἐν ἀκτῷ}$. A bivalent structure always implies an actant and an agent. According to quotation [13], the agent is in a state of energies. As subject, the actant is in the nominative; the patient is in the accusative and, with respect to the act, in a state of entelechía (ἐντελεχεία), said to be τετελομένος, perhaps because the aim of the action does not conform to the patient’s own telos, involved as he is in an action imposed from without which may be a regrettable accident from his point of view. See note 8 on the distinction (much discussed among specialists) between energes and entelechía.

In bivalent interaction, both agents belong, as Aristotle profoundly remarked in De Generazione et Corruptione (quotations [14] and [15]), to a common genus but different species (like hot and cold on the temperature axis in the example given above). In the case of death by capture the common genus is our usual space; the minima basins are the agents’ substrates. There are then in the potential control space typical dynamics which carry the meaning of the verb. These dynamics are like attractive “rivers” realizing “creedos” (9) in the substrate space. In the case of thermodynamic equilibrium, this would be a return to the organizing center: the passage from two single roots to one double root. There is available no real in-depth analysis of these dynamical principles. In situations of conflict such as predation in higher animals global behavior belongs to game theory. Taking predation as an example, we have a zone of bimodality in the cusp plane, where each actant is trying to impose his own dynamic (Figure 6.3). The predator P, for instance, will so move as to cause the system to follow the attracting path (corresponding to the telos of capture) $\alpha K\omega$. The prey p (if it has recognized the predator as such) will on the contrary strive to keep the whole system away from the critical curve $OK(c)$ along which captures takes place and to bring it back towards the half-plane $v < 0$ where only the prey-actant p subsists, in order to escape the predator (Figure 6.4). The whole process, being conflictual, is unforeseeable; and its outcome is, in principle, contingent.

Thus the merit of catastrophe formalism lies in associating with every set of topologically equivalent acts a unique formal schema outside time that takes the opposing aims of the actants into account and throws the description of their behavior back into a dynamical system, itself ill-determined, on the control space.

J. Contingency of the act

In the conflictual actuality involving two actants, potentiality (ὁδόντικον) is manifest in the tactical initiatives of the actant players, so leading to discontinuity in their respective movements and in the global movement of the system. So we are a long way from the continuous progression...
Figure 6.4 Predator-prey conflict. Segments representing actantial strategies

(συνεχής) of motion described in quotation [9]. Let us, moreover, recall at this point that the Aristotelian adjective “συνεχής” covers three modern mathematical notions: continuity, connectedness and the monotony of function. Whence a certain haziness as to the internal structure of an act and the resulting situation.

The preceding examples are almost exclusively concerned with the processes I have called archetypal in SSM because of their intrinsic simplicity: there is a direct relation between their signification and their morphology. But what of complex acts, those involving qualities for example? It will be observed that there may be a hierarchy of secondary entities $G_1 \rightarrow G_2 \rightarrow \ldots \rightarrow G_n$ the supreme genus (10). Corresponding genus spaces are then fibrated. If G_1 is a species of genus G_{1+s}, then the substrate of G_1 is in the space of the state of G_{1+s} as basin of a potential minimum for example. But it is doubtful whether such a hierarchy can go much further: the categories intervene as universal operators of the subdivision of a genus into species, and they cannot be iterated. What makes for the internal complexity of certain actualizations is the use of a whole hierarchy of instruments. In order to aim at a target T, one may have to start by aiming at a preliminary target T_1, the means of attaining T_1, then T_2 as the means of attaining T_1, and so forth. Thus one can see how it would be possible to construct a graph of auxiliary targets sometimes involving several targets for the simultaneous realization of one and the same effect (συνεχής). Indeed, grammar as we have seen takes into account the use of action-furthering instruments in tri- or quadrivalent verbs. We are reminded that Aristotle mentioned cases (πάντως), in his Categories, as being "categorial" descriptions of predication.

K. Examples of complex acts

1) HOUSEBUILDING. We shall be looking at two examples that are clearly more complex: the building of a house and the development of an embryo. A rough schema of house-building includes the following stages: choice of a piece of land, general design of the building, setting-up of financial resources, determination of the main guiding gradients (the vertical (imposed), orientation and depth), selection and delivery of materials (bricks, tiles, mortar, timber for beams, etc.), digging and cementing the foundations, raising the walls, putting the beams in place, reaching the top, roofing-in, and fitting up the interior by installing water and electricity. The process can be depicted by the graph in Figure 6.5.

Note that whereas the act of foundation separates, the attainment of an auxiliary goal, on the contrary, often requires connecting acts (joining beams by means of a tenon, bricklaying, etc.).

At the start we have a great many auxiliary divisions, for example, the cutting of bricks before firing, the shaping of wood for beams and rafters. Then the construction will require a host of junctions: brick to wall, beam to beam, rafter to beam, tiles to rafter, and so on. All this to end with a "space" separated from the outside air by watertight walls and roof (albeit pierced by doors and windows). Because the building of a house fulfills deep down in man a persistent biological longing for the invertebrate's exoskeleton. The house is to be seen as a "blister" on the earth's surface, a "pocket of compromise" between air and earth, extruded from the soil, the earth-air interface.

In hydrodynamics a shock received by a liquid can cause a bubble, a continuous figure formed by liquid walls joined up together. The building program is a simplified approximation of this continuous figure, this bubble (all but realized, moreover, in our modern inflated structures). First defined according to directive gradients, the figure is then mentally decomposed into elements of volume, surface and length satisfying the technical norms envisaged. It is subsequently put together again by synthesis of these elements (Figure 6.5).
There is no mystery in this particular morphogenesis because of the presence of a permanent "motor", the mental image of the project in the architect's mind. The other example is rather different.

2) EMBRYOLOGY. Figure 6.6 shows the "epigenetic landscape" of the embryology of a (generic) vertebrate. As in house-building, different stages can be recognized: conception (i.e., fertilization of the ovum by the spermatozoon); primitive scission period (blastula stage); establishment of directive gradients (the animal-vegetal gradient stemming from ooogenesis, the anterior-posterior gradient, and the left-right gradient, the first given by the meridian plane of spermatozoon injection, or by an epigenetic mechanism). Next, materials are synthesized (by synthesis of messenger RNA and liberation of the corresponding genes). Then comes formation of the main germ layers (ectoderm, endoderm, mesoderm—the gastrula stage), followed by neurulation and elongation of the embryo, and, after that, organogenesis through layer synthesis (epithelium and mesenchyma). Finally, the organs are initiated, beginning with the heart, from which the vascular system is constituted, followed by the nerve explosion resulting in the innervation of the organs, and, lastly, the maturation of functional activities.

Figure 6.6, in which all these data are synthesized, fully justifies Aristotle's reference to the Orphic metaphor comparing the constitution of an organism to the making of a fishing net (quotations [16] and [17]).

The text between these two quotations from De Generatione Animalium brings out both the quandary and the extraordinary penetration of Aristotle in his study of the mechanisms of embryology. He alludes to the automatism with which movements and syntheses of organic matter succeed each other (something which should appeal to the moderns) and goes on to discuss the presence of a permanent "motor" entity, coming from seed and different from the organism (whose existence he finally denies). Last but not least, Aristotle brings in by analogy the abstract idea of architecture present in the construction and programming of organogenesis (quotation [17]). Something here is apparently at variance with Aristotle's basically materialistic philosophy: Platonic Ideas do not exist, yet there must be something like an Idea to direct this whole set-up.
Here is the model I would propose to fill in this blank. The dynamical system of the quiescent egg is reduced to a punctal attractor. After fertilization, a great number of enzymatic cycles are unleashed, whence the formation of an attractor of large dimensions in the blastula stage. This attractor will then implode according to the modalities spatially parametrized by epigenetic gradients, resulting in the figure of the physiological blastula described in Chapter 5, section F. These localized implosions will separate the layers, but local syntheses will then follow, allowing the reconstruction of the initial global figure. Here it is the form of the metabolism and its variations that bring about morphogenesis. In both instances we have an initial impetus creating a continuous figure: blister or bubble in the case of the house; in that of embryology a schematized organism in the space of metabolic activities. But this ini-
tial clan comes up against directive gradients which deform it and "cultural constraints" which give specific character to the materials in their elementary forms. In biology, there are the mitoses which produce the blastula; then the genes that determine which proteins are to be synthesized, then the splitting-up into main layers (ectoderm, mesoderm, endoderm). Afterwards we have the period of putting-together, the operations of synthesis. These operations have their origin in an essential factor, the global form of the metabolism, already there in the blastula and subsequently differentiating into spatially localized organs. But in fact, for a comprehensive theory, we should consider the full circular structure, the original hen and egg cycle.

The distinction of the homeoeomorphic parts of an organism is no different from the stratification considered in Chapter 5, section B. The definition of anhomeoeomorphic parts, on the contrary, is a delicate matter, for exactly what constitutes the individuality of such a part remains mysterious as there is not always an obvious functional interpretation. This question is dealt with in Chapter 7, section C.

I would like to end here with a remark concerning the distinction between acts of division (scission) and of binding together (reunion), in house-building as well as in embryology. This distinction can be likened to the classification of singularities of the stratified map $\sigma \not\geq \psi$ defined in Chapter 5, section E. Scissions are typically additive singularities (creation of a new homeoeomorphic stratum for example); uniting acts are subtractive singularities. This dialectic between scission and reunion most certainly has a topological root. Every entity that is actuality, being "separated", requires a boundary-form (serving as its eidos, see Chapter 7, section B); it rests then on a "cycle" in the homological sense. In the same way, every action also needs something resembling a cycle, for there is always a time-sequence of the form rest \rightarrow active state \rightarrow rest. Insofar as a created entity is individuated, it has to admit the construction of a boundary. If we are talking about a sphere, Morse theory relations will impose near-equality between points of odd index (scissions) and of even index (reunions). One might also wonder whether the instrumental entities initially divided by the constructor (like bricks cut in clay), being the first to come into the process, are then, as in quotation [24], "posterior" entities by their nature, or essence. They are, indeed, derived from ritualization, from a long cultural past. Are we to conclude that the axiom of quotation [24] can be applied only to processes that are the fruits of a long past, in other words that there is no such thing as genesis as a physical phenomenon, in the modern understanding of the term?

NOTES AND REFERENCES

1. This set of axioms does not aim to confer on Aristotle's physics a logical coherence it doubtless does not claim. It aims to help the modern reader of post-Galilean scientific formation to enter more easily into the Aristotelian system.

2. The sublunar world. The heavenly world has a particular status (stars animated by a uniform circular movement) which we will not go into here.

3. See the appendix at the end for discussion about these substrate properties.

4. There is much debate among Aristotelians as to whether the parts of an o, are o, The problem is particularly thorny when it concerns animal parts, and Aristotle himself does not appear to have a clear opinion on the issue. Quotation [20] seems to show that any acceptable part of a primary entity should be three-dimensional. If this is so, then the axiom of separability IV should give to the intersection of two entities (necessarily two-dimensional at most) an ontological status of inferior dignity. We did not wish to enter here into distinctions of the sort, implicit in the expression "in general" ($\delta \in \epsilon \tau \xi \tau \pi \alpha \nu$) of the axiom of locality IV.

6. For a Platonist there is no problem in the permanence of Hermelian's river. The river will be defined by geometrical interfaces: earth-water (the river-bed), water-air (surface of the river), and the triple junction of earth-water-air (the river banks).

7. Modern theorists of the suspect will doubtless attribute these iconic dispositions to Aristotle's privileged relations with the powerful of the day; why dwell on conflict when every member of the community must be expected to comply with the natural demands (φυσικοῖς) of the social or universal order?

8. On the use of $\epsilon \nu \rho \gamma \varepsilon \alpha$ and $\epsilon \nu \tau \lambda \varepsilon \gamma \varepsilon \alpha$. The fact that Aristotle is far from systematically observing the distinction drawn in quotation [13] between the mover in a state of energy and the moved in a state of entelechy has led many commentators to argue that a clear difference in meaning between the two words can scarcely be made. In quotation
[12], for example, the teacher as well as the taught is said to be in ἐντελεχέσθαι. I believe there is hence a case for making an aspectual (in the linguistic sense of the word) distinction between the two terms. There is indeed a verb ἐνέργεια (to act) in absolute use, whereas there is no verb such as ἐντελεχεια. As a result, ἐνέργεια, derived from the verb ἐνέργεια, has a durative aspect implying a certain duration of the process. Ἐντελεχέσθαι, on the contrary, concerns those two instants, crucial for both agent and patient—the beginning (ἀρχή) of motion, when a project is conceived, and the completion (τέλος) of the project itself. So Ἐνέργεια is used more with respect to the duration of the act in time— and Ἐντελεχέσθαι with respect to the two extremities, conception and achievement, which in fact constitute formally isomorph objects (the aim of the act).

(9) For the term chreod, due to C.H. Waddington, see SSM p. 114. We are reminded, by the concept of chreod, of Waddington’s homoeorhesis and the “rivers” of F. and M. Diner (see Chapter 3, note 5).

(10) We refer to the “hypergenea” introduced in Chapter 8, section C. This hierarchy of hypergenea is unknown; actually it is a question here of the determination of the Porphyrian tree (Chapter 8, section F), the object of ontology. From this point of view, the evocation of categories in the text does not seem justified, for categories are the universal operators of all predication (a system of universal operators on the differences), but they have nothing to say on the “substrate” which determine the structure of Porphyry’s tree.

(11) In SSM, the formation of a “pocket of compromise” is related to the “butterfly” singularity. Loc. cit. p. 73.

CHAPTER 7

PERSPECTIVES IN
ARISTOTELIAN BIOLOGY

A. The primordial topological intuitions of Aristotelianism: Aristotle and the continuum

We shall present here those intuitions which we believe sub-tend all Aristotelianism. They are ideas that are never explicitly developed by the author, but which—to my mind—are the framework of the whole architecture of his system. We come across these ideas formulated “by the way” as it were, condensed into a few small sentences that light up the whole corpus with their bright conclusion. We will need to go back to the Platonic origins of Aristotelianism; we will try to understand the divergence between Aristotle and the Academy, the reason for his rebellion against the parent doctrine. The pair of opposites matter-form—which is the first thing that comes to mind—is not strictly an original idea of Aristotle’s. It must certainly have existed in a similar form in the Platonism of the later Academy, known as the Academy of unwritten teachings (δέρασκον δομομάτιον).

One would doubtless not be wrong in identifying Aristotle’s criticism of the theory of Platonist Ideas as a new standpoint. But the importance given to matter, necessary support of all actuality, is probably not the decisive innovation; more important was perhaps Aristotle’s deliberate opposition to the “numerology”, inherited from Pythagorism, that reigned in the later Academy (an example of which can be seen in Xenocrates’ theory of the soul as a “self-moving number”, criticized in De Anima) (1). Everyone knows how much the question of Aristotle’s relations with the Academy remains obscure and controversial (2). It is my hope to contribute some elements involving aspects not easily appreciated by specialists for whom the problem of the relationship between
CONCLUSION

A. Aristotle and modern Science

The time has come to end our Aristotelian detour. Some readers may be surprised that I should set such store by doctrines long since considered out of date. But I believe that Aristotle's approach remains singularly relevant in the biological domain, where it holds riches as yet unexploited. It is no doubt otherwise for physics in the modern sense of the term. If one wished to mark the crucial spot where modern science parted company from Aristotle, one would find it in the example of the stone thrown up into the air and falling back to earth. In Aristotelian physics, there are two continuous movements, consecutive but distinct: the forced upward movement (βιοσκομίζεται) followed by the natural downward movement. At the highest point, where the movement changes direction, there is discontinuity. For us, after Galileo, there is one single movement described by a single parabolic law of the form \(z = z_0 - \frac{1}{2}gt^2 \) (where \(z \) is the height and \(t \) the time). The rising motion is analytically continued in the falling motion. So between Aristotle and Galileo we have changed our criterion of individuation. Instead of considering the instantaneous target (cf. Chapter 6, section C, the energēta of being in the potential state, as such, or the final setting), we have adopted the purely mathematical definition of the analytical curve. It is, of course, important to consider the direction of the movement when one wishes to describe the process qualitatively. But we really want to define the individuality of a process—as only mathematics can do. Our quantitative physics rests in its entirety on the use of analytical objects (Lie groups, for example) and of analytic continuation. The miracle of physics is that this should be successful (1). But there should be an extrapolation of the miracle outside its proper domain (that of fundamental laws describing the infinitely great and the infinitely small brought somewhat curiously together).

It is a fact that Aristotle would not have known how to quantify a simple mechanical phenomenon like collision. But we must give him the credit for having, apparently for the first time in the history of humanity, offered the quantitative formulation of a physical law: the law \(F = ma \). "The space covered by a moving body under the action of a force \(F \) is proportional to the product of the force \(F \) by the time of the action \(T \)." An erroneous law, it is true, but not so very false after all in our sublunar world. And what does a mistake like this matter as against the conceptual universe opened up by this innovation? His inability to conceive how bodies react in collision leads Aristotle to admit a generalized contingency in our world. Living beings can move themselves spontaneously. As for inanimate beings (σωματικά), their motion is governed by the attraction of natural loci or by reciprocal interaction when they meet. This is the domain of the οὐράκος—efficient causality without a target. Our author is none too clear here when it is a question of determining the ultimate causes of movement. It is obvious that forced movements exist in inanimate entities. Statistically at least, they can be imputed to impulses due to the sun's movement on the ecliptic or, in the last resort, to the unmoved mover, God.

This unforeseeable nature of natural phenomena, which he describes as contingency, does not necessarily signify that Aristotle would not have accepted a certain determinism of such processes. On the contrary, mechanical causality is often mentioned in the corpus as something inevitable (cf. what is said about the causal mechanisms of generation in embryology). I feel that Aristotle would have allowed the existence of local formal causality applied to these sequences of collisions and interactions (2). But, from a human point of view, these phenomena can be considered as resulting from chance in the sense given to the word by A. Cournot, two thousand years later. (Aristotle's commentators are divided on this point: some are for a contingency intrinsic to the world, others for a contingency relative to man which can (sometimes) be controlled (Mansion) (3).) However that may be, it is not on this last point that the moderns would pick a quarrel with Aristotle. The chief objection made to Aristotelian doctrine concerns the question of final causes. I believe that we have been unfair to the Stagirite in this. It must be realized that a strictly final cause, i.e., a cause strictly posterior to its effect, raises almost insurmountable problems of intelligibility. Indeed—as we have seen with objective pregnancies—causality is always thought of in science as resulting from the transport of invisible but efficient entities that come from the cause and bring about the appearance of an effect. If such a relationship exists between an effect \(E \) at an instant \(t_0 \), and a cause \(C \) at an instant \(t_1 > t_0 \) and if this causality is realized by efficient transport of
entities between C_1 and E_0 going backwards in time, then there are two cases to consider.

Either: The human experimenter has no way of acting on this transport, of stopping or of disturbing it.

Or: He is able to stop this transport, for instance by erecting a wall impermeable to the efficient entities between E_0 and C_1.

The first possibility is admitted in Quantum Mechanics by certain physicists (Costa de Beauregard) (4), but is rejected by most. The second would imply, by application of the saying *Sublata causa tollitur effectus*, that the effect E_0 can be destroyed by erecting a barrier between E_0 and C_1 at an instant τ such that $t_0 < \tau < t_1$. In other words the experimenter would be able to intervene in his own past, something very difficult to accept. In what we believe to be Aristotle's conception of the act, the aim of the act (its telos) is the organizing center of a process that may be considered as a morphogenetic field, an anhomoeocereous part of space-time, a form imposed on the future. But this validity is only qualitative (topological), and nothing can be said in general about the quantitative dimension of the domain where the model will be applied. As the Master said, οὕτω μὴ τι εμποδίζῃ, if there is no hindrance. The subsequent action of an experimenter can perturb, cut short, even practically annihiliate the development of a morphogenetic field. All finality is, of necessity, conditional, as is all formal causality involving the future. When this point has been understood, the supposed incompatibility between Aristotelian teleology and modern science disappears. We should remember the classical sentence from *De Generatione et Corruptione*: The active power is a cause in the sense of that from which the process originates: but the end, for the sake of which it takes place, is not active (quotation [19]). Thus, the final cause is not directly active. Just as a statue needs the sculptor for its form to come into being, so all finality demands the presence of competent entities, which, once they have entered into a state of privation, will fulfill their need by realizing the requirements of the future form (very often without being themselves aware of it!). Of course the guided character of this transformation in conformity with a shape not yet in existence would pose a thorny problem for Aristotle. He could at least reply that a material support is necessary to begin with, but not just any matter; it would require *materia signata* carrying appropriate information—a competent terrain, embryologists would say.

The formal cause acts on space-time in a domain D by creating there an anhomoeocereous part of given form; but the extension of this do-

main D into the future depends on contextual situations which are generally difficult to describe in detail. The situation is not much different from that of classical determinism in Hamiltonian dynamics, except that in Aristotle the model is given on a local map whose real extension in our usual space-time we do not know, whereas in physics such knowledge can be had, thanks to the miracle of physics.

Much has been said about the sterility of final causes, bringing to mind Bernardin de Saint-Pierre (5). However a coherent theory of teleology which can be reduced to local formal cause is by no means trivial. It has in fact been observed that the contact (necessary for interaction) between two entities is due to an "indeterminate process à la Couthet" (6). This has important consequences. First of all on the structure of complex acts: if, in order to attain a target T, one has first to achieve an auxiliary instrumental target T_1, it will be necessary to make quite sure that the result of T_1 is injected into the preparation of T. Whence the need to have a strict control over nature. The archer aiming at a target relies on the naturalness of the arrow's movement in the competition between forced and natural movement. His art shows that such control is possible, manifest in the final *junctio* of arrow and target. Finalized acts often present a junction morphology. Indeed it is almost a characteristic feature of theirs, in contrast to acts of foundation which, like Aristotle's entelechy, separate. The struggle again Couthet's style of indeterminism alone makes it possible to realize spatial encounters that would be considered improbable by the theory of genericity. One such is the law of cofolding coincidence formulated in Chapter 3. We are all familiar with innumerable examples of tools that achieve junction: nails, needles, electric wires, radio communications, etc. Animal anatomy offers countless such realizations: muscles, nerves, vessels, etc. This is to be seen even in language: Aristotle himself observed that in the syllable *ba* there is a principle of synthesis that makes this syllable into more than just the aggregation of the two phonemes a and b (Met Z, 17, 1041b, 10–16). We find here again the distinction between animate and inanimate, in other words, the soul. Nature (φύσις) is present in the behavior of inanimate beings. But the animate being is able to exploit natural regularities in order to stabilize connections that would be accidental, not generic, in the inanimate world. So there seems to be here (in theory) a formal possibility of characterizing the living state, a problem that has baffled biologists up to now. What is so interesting about Aristotelianism is that it is a philosophy both materialist (inasmuch as it denies the possibility of a Platonic existence without matter), and finalist. An association which, we have said, has not been found since.
B. Demiurgy and Hermeneutics

We have seen, in the progress made between Aristotle and Galileo, the importance of analytic continuation as a criterion of process individuation. But analytic continuation is not a strong tool for quantitative extrapolation. In the ε-approximation of an empirical function \(f(x) \) on \([-1, +1] \), one can find analytical functions whose holomorphic domains present the most arbitrary variations. This means that only a pre-existing theory, based on an underlying ontology of global nature, can specify families of functions that are restricted enough to allow reliable extrapolation. Such is the case in fundamental physics, where the principal tool is the analyticity of the representations of Lie groups (symmetry groups) that define the geometry of our space-time. That it should work as it does is a miracle. Physicists have been led to adopt what I call a “demiurgic” attitude. One imagines the world to have been constructed by an intelligent Demiurge with the help of a few simple formulas. The aim of science is to find out what these formulas are and allow man to realize the Promethean dream of ruling the world. And this even when the formulas resemble magic formulas with no intelligible justification. (To be convinced of this, we have only to think of the unintelligible character of quantum mechanics.)

To this attitude may be opposed one that I shall call “hermeneutic.” Here one is placed in the situation of the man sitting in Plato’s cavern, watching shadows thrown by a fire on the cave wall and trying to reconstruct the real beings whose shadows are seen. To reconstitute a body in three dimensions from its apparent contour (7) is the special task of hermeneutics. It can lead to the manifestation of permanent entities on whose interactions qualitative or quantitative constraints bear that one will endeavour to specify. Observation then gives way to the kind of controlled demiurgic activity that is modelization (qualitative, or, in the best of cases, quantitative). One may also have to change the underlying ontology if that helps to make a more comprehensive, more exact and more intelligible model. A table of classification of the chief modes of explaining reality is given in Table C.1.

Modern science has made the mistake of foregoing all ontology by reducing the criteria of truth to pragmatic success. True, pragmatic success is a source of pregnancy and so of signification. But this is an immediate, purely local meaning. Pragmatism, in a way, is hardly more than the conceptualized form of a certain return to animal nature. Positivism bentened on the fear of ontological involvement. But as soon as we recognize the existence of others and accept a dialogue with them, we are in fact ontologically involved. Why, then, should we not accept the entities suggested to us by language? Even though we would have to keep a check on abusive hypostasis, this seems the only way to bring a
certain intelligibility to our environment. Only some realist metaphysics can give back meaning to this world of ours.

NOTES AND REFERENCES

(2) I allude to quotation [17] from De Generatione Animalium. It is interesting to note that the English word "automaton", coming directly from Aristotle's ωτοματον, gives us the strict image of a determinism completely ruling out contingency.

(5) Henri Bernardin de Saint-Pierre, "Melons are divided into sections and seem intended to be eaten by families", Étude de la nature, vol. 1, p. 303.

QUOTATIONS FROM ARISTOTLE

Abbreviations

<table>
<thead>
<tr>
<th>Met</th>
<th>Metaphysica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φ</td>
<td>Physica</td>
</tr>
<tr>
<td>ΠΑζ</td>
<td>De Partibus Animalium</td>
</tr>
<tr>
<td>ΠΖΚ</td>
<td>De Motu Animalium</td>
</tr>
<tr>
<td>ΠΓζ</td>
<td>De Generatione Animalium</td>
</tr>
<tr>
<td>Πγ</td>
<td>De Anima</td>
</tr>
<tr>
<td>Γφ</td>
<td>De Generatione et Corruptione</td>
</tr>
</tbody>
</table>

The following translations were quoted:

Clarendon Press, Oxford:
Πγ: H. Lawson-Tancred, Penguin, 1986

[8] PHI, 199a, 8–11

"Ετι ἐν ὄντων τέλος ἐστὶ τι, τούτων ἐνεκεῖ πρᾶττεται τὸ πρὸτερον καὶ τὸ ἠφείται. Οὐκοῦν ὡς πρᾶττεται, οὕτω πέφυκε, καὶ ὡς πέφυκεν, οὕτω πρᾶττεται ἐκατον, ἐν μέτ τι ἐμπεδεῖσῃ.

Further, where a series has a completion, all the preceding steps are for the sake of that. Now surely as in intelligent action, so in nature; and as in nature, so it is in each action, if nothing interferes.

οὖν ἡ δυσπλασία ἑκ δύο ἡμίσεων δυνάμει γε ἡ γὰρ ἐντελέχειᾳ χωρίζει.

[..] e.g., the double line consists of two halves—potentially; for the complete realization of the halves divides them from one another.

Εξ ἀμφισβήτης μεν οὖν τά ἔδα συνεντηκτά τῶν μορίων τουτοῦ, ἀλλὰ τα ὀμοιόμερα τῶν ὀμοιομερῶν ἐνενηκέν ἐστιν ἐκεῖνοι γὰρ ἔργα καὶ πράγματα εἰσίν [...]. Τά μὲν οὖν ὀμοιόμερη καθα μέρος διεσπερά τας δυνάμεις τὸς τοιαύτας (τὸ μὲν γὰρ αὐτῶν ἐστὶ μαλακὸν τὸ δὲ σκληρὸν, καὶ τὸ μὲν ὄρυχον τὰ δὲ ἐπόν, καὶ τὸ μὲν γλυκύρρυγον τὸ δὲ κρασίῳ), τὰ δʼ ὀμοιόμερη καθα πολλάς καὶ συγκεκρεμένας ἀλλήλως ἐτέρα γὰρ πρὸς τὸ πείσαι τῇ χειρὶ χρήσιμος δύναμις καὶ πρὸς τὸ λαβέν. [...] Τά μέν γὰρ ὀμοιόμερη ἐκ τῶν ὀμοιόμερων ἐνενήκηται συνεντηκτά, καὶ ἐκ πλειάδων καὶ ἐννέα, ἀλλὰ οὖν τῶν απόλυκτων πολλοῖς τὰς σχῆμας, ἐν ὀμοιόμεροι δύναται σῖμαι ἀνεστεῖν ἑπεὶ πάλιν. Τὰ δʼ ὀμοιόμερη ἐκ τοιῶν ἐκείνων γὰρ ὀμοιόμερες πολλά ἐν εἰς ὀμοιόμερη. Διὰ μὲν οὖν τάτα τάς αὑτὰς τὰ μὲν ἅπα καὶ ὀμοιόμερα, τὰ δὲ σύνθετα καὶ ὀμοιόμερα τῶν μορίων ἐν τοῖς ἐξωτίς ἐστίν.

Animals then are composed of homogeneous parts, and are also composed of heterogeneous parts. The former, however, exist for the sake of the latter. For the active functions and operations of the body are carried on by these... Such properties, then, are distributed separately to the different homogeneous parts, one being soft another hard, one fluid another solid, one viscous another brittle; whereas each of the heterogeneous parts presents a combination of multifarious properties. For the hand, to take an example, requires one property to enable it to effect pressure, and another and different property for simpleprehension. For this reason the active or executive parts of the body are compounded out of bones, sinews, flesh, and the like, but not these latter out of the former. [...]
come about unless the saw has teeth of a certain kind; and these cannot be unless it is of iron. For in the definition too there are some parts that are, as it were, its matter.

[7] ΠΠΧΚ 702α, 27-33

Κυνεῖται μὲν οὖν καὶ οὐ κυνεῖ τὸ ἔσχατον τοῦ βραχίου, τῆς δ' ἐν τῷ ὀλεκράντῳ κάμψεως τὸ μὲν κυνεῖται τὸ ἔστω τῷ ὄλῳ κυνείμεσθαι, ἐνάγκη δ' εἶναι τε καὶ διαμένειν, δ' ἐν θεμελέον διαμέρισθαι μὲν ἐν εἰσαὶ σημείων. ἐνέγερε ἦν γενέσθαι δυός διότι εἶ ἐν ζωνὶ τὸν βραχίον, ἐνταθ' ἀν πού ήν ἢ ἀρχή τῆς φυσῆς ἢ κυνείται.

Accordingly, in the case of the elbow-joint, the last point of the forearm is moved but does not move anything, while, in the flexion, one point of the elbow, which lies in the whole forearm that is being moved, is moved, but there must also be a point that is unmoved, and this is our meaning when we speak of a point that is in potency one, but which becomes two in actual exercise. Now if the arm were the living animal, somewhere in its elbow-joint would be situated the original seat of the moving soul.

[8] ΦΗΗ II, 292α, 9

Εἰδος δὲ δεῖ αὐτεῖσται τι τὸ κυνεύ, [...] The mover or agent will always be the vehicle of a form.

Ἡ δὲ φύσις τέλος καὶ οὐ γενεῖται αὖ γὼρ συνεχέως τῆς κυνῆσις ὡς περὶ τῆς τέλος τῆς κυνῆσις [...].

For if a thing undergoes a continuous change and there is a stage which is last, this stage is the end or 'that for sake of which'.

Quotations from Aristotle

[10] ΠΠΨ II 418α, 4-6

Τὸ δ' αἰσθητικὸν διαμέρισθαι ἐστὶν οἷον τὸ αἰσθητὸν ἢ ἀνθρωπίαν, καθ' ἑαυτῇ ἐρήμη. Πάσχει μὲν οὖν οἰχὶ ἄλλοιν δὲν, πεποίητο δ' ὡμοίως καὶ ἔστιν οἷον ἔκειν.

As we have said, what has the power of sensation is potentially like what the perceived object is actually; that is, while at the beginning of the process of its being acted upon the two interacting factors are dissimilar, at the end the one acted upon is assimilated to the other and is identical in quality with it.

Τὸ δὲ τοῦ [...] ἐστὶ γὰρ τοῦ μὲν ἀρχηγοῦ, τοῦ δὲ τελευτητοῦ, Ἀλλὰ τοῦτον ὁμοίως ἐστὶν τῆς ὁμοιομοίωσιν μεταξύ τοῦ πατρόκλου. Διαμερίσθη δὲ διάμερισθη.

The 'now' is the link of time, as has been said (for it connects past and future time), and it is a limit of time (for it is the beginning of the one and the end of the other). But this is not obvious as with the point, which is fixed. It divides potentially.

(Note that, as his fellow-academic Henri Bergson was to do, Aristotle refuses to spatialize time).

[12] ΦΗΗ III 3, 202α, 11-14

Οὕτ' ἐνάγκη τὸν διδασκόντα μαρτυρεῖν, οὔτ' εἶ το ποιεῖν καὶ παρεξηγεῖν τὸ αὐτὸ ἐστὶν, μὴ μέντοι ὡς τὸν λόγον ἔχει ἐνιαύτῳ τοῦ τοῦ τί ἐνωτίν λέγοντα, δι' ἐνοτιοῦ καὶ ἔμαθον, ἀλλ' ὡς ἢ ὃς ἢ θεώθηκεν ἀθηρώθηκεν καὶ ἡ θητηθηκεν ἐκ ὁδός [...] Nor is it necessary that the teacher should learn, even if to act and be acted on are one and the same, provided they are not the same in definition (as 'raiment' and 'dress'), but are the same merely in the sense in which the road from Thebes to Athens and the road from Athens to Thebes are the same.
How, then, does it make the other parts? Either all the parts, as heart, lung, liver, eye, and all the rest, come into being together or in succession, as is said in the verse ascribed to Orpheus, for there he says that an animal comes into being in the same way as the knitting of a net. That the former is not the fact is plain even to the senses...

As, then, in these automatic machines the external force moves the parts in a certain sense (not by touching any part at the moment, but by having touched one previously), in like manner also that from which the semen comes, or in other words that which made the semen, sets up the movement in the embryo and makes the parts of it by having first touched something though not continuing to touch it. In a way it is the innate motion that does this, as the act of building builds the house.

If the eye was an animal, then sight would be its soul.

The active power is a "cause" in the sense of that from which the process originates: but the end, for the sake of which it takes place, is not 'active'.

[17] ΠΡΩΤΟΣ, 13-17

[18] ΠΡΩΤΟΣ, 19-20

[19] ΠΡΩΤΟΣ, 13-15

'This is why the poet says of the amber, "It is not the amber which is amber, but the amber which is amber", or of the amber, "It is not the amber which is amber, but the amber which is amber".'
Quotations from Aristotle

[23] **PHI 207b,34– 208a**

'Etpai dè tâ aítia diaphêtau tetraphákos. faineroun òti òs ñlê to ðaivnpròv thn aítia, kai òti tò mév ðén aítia stèrpios, to dè kath' aítia ðiðokeimèn tò suñxechès kai aðiðthòn.

In the four-fold scheme of causes, it is plain that the infinite is a cause in the sense of matter, and that its essence is privation, the subject as such being what is continuous and sensible.

[24] **PHI 261a, 13–14**

'Ollos dè ðoînnei to ðiðokeimèn aítelès kai ðe aðrihèn lôn, ðisth to tê gevèsei ðaivnpròv tê ðosèi pròtèròn ðínei.

[...] that which is in process of becoming appears universally as something imperfect and proceeding to a first principle: and so what is posterior in the order of becoming is prior in the order of nature.

[25] **PZM 643a, 24**

'Esti dè ðiðaforà to ðíðos õn tê ñlê

A species is constituted by the combination of differentia and matter.
APPENDIX

A. Reading notes by Bruno Pinchard

Bruno Pinchard, agrégé de philosophie, was born in Le Havre in 1955, studied at the École Normale Supérieure in Paris and is now a research worker (chargé de recherches) with the CNRS (Centre National de la Recherche Scientifique). A specialist in sixteenth century Aristotelian philosophy, he came into contact with the work of René Thom through the intermediary of Jean Petitot and Pierre Lochak. Each of them in his way succeeded in convincing him that present-day metaphysics, though drawing inspiration from the history of philosophy, could not afford to shirk confrontation with modern science, and particularly with mathematics. From this clear evidence was born, in the course of a seminar at the EHESS (École des Hautes Études Sociologiques), a singular collaboration with René Thom, during which, inch by inch, the reading of Aristotle, Averroes, St. Thomas Aquinas and Giordano Bruno threw new light on the morphological thesis presented in René Thom’s mathematics.

These notes were set down after reading the text of a lecture given by René Thom at Maurice Loi’s seminar on January 21st, 1987.

"Abstrahentium non est mendacium", Aristotle, de Anima, 403a, 35. It little affects the truth of the properly mathematical point of view, whether the mathematician should consider, or not, the objects of his science as an abstraction. Although it is true that these objects are not abstract in their being, yet do mathematicians not lie, in their purely mental abstractions: for they do not claim that these objects are outside sensible matter (that were to lie indeed), but they consider them otherwise than with respect to sensible matter, and this can be done without falsehood. In the same way, whiteness may be considered, in all truth, without reference to music, although both are to be found in the same subject. But that point of view would not be true if one were to affirm that the white man is not a musician.

Thomas Aquinas, In Phys. II §161

SECTION on Chapter 6

SECTION AII. "Material, and consequently spatial": this is a grave decision, for one might have expected: "material and consequently local". Space, for Aristotle, is but an object of thought, an ens rationis.

ulè noétè: I feel that you are confusing the entity of secondary substances (which is no more than an object of thought, of relationship, even if it does have a legitimate foundation in things) with the entity of mathematical objects which Aristotle does indeed characterize from an "intelligible matter". A mathematical object abstracts from movement and sensible matter, but not from continuous expanse, which is why it remains subject to the imagination. The universality of secondary substances, on the other hand, is purely intelligible, and these substances have no substratum other than the intentions of our intelligence (cf. Met 1036a, 9–12).

You might, if necessary, argue from De Anima 403a, 8 et seq. which suggests that all thought requires spatial representation. But echoing this text, 432a 10 explicitly distinguishes between spatializing representative functions (fantasia) and noetic enunciating functions (fats).

SECTION AV. "Interaction": is it possible to think of this interaction in topological terms without taking into account the dynamics governing such contacts? For my part I imagine that Aristotle thought about contact from the starting point of motion rather than the other way round. That is, moreover, why he sought to prove the existence of the first mover starting from a consideration of continuity between mover and moved (PhI 2. 243a).

I come upon the same schema in those particular species of quality that are shape and figure. The figure does not in fact finish a determined quantity. A quantum can only be finished by a quantum because there can be a termination only within the same genus. We say then that figure and shape, in so far as they are qualities of quantity, result from the termination of quantity and only in this sense may they be considered as terms of quantity. Thus I see in the figure a real "centrality" of each quantitative termination and that is why it is the figure that renders sen-
sible the specific diversity of objects which is properly perceptible only through intellectual abstraction (Cat. 10a 10; Φ VII cap. III). Finally, when Aristotelians uphold the priority of quantity on quality, we must not understand the quantum, but rather that quality of quantity which shows specific differences (cf. Met Δ 14, 1019b, 33).

SECTION C. "Mental experience": I fail to see to what passage in Aristotle you are alluding when you propose your first definition of potentiality. For even in De Int. 23a, 7 (not to mention Met Δ 12), the possibility that accompanies an effectively realized act is not a mental possibility but a real power, present right into the realization of the act. It is this effective mixture of necessity, of actuality and of the possible that Kierkegaard (mistakenly I believe) criticized in Aristotle (Riens philosophiques, collection Idées, Gallimard, p. 3/7). As for your interpretation, it could perhaps be likened to that of Leibniz when he seeks to demonstrate the possibility of God before demonstrating His existence. However, for Leibniz too, possible entities, in order to be intelligible, are endowed with an ontological consistency of their own by the fact that they tend to exist. I believe that you are trying to apply to possibility in general what Aristotle says about the divisibility of the continuum which is indeed a mental possibility (although it always has correspondence in being). That is the meaning to my mind of Met 1039a, 5, confirmed by De Int 22b, 35; for if entelechy separates, then it shows that such a separation was indeed possible). Now Aristotle takes good care to distinguish this specific power, made of repetition and deprived of aim, from the dynamic potential which is your object here (Φ ΠΙΙ 206a, 18).

SECTION D. "Indispensable support": in what sense? Do you mean that there could be another principle than form to organize the substrate? Should we not rather speak of conditioning disposition? Otherwise any metaphysics of the form becomes impossible, your own schematisms contingent or simply empirical.

The "internal structure of matter": what Bacon called schematismi materiae (1). However I do not think that your quotation is decisive. All it does is reply to a problem of logic posed in the Metaphysica (Z 10 1035a and, for your problematic, especially 1.16 et seq.): should matter come into the definition of an object? Aristotle replies that in the concrete definition of natural beings, matter may be admitted. It is not, however, a question of the individual matter but of the matter which is common to the species. Now for my part I find that your structures, on the contrary, can only be approached from the point of view of the individuation of phenomena. This is at least the most reasonable standpoint to which we are led by St. Thomas Aquinas’ explanation of Aristotle’s theses: cf. De ente et essentia cap. II and the theory of materia signata.

"Genetic legacy": why do you bring down to biological notions a phrase that raises the question of being and consequently of discursivity? Your expressions are sometimes difficult to grasp for the philosopher, because one never knows whether you are proposing a paradigm or whether you are attempting to reduce the concept to fit your model. Would you indeed accept that there is a risk of reductionism in concept modeling similar to the one you impute to the treatment of form by quantitative science?

"A secondary entity": there is however only one act for the mover and the moved. There is no transport of species as in the atomist’s notion of perception. I can see that Aristotle’s sentence is ambiguous, but it is possible to construct it otherwise (as was done in the Middle Ages) and to treat aiseetal as a passive rather than a middle voice. It would signify something like “to be considered as”. The sentence then means; “Form is always considered as that which moves”.

Be that as it may, it does not seem to me to be a good thing to duplicate the act, for we then lose the specificity of the actualization and, as a result, the unity of the pregnancy. I therefore suggest that it is better to speak of simultaneity through contact than of the transfer of actuality. That is why, when Aristotle evokes the possibility of the actualization of one entity being in another, he is describing a continuous passage whilst respecting the distinction between potentiality and actuality (920b, 9). Moreover this is achieved in an admirable way by your model.

SECTION Fl. "This means that building a theory of the act...": should we not finally establish a difference between verb and act, that is between discourse and being?

"The substance of which ‘it is raining’...": I think this can be induced from Meteo 370b, 14. As for the figure of the rain, it appears to me to be considered in Meteo 347a, 10. Besides, one wonders whether Aristotle had to ask himself questions about the expression "It is raining". Does not the physicist have to choose, among the possible sentences describing the world, those which help to reveal principles and causes (Meteo 356b, 16)? In the expression "It is raining", the natural event is no longer a physical motion, but a simple grammatical inflexion: is not your problem only a logical one (the problem of paronymy)? In Dec Int 3, 16b, 11, I read, “Such expressions as ‘is not-healthy’, ‘is not-lil’, I do not describe as verbs, for though they carry the additional note of time, and always form a predicate, there is no specified name for this variety; but let them be called indefinite verbs, since they apply equally well to that
which exists and to that which does not... for they do not themselves indicate anything, but imply a copulation, of which we cannot form a conception apart from the things coupled” (translation E.M. Edghill, ed. Ross, 1928). It is true that the proper task of metaphysics is to inquire about this “not anything” in the verb and in general in being. It was however in favoring the being of this nothingness outside its function of composition (or cosignification, as they would have said in the Middle Ages) that Heidegger took the road towards thinking of an entity free of all form and of all substrate. That does not seem to be your aim.

“The substrate of the river” according to Φ212a, 19, is probably the totality of the river, and so its bed.

SECTION E2. “Interlinked” or “interlocked”: at the time of the Renaissance there was a school which proposed a geometrization of predications. Their model was obviously not algebraic topology, but that part of rhetoric called disposition (between invention and elocution) and which was considered as an invitation to spatialize predicative relations and which we find again in the Characterist of Leibniz: cf. W.J. Ong, Ramus, Method, and the Decay of Dialogue (passim). Could you not rather be seen, for your part, as introducing a new topic of invention?

“Collision” or contact? Is this not the whole difference between Aristotelians and mechanists?

SECTION E3. “Conflict”: Aristotelians of the fifteen and sixteenth centuries worked on this Empedoclean notion. For example, in order to conceptualize the cooling of water, they attempted to imagine the presence either of “intensive” substantial forms, or of “virtual qualities” by which to explain the cooling down of water that had been heated. Thus Cajetan is able to write (a theory he considers only probable): “It may happen that the whole suffers, in a certain manner, an action on the part of the whole, as a result of the opposition of active qualities which are in perpetual conflict therein (in continuas pugnas).” Thomas de Vio-Cajetan, a great commentator of Aristotle and of Thomas Aquinas at the beginning of the sixteenth century (cf. note 9), In Sum. Theol. in I, 54a, 3; cf. Suarez who criticizes this thesis in the name of a more “intensive” and therefore quite dogmatic Aristotelianism: Disp. Met. XV, sect I, §9, p. 500–501.

“If... the act should fail...”: it is precisely this eventuality that preserves the possibility of contingency, to which you quite rightly attach so much value. There is, in general, no consideration of movement that does not contain the notion of hindrance, weakening and corruption of substances (cf. Thomas Aquinas, Contra Gentiles, L. III cap. LXXII).

SECTION G. “Total availability”: here you outline the whole theory of knowledge based on the capacity of the patient intellect to be anything at all.

“Cases”: I believe that paronymy (or denomination) does not concern the act as such, but the signification of the act (through the imposition of names). Apart from that, why do you not speak of the temporality of verbs?

SECTION H. “Entity/actant”: I suggest all the same that you should distinguish between the two, for one cannot put on the same plane the actualization of a substrate and the potentialities it may entertain with other substrates (potentialities always with respect to contraries; cf. Φ111 201a, 34). We observe the same distinction between the essence of a soul and its potentialities. It is never heat, as such, that warms, but some warm substrate. So that we cannot as you say consider the act “in isolation”.

“In a temporal sense”: this purely structuralist analysis is one of the boldest aspects of your reading of Aristotle. I know very few commentators who would dare to tackle this kind of text. But you will understand if I feel obliged to resist the opposition you propose between an abstract morphological telos and the time experienced by subjects. It is true that your wish to go beyond the manifestation in time conforms well with the logic of Aristotle’s thought. But in so doing you shift the accent from the substrates (and the metaphysics of their internal dynamics) to the interval separating them (which is but an object of thought for Aristotle). It is never possible to reduce the agent of an action to just the accident of the topological formula of actualization, as you propose to do. The whole of Aristotelianism can be summed up in this formula: there is no operation without a substrate. Consider these words of St. Thomas, words that take us well beyond a simple grammatical constraint: “Nothing can act by itself that does not subsist. To act is indeed to be in actu; thus one acts in the manner in which one is” (Su. Theol. I, 75, 2c).

In short you present an extraordinarily precise schematism of the conditions, but you cannot show the deciding principle of the action (nor, moreover are you asked to do so), an abstention that enables one to say again, as in the text inscribed above, that you do not “lie”; there is no sin “by omission” in classical epistemology.

“Direction”: it is not the time experienced by the subject that fills the pure form of the road, but the intrinsic qualities of the road itself. For Aristotle, as some author put it whose name I do not recall, there is a road connotation. This connotation lies in the fact that the connection established by a road includes the point of departure and the point of arrival as a component of the very form of the relation (and that is why
Aristotle refuse to accept that every relation should have a converse; cf. the fourth part of Vullermin’s book: De la logique et la théologie. Thomas comments as follows on the passage you analyze here: “Although we may say, when we consider the matter as a matter of an abstract way, that the space separating two objects is identical, if however we consider the terms of this space, as when we say that there is a distance from such a point to such another and from this last point to the first, then this space is neither unique nor identical” (§319). It is true that these points of view are virtual, but it is the dissymmetrical play of agent and patient which realizes them, and not the “injection of time experienced by the subject”. It would be difficult to express this more clearly than Thomas: “Although there is but one movement, yet the categories involved in the movement are two, according as the predicament categories come from different frames of reference furnished by exterior things” (§323).

If we now consider that agent and patient are two distinct categories for Aristotle, we may hold that the proper role of catastrophe formalism lies in tending to homogenize two categories in an abstract formalism. Transformed into an ontological dogmatism, catastrophe thinking would signify no less than the destruction of the analogical structure of the being, in favor of a formal unicity where generic and analogical predications would be confounded.

However you may look at it, the fact that there is a jump between action and passion is part of the essence of Aristotelian thinking. This jump alone preserves the individuality of mover and moved. In short, in spite of the difficulties attached, the categorial discontinuity of beings is the only way of constituting substantial individual forms in the face of the variation differentials that prevail today, in philosophy at least (think of Dellenzé) (2). It seems to me that you have entered this debate for essential reasons.

Luckily for you, my favorite saint added a remark that confirms the very liberal (and less inquisitorial than it may seem!) character of this way of thinking. In his opinion the essence of movement does not consist only of the ontological dynamism at work in things. Movement is also the result of a certain intellectual consideration. The complete movement has about it something of an ens rationis. If it were reduced to mere ontology, he says, movement would be no more than the passage of an imperfect act to its progressive realization. But movement is more than that: “For this imperfect thing to possess the intelligence of movement, we are required, also, to imagine it as a medium between the two terms” (§324).

To my mind you are doing the same thing and in this sense catastrophe theory completes a natural theory of movement which otherwise would be concerned only with the dialectics of perfection and imperfection. But should we consider this medium only in its structural properties? No, says Thomas; it is the criterion which makes it possible to distinguish between potency and act. In other words, your analysis is not only legitimate but necessary, so long as it does not diminish the effectiveness of act and potential in filling an empty space.

SECTION J. “A long way from continuous progression...”: and so a long way from Aristotle. Thus you pass from a philosophy of the act to a philosophy of force.

“Categorial description”: we are still talking of those famous “antepredicaments”, that is, conditions under which objects may be signified by words (and their flexions). I see here rather a theory of modes of signification, preparatory to categorial semantics.

SECTION K. “Housebuilding”: this question of architecture seems decisive to me, insofar as I discern there a first approximation of catastrophe theory (in the plan, the cross-section, the model) and at the same time a first criticism of it (in the resistance of materials, work on the site, and finally the scrapping of the plan in the completion of the building).

In this line one might reproach you with:
1. Leaving out the specificity of production, the proper dimension of action (cf. in Eth. Nic. III 5, the compared analysis of investigation and deliberation; however it is true that 1112b, 20 would be very much in your favor).

2. Reducing the task of movement to the temporalization of a pure form. Yet it is on the subject of architecture that Aristotle achieves great precision in the presentation of his dynamics, when he “analyzes” the reality of the “buildable” as such and distinguishes it from the finished construction (Phys. 201a, 16, 201b, 9). Now the architecture is not only in the house that is built, but in the act of building itself. The “mover” in architecture is not only the “mental image of the project in the architect’s mind”. Particularly for the great theorists of Vitruvian humanist architecture, who tried hard not to reduce the origins of architecture to the “primitive hut” (unlike their successors of the seventeenth and eighteenth centuries), it is the architect’s job to direct work on the site and to transform the plan according to the necessities of the climate and of the materials at his disposal. This amounts to drawing a distinction between the “idea” of the house and its form, its “programming” and the “carrying out” of the opus (5). In other words, the architect’s final cause is not simple (the architect is not just a space technician: cf. Eth. Nic. 1098a, 20) and it may be said that there is no classical architecture that does not carry in its realization the trace of the processes of its construction. Will your formalization be able to render these subtleties? Is there, in a work, a formalism for the architect’s prudence (that is to say, finally, for the resistance and the working of the material moved by the builder’s dynamism—cf. Eth. Nic. 1137b, 29)? I can imagine a very fine catastrophe where, in the architect’s judgment, the actuality of the buildable as such would be articulated with the edified house, a catastrophe distinct from that which links the architect as mover and final cause to the house as the thing moved. If we are referring to Met HZ, 1043a, 14, I am asking you to pass from the point of view of the actual to the point of view of the composite.

Comments on Chapter 8

SECTION E. “The sublunar universe”: it seems to me that Aristotle does not mean that only animate beings are capable of accidental movement, but that animate beings are so in virtue of their union with bodies where forced movements are in full play (in the course of transmutations).

“Exterior catastrophe”: why can this not be expressed in terms of truth?

“Secretes”: this has a meaning for us too (I find this analysis very interesting). The discursive formulation of knowledge does not “reflect” reality, but results (through projection onto the verbal chain) from the information of sensory images by the high point (O)* that constitutes the active Intellect. For us the “organizing center” of the act of knowing is the passive Intellect. Could one not say however that the slope towards the subject is proper to judgment, and the slope towards the object is the natural slope of dynamics?

“Says very little...”: what do you make of the theory of pleasure in the Ethica Nicomachea (and the famous flower of the act)? (6)

Quotation (15): I do not think this is the meaning of the text. Aristotle speaks of privation here only in order to signify the positive alteration that results from actuation (disposition). In any case, the forms of privation you describe do not seem to me to have a place in the Aristotelian theory of discourse. With him the reference is fixed by a different process. This is how, in the wake of Cajetan, I see the matter (Isaogon, ed. Marega, p. 19–20).

All predication is in the first place a conjunction of things, subsequently reflected in a formal relation based on the verbal copula. Nouns signify relations of reason which are introduced among things by the intellect. These intentions have their foundation in things, inasmuch as things are subject to consideration by the intellect. The intention itself is a relation and the thing submitted to intention is named by this relation. The relation is signified (formal use of the noun), the subject named by the noun is referred (fundamental use of the noun). Logic, then, is the science of nouns inasmuch as they signify and refer by denomination. But it is only a descriptive science which is ignorant of its conditions of exercise. These are founded on the theory of the act recalled above (cf. “secrete”).

“The theory of language”: not only in language; it is the very process of knowing in that it is endowed with a ratio collativa. But you are right to wonder whether these “controls” have an imaginable objective structure short of motion and finality. However you are perhaps neglecting the function of knowledge of the cause which is in fact separates technique from the empirical links of experience. The problem, moreover, is more complicated when related to the question of unity in a compositus definition of substance and accident (Met HZ 1030b, 8). Observe that Aristotle seeks the answer to this question through analogy with the being. In the passage to which I refer (1.10), is there an elementary catastrophe to formalize analogy? When you “bind together”, I would remind you of

* “le point haut (O)”: there is a pun here in French that is not translatable... (translator’s note)
the doctrine of the separation of categories; when you "separate", then I
would ask you for formalisms of synthesis. I always act in the name of
analogical analogy (but perhaps you will not hear of an analogy of the being in Ar-
iste be;? That would be a pity since what we are trying to do here is to
intensify Aristotelian rationality).

Comments on the Conclusion

SECTION A. "Criterion of individuation": are you talking about the
individuation of the stone or of the movement imparted to the stone? Is
there still any meaning in that? If the "world is made up of entities",
what does the individuality of an event signify?

"Conditional": do you mean that for a final cause, unintelligible as
such, you substitute the morphogenetic field that has the same function,
but whose topological nature is less costly on the ontological plane?

"The quantitative dimension": and yet quality is based on quantity,
which is in its turn subject to quality in form and figure. It is then up to
quality to assume all interactions between objects (in the mode of alter-
ation). Is there not, as you envisaged earlier when it was a question of
action and passion, a morphogenetic field specific to the apportionment
of quality and quantity whose basic domain would be constituted of
qualitative alterations (cf. 3772 cap. 2 and 3)? Your theory would then be
an obstacle in the way of the dialectic circularity described by Hegel
as existing between these two categories in his Logic of Being (restoring
a form of equivocity) (7).

"Junction morphology": I most particularly admire this passage in
your study, even though I suffer from your constant analogies between
the theoretical and the practical orders. There is indeed nothing surpris-
ing about the fact that a practical act should bind (as for the liad in Met
HZ 4). The theoretical is resolutio (getting down to principles), but the
practical is compositio (it orders an action with respect to an end).

Whatever the reservations I have intended to express in these ques-
tions, I truly believe that, far from being an obstacle to the considera-
tion of being, the mathematical schematization of forms makes it possible to
restore some content to the high way of accessorisation of being, the way
which passes through substance (and the multiplicity of particular sensible
substances). To ask an axiomatical science to verify that amongst all the
senses of being that which 'is' primarily is the 'what' which indicates
the substance of the thing" (Met Z, 1028a, 13-16) is to have a science
play the particular but exemplary role of a new imaging in the metaphys-
ical system, an introduction that is not logical like that of Porphyry, but

objective and physical. Here is something that will permit us to talk le-
gitimately, as at the time of the Renaissance, of an Aristotelis Redivivus.

Indeed, whosoever adheres to Aristotle's thought will welcome us at
progress in his philosophy the fact that an attempt has been made to add
a theory of individuation of causal ties to the theory of substances. Phi-
losophy has never been so close to taking up at new cost the question of
substance as a subject, that is to say as a particular substance. Instead of
engulfing the question of substrates in a logical enquiry constantly seek-
ing the ultimate reason for all predication, modern morphological theory
makes it possible to apprehend bodies under their singular appearances
and in the singularity of the event that determined their contours. That
an event should create at the same time both a form and a non-repeat-
able singularity of the form, this is an attainment that can no longer be
neglected by those who strive to continue Aristotle's way of thinking.

Traditional Aristotelianism had already established close connections
between forms and their spatial appearances, for example in the Thomist
thesis of individuation in matter—a quite scandalous thesis that gave its
full weight to physical eschatology. This extreme vanguard of reflection
on the substrates of bodies could not fail, unfortunately, to be carried
away by the paradox proper to the ontology of real relations: the real
communication of action between substances is indeed marked there,
but we find superimposed on it a thesis on the logical solitude of ess-
ences which contradicts the philosophy of event singularity that was
expected.

The history of Metaphysics will certainly not be contained in this de-
bate, but it takes an irreversible turn when examined from this particu-
lar point of view. We think of those substantial forms so inevitable that
Leibniz was obliged to "rehabilitate" them before making sure of the
philosophy that was to dismiss them forever with their semantico-mor-
phological ambivalence.

We had to wait for Mathematics to be capable of taking up the chal-
lenge of forms before an attempt was made to update a philosophical
possibility that modern critics of metaphysics could only sketch or retro-
cede to the marvellous realm of the irrational. Obviously this is not
without consequence. The coming back of substantial forms has taken a
sufficiently unexpected path to leave the metaphysician somewhat be-
wilder. Has the time really come for him to entrust to a kind of mod-
eling of manifestations—perhaps contingent, perhaps reductionism—
the tradition within which he has learned to re-order the system of the
position of objects in the whole?

Rather than opt feverishly for one or the other of these alternatives, it
would be wise now to multiply tests of detail. To what extent does the
metaphysical tradition shelter suppressed morphologicism, to what ex-
tent not? How can the tradition of essence claim to rationalize, by itself alone, the system of pregnancies and salient forms? What can we learn, in this sense, from the wildest speculations as to the presence of angels in the place, their tactus virtutis, when we oppose it to the tactus quantitatis proper to the world of compound substances (8)? Should even the ethical sphere remain unscathed by catastrophist enquiry? Can CT help us to think out the ambiguity there is in Aristotelianism between the end of the act and the end of the agent. What, for instance, is love? Is there a “morphology” for the similarity presupposed in Aristotelian tradition by the action of the lover on the passivity of the loved one (9)? What, indeed, is ecstasy, and can one come out of oneself without some specific morphology? There must be an inference when we remind ourselves that the whole development of Italian Renaissance humanism (from the Dolce Stil Novo onwards) (10) was based on the difficulties in scholastic theory surrounding human and divine love. Contemporary with the modern elaboration of the notion of space, this humanist tradition has continued the morphological project into our time, through the arts of discourse and image.

Yet we cannot lend such power to catastrophe theory without finally raising some question of a nature to disturb it. And who better than Aristotle can formulate an aporia for morphological thinking, particularly that current of thought which jealously arms itself against any definitive point of view regarding the whole or the unity of the world, a world which it prefers to invest according to whatever singularities may present themselves? Thus in Book II of the Physica we read this fine aporia concerning the whole and the part, which will serve as our epilogue: “There is, indeed, a difficulty about part and whole... namely, whether the part and the whole are one or more than one, and how they can be one or many, and, if they are more than one, in what sense they are more than one. (Similarly with the parts of wholes which are not continuous.) Further, if each of the two parts is indivisibly one with the whole, the difficulty arises that they will be indivisibly one with each other also” (11). Will the prejudice of radical plurality proper to CT withstand this ascendency of the whole, whose irresistible propulsion up to the re-establishment of an undifferentiated equilibrium is described here in Aristotle’s dialectics? The return of Heraclitus, would it not also mean, in the self-same movement, the return of Parmenides? Would catastrophe theory then be obliged to distinguish eternal essences, “unalterable and unmodified”, separated from the world, in order to restore order to the chaos of elementary forms (12)? Or would it succeed in showing that even in the order of absolute intellection, there is also still place for morphologies—suprasensible ones this time?

B. The Author’s comments on Bruno Pinchard’s reading notes

“ABSTRAHENTIUM NON EST MENDACIUM” and TEXT OF THOMAS AQUINAS. The man who, in play or by conviction, confers meaning on a linguistic expression that is usually considered to be without meaning, would no longer be called a “liar” today. Were it not so, poets, philosophers, and even mathematicians, could not escape the opprobrium of mendacity. These last, for example, have been using the (absurd) expression $\sqrt{1}$ for two centuries before a plausible interpretation became available. “Philosophy” is largely a question of accepting (or rejecting) expressions formed from recognized formal mechanisms, in a surprising semantic context. In the best cases, it is a practice (empiricism) which takes the decision; failing that, it is the philosopher’s “prejudices”. Underneath, of course, there remains the opposition between Plato and Aristotle. Much as I admire the latter, I am still a Platonist insofar as I believe in the separate (“autonomous”) existence of mathematical entities, for we find ourselves there in an ontological region different from the “usual” material reality of the perceptible world, (The role of the continuum, or spatial expanse, is to ensure the transition between the two regions.)

MATERIAL, AND CONSEQUENTLY SPATIAL. The Greeks do not appear to have had a concept equivalent to that of the Cartesian expanse. The Platonic χώρα could have played the part; it is precisely a concept rejected by Aristotle, because he intended place to be a predicate of substance, instead of matter being a predicate of expanse. History and science have failed to settle the difference between Mach and Einstein; I. Mach favored a space generated by matter (and radiation). Einstein, in his old age, saw matter was a “disease” of space-time. My own reading of Aristotle is evidently Einsteian, not Machist, and in this it is fundamentally “unfaithful” to the author.

As for ὠνόησις of the “space of a genus”, you are right in the strict Aristotelian spirit. However one finds a number of metaphorical uses of ὠνόησις in Aristotle; see on the subject Tricot’s note in Met 7.7, 1033a5, 5 (note 2, p. 384 in the French translation). I also draw your attention to: τὸ ἔδοξος καὶ τῆς τοῦ ἔδοξος ὁλόκληρος, Met 24, 1023b1, 1, γίνεται ὡς ὡνόησις, Met 29, 1024b8.

All I find in your quotation from De Anima 403a, 8, is the necessity of relating mental qualities to a living body. Other more significant passages can be found. For example PhVIII, 7 is devoted entirely to showing that the phora is ontologically anterior to any other type of movement (μετακόμησις). Finally there is the quotation given in Robin’s Aristote, at the bottom of page 204: De Memoria (1430a, 7–9): “Pour quelle raison
n'est-il pas possible de rien penser d'une pensée pure et sans le continu et aussi de penser sans le temps des réalités qui ne sont pas dans le temps? C'est une autre question (διάλογος λόγος)*. Unfortunately, adds Robin, one searches in vain for the place where this other question is dealt with in the extant works of Aristotle.

It seems to me that in the heart of Aristotelianism there lies a latent (and permanent) conflict between an Aristotle who is logician, rhetorician and even, when he criticizes Plato and the Ancients, sophist, and another Aristotle, who is intuitive, phenomenologist, and almost in spite of himself, topologist. It is with this second (rather misunderstood) Aristotle that I work, and I tend to forget the first (13). He hoped to make the junction with the help of the concept of separation (χωρίζων), of fundamental importance in his Metaphysica. In Met Δ 1022a, 8, it is said that the “limit” is “the substance of each thing, and the essence of each; for this is the limit of knowledge; and if of knowledge, of the object also.” (This is almost esse est percipit?) Is separation purely metaphorical? If it has an ontological bearing, then there must be an extended substrate, a continuum, against which things stand out. If not, then separation is but a Gedankenexperiment, on which we cannot hope to base objectivity.

INTERACTION. This is of course a modern notion. But one does find the lineaments of this concept in Aristotle. The patient anti-kinei, for instance versus the agent. Cf. also ΨΠΝ, 1, 201a, 19–23, παράλληλα μεταχειρίσθη και περιείκεναν ὑπὸ ἄλληλων (such things will act and be acted on by one another in many ways). The Newtonian principle of equality between action and reaction in mechanics surely has Aristotelian roots.

In modern science, “contact” is not an important concept, for Physics does not consider “bodies” so much as places individuated by a repetitive potential. So for us moderns, the requirement of contact for interaction between two entities is just a formulation (too strict, in its metaphysical demands) of local determinism. Moreover Aristotle does often speak of intermediaries (μετατέθητοι) through which take place actions and reactions between substances.

FIGURE AND SHAPE. I suppose we are talking of μορφή and θέως.

If you maintain the centrality of the figure (μορφή), then the notion of homoeomerous substance must be a problem for you, since, by definition, a homoeomerous substance has no boundaries properly speaking, and a figure is defined—at least partly—by its contour, its limits. That is

why, as a mathematician, in order to define a homoeomerous part, I have to multiply the substrate space by an invisible space, an (interior) space of qualities—the space of a genus—so as to determine the bounds of my homoeomerous quality. If this construction is not allowed there subsists a hiatus between the logical and the morphological that cannot be bridged. For the materia signata that is the support of a homoeomerous quiddity has no visible detail to make a figure of it. The forma substantialis has no shape (in the ordinary sense of the word), and the materia formalis does not exhibit a formal character. Besides, the sentence, “A quantum can only be finished (limited?) by a quantum because there can be a termination only within the same genus” raises difficulties for the topologist that I am. What limits a volume is its surface, that is to say a two-dimensional being that is qualitatively (topologically) different from the three-dimensional “quantum”. Aristotle was aware of this, for in ΦιV 13, 222a, 12–15, he says that, for time, the instant, τὸ διάβολον, is the beginning of one interval and the end of another. No doubt you will say that time is not a genus. True, but time operates, by motion, in every genus! Perhaps there is an ambiguity here between ἥσσος (limit or boundary) and τεφροτομευον (envelope).

MENTAL EXPERIENCE. The term is obviously an anachronism and we will find no such thing in Aristotle (except maybe what he says about φύσεως). Reading you, I have the impression that for you the state of potency (τοῦ δυνατοῦ) has a certain reality, a “real power, present right into the realization of the act”. But I do not think I am mistaken in affirming that there are potential states of an entity that will never be realized. The whole theory of contingent futures points this way. The future of an entity that is effectively realized is never more than a minute part of the virtualities it contains in posse. And I do not see how one could define the virtualities held by an entity in posse without recourse to mental experience. True, “potency” has a certain ontological bearing: there is some agreement between the outside world and the way we represent it to ourselves, and consequently a transformation of being that we conceive to be possible may—if certain external conditions are fulfilled—be realized. But the mind will always imagine more than reality will produce, since we can, in imagination, recall the past and anticipate the future. Whence the role of time in phenomenal change. The aim of physics (in Aristotle’s sense as well as our modern one) is to formulate rules which, at the best, determine univocally what is real from amongst what is possible—or, in a lesser way, describe constraints that have to be satisfied by the real in order to emerge from the possible. I do not see how one can speak of an “effective” potency that would be part of the total virtual potency, since the effective potency would have to be simul-

* “Why is it not possible to think anything in pure thought without the continuum, nor to think without time about realities which are outside time? That is another question.”
taneous and coincide with the realization of the act. (Unless, of course, you are referring to the famous definition of movement, Φιλτ, 201a, 10–11, 90; the actualization of the potential being as such.) We would then be dealing with an “instantaneous potency” (we would say, a speed-vector), which is but a tiny part of the global virtual power of the being at that instant. Your reference (Φιλτ 206a, 18) which treats of the infinite, introduces one of the most enigmatic passages of the entire Φυσικα—perhaps we should discuss it further. In short, the imagination of the mathematician mentally dissecting an object does not seem to me to be ontologically different from my making the hypothesis that if it is fine tomorrow I will go for a walk—and that consequently I am now a potential walker, even though in actual fact I am resting in my armchair.

INDISPENSABLE SUPPORT. Here it is the “catastrophist” speaking. A shape is spatially defined by its “catastrophe set”. If we take into account quality spaces, superadded as fibers (internal spaces), the shape is then fully determined by a “section σ in the internal spaces, discontinuous on the catastrophe set”.

INDIVIDUAL MATTER AND MATTER COMMON TO THE SPECIES. I find it hard to conceive of a matter common to the species. If we are talking about a homeochemical substance like copper or silver, there can be a ένθημερον λόγον of quotation [6]. But such matter will clearly be, in modern language, a class of equivalence among types of matter. So it will be an abstract entity (although not separate).

GENETIC LEGACY. The linguistic structure of τὸ τι ήν εἶναι says clearly what it means; as a being is linked with the permanency of its substrate, some of the properties of this substrate (those which do not vary with time) will subsist as they are; more generally, others will evolve in time according to their own nature. Whence an effect of the being’s past on its present (and future). If what Spinoza says is true, that every being tends to persevere in its being, then every material being linked with its substrate must have some legacy that makes it what it is (taking past influences into account). The biological sense (of heredity) is a little stronger, because in this case there is a morphological gap between the adult and its progeny—through the egg. (An egg looks nothing like a chicken!) Thus the biological sense (genetic legacy) is an extension of the general sense of quiddity, rather than a restriction.

A SECONDARY ENTITY. The question of the “transfer of qualities” in the agent-patient interaction is a very subtle one. You are right in a way: it is true that it is not heat that warms a cold body but rather another warm body. But I am not wrong either, it seems to me, in saying that the agent emits an “influence” (a “pregnancy”) that will invest the patient. In the space of a genus (we will suppose it exists), there is an attraction of the patient’s place (its image by σ) towards the agent’s place. In this space there is a phora of the patient (from cold, he becomes warm). Quotation [10] on the theory of perception of what is sensible by the nous pathetikos is quite clear about this. I still think that the translation of ἐγγεικτεια by a passive in quotation [8] is inexact. The affinity of the future for the middle voice is standard in Greek grammar (justified moreover by the saying, ἐγένεται cad prodest). In anticipation of what you say with Thomas on the specifically existential character of the agent, his proper activity, I would be tempted to propose a new metaphor. Since the agent is the grammatical “subject”, he will occupy a lower place in the space of the genus. He will create around himself a “gravitation” towards his own position which becomes the center of the “world”. There will result a “natural” movement of the patient, the object, towards the place of the subject, ending with both places becoming identified (unless, of course, there is anti-kinesis). This is the slope towards the subject that you mention further on in the linguistic model of the logos apophantikos. It is perhaps not absurd to think that Aristotle may have had this model in mind, unifying the natural geocentric movement of sublunar bodies and the action of the mover. But this movement in the space of a genus will be given a spatial interpretation in our usual space (the common substrate). There will be emission of a pregnancy (α μητακύδιο by the subject, making the invested object like himself (from the point of view of the quality considered). After all, Sad Camot, the creator of Thermodynamics (1820), believed that a “caloric fluid” flowed from the warm to the cold body (a cascade that could be exploited as with a mill, for thermal machines). And in a collision, the moving body imparts to the moved one a part of its kinetic momentum. Thus a qualitative allotosis can always be interpreted as the spatial transfer of a pregnancy propagating itself from subject to object. For other types of action, for example if the agent shoots the patient with a revolver and kills him, the pregnancy interpretation still holds, whereas that of attraction within the genus would become delicate.

BUILDING A THEORY OF THE ACT AMOUNTS DE FACTO TO BUILDING A THEORY OF THE VERB. Here I take up, albeit reluctantly, the torch of Aristotle’s “linguistic” critics (Trendelenburg, Benveniste, etc., with regard to the categories “deduced from Greek grammar”). If I do so (whilst fully aware of the “reductionist” character of the procedure), it is because one may feel there to be in Aristotle an
implicit (and to my mind justified) confidence in the ontological bearing of natural language.

The relatively fertile nature of this methodology is already to be seen in the discussion of the “zero-valent” sentences of the “It is raining” type. In fact it is the problem raised in fine of your notes that is at stake here. If the world is made up of entities, what does the individuality of an event signify? There are criteria for the individuation of processes, the connectedness of the spatio-temporal domain that is the seat of the process being one of the most obvious. But that supposes that we admit among our entities beings of an accidental, transient type, formed from a fluctuating and mobile substrate. Apart from works of art, Aristotle scarcely mentions inanimate beings (ἐνεργεῖα). It is true, as you say, that the physicist must concentrate on the generic situations (ἕνεκεν τὸ πολύ) that characterize physis. But rain, although it is not a constant phenomenon, is nevertheless a frequent one, important to man in its beneficial or harmful consequences. The accident, insofar as it affects human interests, ceases to be an accident, and is raised to the dignity of linguistic “fact”, support of the logos anaphorikos (cf. the Aristotelian distinction between ως οτιαν αναφερόμενος). Aristotle himself, in De Generatione et Corruptione, offers a vision of the hydrological cycle that modern science would find little fault with, but it is about rain as a species of phenomena, not about such and such an individual rainfall. It remains, nonetheless, that one of the aims of modern (if not Aristotelian) science is to reduce the part of randomness and to extend that of determinism. Such an extension naturally leads us to consider “badly individuated” phenomena. Heraclitus’ river provides another example of these types of entity defined by their location in space-time (for the river, they are the anhomeomorous interfaces between earth and water and between water and air) taken altogether, but treated longitudinally as homeomorous components (the Seine, at Châtillon-sur-Seine and at Rouen, is still the same Seine). As I see it, an individual process is the investment of a salient form by a pregnancy: “It is raining” signifies the investment of the “speaker’s topos” by the pregnancy that is rain, water in drops from the sky.

You are right, I do not follow Heidegger in his considerations on “being”, starting from grammatically incomplete or semantically unacceptable linguistic segments. On the contrary I believe that semantic acceptability (in spite of its apparently relative character with regard to the language considered) generally has an ontological bearing. “All analogy is true, insofar as it is semantically acceptable.” That, I believe, is the principle of all metaphysical investigation.

Semiophysics: A Sketch

“συμπλοκή”. These historical details are very interesting, and I should like to know more about them.

COLLISION OR CONTACT. Collision is obviously a particular type of contact.

CONFLICT. If “the act should fail”; must we admit that Aristotle’s negative sentences bear witness to a positive and concrete reality?

THE CASES. I have not seen cases (προσελ) mentioned elsewhere in Aristotle’s work: for him that must belong to the theory of analogy, of πρός τι.

ENTITY/ACTANT. “Actant” obviously has a modern definition coming from structural linguistics. An actant is not necessarily an Aristotelian κύριος, for it may be a pregnancy (a μετωπίζεται): It is unfortunate that there should be nothing very precise in Aristotle on the ontological status of such intermediaries as sound, light, and so on.

THERE IS NO OPERATION WITHOUT A SUBSTRATE. This is like saying, in modern dynamics, that there can be no dynamics without the choice of a representative point and an initial condition. True, but that does not stop the dynamic framework from existing as a constraint on the virtual. The representative point is the ingress of the real into the virtual, where it propagates according to the equation of motion.

THERE IS A JUMP BETWEEN ACTION AND PASSION. It is true that catastrophe formalism tends to homogenize agent and patient. The difference, finally, is in the time arrow—its irreversibility. Of course, catastrophe analysis is itself incomplete, since it merely “shifts the problem”, substituting for an observable phenomenal dynamic another (unknown) dynamic in the control space where the intentionality of the actants will come into play. So I am ready to admit the essentially preliminary character of catastrophe theory formalism.

A PERHAPS UNWANTED ACCIDENT. I do not really see why, in the final analysis, there should be no possible identification between dynamic behavior in inanimate nature and intentional or psychic behavior of suitably defined entities. Cf. in this sense A.N. Whitehead’s Metaphysics. Attraction and repulsion are concepts of this type, having both physical and psychic value.
HOUSE-BUILDING. These "subtleties" in the execution of an architectural project are interesting, but do not, I feel, affect the structure of the process, always moved by a mental image in the architect's mind.

PLATONIC IDEAS. The problem is that of the presence of the form in an embryo. In the beginning, Aristotle says (PHIL. 7, 261a, 13-14) that the egg is aitēs and moves towards its principle (e te ἄπορον ὕδωρ). In this phase the egg has no form, as can be seen in the fact that it is a "homoeomorous" substance that may (often) be divided. The parts will produce as many embryos (smaller but complete). Then what statute can be given to this future form, inessential for the time being? Shall we say that the egg has no form, but that it has a τὸ ἔργον ὁδόν whose nature it is to subsequently develop the adult form (unless prevented from doing so)? This shows how infinitely richer and more mysterious the concept of "quiddity" is than those of form and actuality. (Here again is your forma substantialis, alias materia formalis.) Modern science can accept quiddities only on condition they are geometrized, in the substrate space or in derived spaces (functional spaces). This is what my "attractor of the metabolism simulating adult dynamics" signifies.

QUOTATION [15]. The paradox is here; the (founding) act separates, whereas the expression of logos apophanticos is composite (except for zero-valent sentences). No doubt this is because the linguistic expression of a fact is a finalized act (transmission of information).

THE EXTERIOR CATASTROPHE dwells precisely on the quasi-physical aspect of the linguistic fact, which always carries, for the receiver of the message, an element of discontinuity and of instantaneousness (in order to express a discontinuity, it is necessary to express a difference, the height of the jump-gap).

You seem to be saying that Aristotle would not have admitted that a secondary entity, as a concept, (a "common" noun), might be said to be in a state of privation. Indeed I believe that what separates the common noun from the proper noun is the privation of individualization due to localization (abstraction by "diacesis"). Why not allow that an (abstract) secondary entity aspires to full reality, and suffers from "amputation" to use Aristotle's own terminiology? You may of course argue that this "privation" exists only in the psychism of the speaker who feels the need to make the contents of his message explicit. But the metaphor by which this intentional situation of the speaker is projected into the grammatical function itself appears to me to be justified, just as, if one were speaking of instruments, one might say that a lock suffers when it has no key, or a car when it has no wheels.

CONDITIONAL FINALITY. This means that predications based on the existence of a morphogenetic field are never certain, for they can only be realized if nothing hinders their realization. At the best they will be realized ός θέλω το πολύ if we are dealing with a "natural" morphogenetic field, such as those we find in embryology. Here, then, we are leaving the sure domain of physical laws for that of a certain probability related to a contextual situation, not described stricto sensu by the field.

THE "QUANTITATIVE DIMENSION" is indeed perhaps not necessary for intelligibility (which contents itself with "quality"). It is however necessary if the action is to be efficient. For to act is always to act hic et nunc. Since modern science cares more for efficiency than for intelligibility, one can see why it does not bother much about conditional finality.

Conditional is equivalent to: finality expressed in a qualitative way by a form defined up to a topological equivalence.

Absolute is equivalent to: absolute finality expressed by a form which unfolds in a local map related to the global geometry of space-time.

Conditional is then absolu modulo a topological deformation of structure (deformation about which nothing can be said in general).

Once again, thank you!

NOTES AND REFERENCES

(4) Sorbonne lectures 1976.
(5) These analyses are borrowed from Daniel Barbaro, sixteenth-century commentator of Vitruvius, and the innovation proposed by Pierre Caye in his work *Le savoir de Palladio, architecture, politique et métaphysique à Venise au XVIème siècle* , to appear.

(8) Thomas Aquinas, *Contra Gentiles*, II, cap. 56; Capréolus, *In II Sent.*, Dist. II, q.1, a.2 and 3; Cajetan, *In S. Th.*, II Q. 52, a. 1. Nos II and III. Here I quote St. Thomas and his commentators, not as witnesses of Aristotelian orthodoxy, but by way of showing the powers of renovation and structuration of the Aristotelian corpus in the course of history. In this sense, the present remarks appear to me, in spite of their evident heterodoxy, to belong by right to the tradition of so-called "scholastic philosophy".

(9) Cf. Thomas Aquinas, *S. Th.*, I II P., Q. 26, A. 2; Q. 28, a. 3 and 5.

(10) Cf. *Vita Nova*, cap. XXV where Dante wonders whether love is a substance in its own right (and even a corporeal substance) or just an accident of the substance affected by it. In the same way, can one make a catastrophe of the last lines of the poem of Purgatory XXXII in *The Divine Comedy*, or of Petrarch's line: "plaga per alleviar d'arco non sano" [the slackening of the arc does not heal the wound], sonnet XC?

(12) According to the suggestion of *De Caelo* 279a, 18.

(13) Note by R. Thom: Since writing this text I have discovered Daniel W. Graham's *Aristotel's Two Systems* (Clarendon Press, Oxford, 1987), in which two Aristotelianisms, incompatible according to the author, are systematically exposed.
INDEX OF SUBJECTS

A

Act, Actuality [Greek: energeia]
contingency of —, 155-156
general discussion, 175
distinction between energeia and entelecheia, 155
immobility in —, 171
unicity of the act in relation to the acts, 152-153

Affensattelpunkt [German; "monkey-nam" saddle], 87

Alarm cry
modulation of the — and the genitive, 13
Note (14), 20
vector of pregnancy. 1

Anhomoeomerous part
— and catastrophe theory, 149
definition, 148
hierarchy of —s, 180
functional individuation of —s, 184
Note (13), 187

Apparent contour
— of a salient form, 3
— and Hermeneutics, 218
in Mathematics, Note (17), 220

A priori
the — problem, 1

Archetypal
— Morphologies, 46
morphologies due to a preprogram, 48
syntactic structures, 26

Aristotelian Physics,
— and catastrophe theory, 2
axiomatic presentation, 144

Aspect
(tinguisic), 202

Astrology (and an "objective"
pregnancy), 33

Attraction (of oneself to oneself)
E. Geoffroy Saint-Hilaire, 109

Backflow
part of a hysteresis loop oriented in
the opposite way to the driving
flow, 52

Bauplan or general plan of organization
(BPN)
classification of Bauplan, 104-105
the — defined as a stratified
set, 105
principle of a unique composition
plan (E. Geoffroy Saint-Hilaire),
106

Blastopore
(Amphibian embryology), 84
formation of the — in gastrulation,
87, 124

Blastula (Physiological), Fig. 4.23, 93

Blowup
— resulting in the ventral
axis, 86-88

C

Catastrophe
capture — (revised), Fig. 4.7, 4.8,
76
perception and capture — (singular-
ity), Fig. 4.3a, 72
perception — (revised) Fig. 4.5,
74

continguousness of —, 4
genetic constraints and
theory, 60
— theory, 60
— and Semiotics, 3
— and Aristotelian Physics, 4

INDEX OF SUBJECTS

A

Act, Actuality [Greek: energeia]
contingency of —, 155-156
general discussion, 175
distinction between energeia and entelecheia, 155
immobility in —, 171
unicity of the act in relation to the acts, 152-153

Affensattelpunkt [German; "monkey-
" saddle], 87

Alarm cry
modulation of the — and the gen-
tive, 13
Note (14), 20
vector of pregnancy. 1

Anhomoeomerous part
— and catastrophe theory, 149
definition, 148
hierarchy of —s, 180
functional individuation of —s, 184
Note (13), 187

Apparent contour
— of a salient form, 3
— and Hermeneutics, 218
in Mathematics, Note (17), 220

A priori
the — problem, 1

Archetypal
— Morphologies, 46
morphologies due to a preprogram, 48
syntactic structures, 26

Aristotelian Physics,
— and catastrophe theory, 2
axiomatic presentation, 144

Aspect
(tinguisic), 202

Astrology (and an "objective"
pregnancy), 33

Attraction (of oneself to oneself)
E. Geoffroy Saint-Hilaire, 109

Backflow
part of a hysteresis loop oriented in
the opposite way to the driving
flow, 52

Bauplan or general plan of organization
(BPN)
classification of Bauplan, 104-105
the — defined as a stratified
set, 105
principle of a unique composition
plan (E. Geoffroy Saint-Hilaire),
106

Blastopore
(Amphibian embryology), 84
formation of the — in gastrulation,
87, 124

Blastula (Physiological), Fig. 4.23, 93

Blowup
— resulting in the ventral
axis, 86-88

C

Catastrophe
capture — (revised), Fig. 4.7, 4.8,
76
perception and capture — (singular-
ity), Fig. 4.3a, 72
perception — (revised) Fig. 4.5,
74

continguousness of —, 4
genetic constraints and
theory, 60
— theory, 60
— and Semiotics, 3
— and Aristotelian Physics, 4
Index of Subjects

Discontinuities
- Propagation of - by coupling, vii
- Disks (intracellular)
 (Haldane's work on butterfly larval tissues), 115–116
- Deal cusp
 principle of the instruments of scission, 49–50

E
- Discontinuities
- Propagation of — by coupling, vii
- Disks (intracellular)
 (Haldane's work on butterfly larval tissues), 115–116
- Deal cusp
 principle of the instruments of scission, 49–50

E
- Ectoderm
 - defined by questionnaire, 181
 - superficial germinal layer of Triploblastica, hypothetical vegetal homologue, 68–69
 - role of the — in vertebrate embryology, 162
- Effaceable (almost effaceable form)
 definition. Technical role, 46
 role in Baupläne (BPN), 119
- Effect
 - on the EBG of a salient character and of a stimulus, Note (2), 17
 - figurative —, visible result of the investing of a salient form by a pregnancy, 16, 43
 - realized by the arrival of a pregnant stimulus: ease of the hungry predator, 76
 - tunnel —: passage from a potential minimum to a lower minimum, across a potential ridge, Fig. 1.3, 15

Elements, Aristotelian
- phase diagram of elements, Fig. 8.5, 196
- elements in the biosphere, 127
- head-coelome homology for the elements, 98
- pregnancy and elements, Note (16), 212
- role of — in plants, 68
- universality of —, 192

Endoderm
- absence of — in insects, 77
- in plants, 67
- in the pedicle loop, 71
- defined by questionnaire, 181
- implosion of the PB attractors on the —, 92, 161
- Ectoderm [Greek: entelechía]
- energia and entelechía, Note (8), 163
- — in the definition of movement, 169
- — separates or unites, 179
- Entity (after Aristotel) [Greek: ousía]
 definition. Primary and secondary —, 145
 separate —, 144
 tertiary —, 153
 matter and form in the —, 169
 substrate of an —, 154
- Entwicklungsmechanik (due to W. Roux), 70
- Epiboly
 - epibolic movement of the ectoderm in gastrulation, 86
- Epigenetics (landscape)
 - description of ontogeny due to C.H. Waddington, 109
 - as structure of a pregnancy, 11
- Extinction
 - of a pregnancy investing a salient form, Note (13), 20

F
- Facilitation (in linguistics), 201–202
- Fate maps, 81, 116
- Figurative (effects), 16, 43
- Field(s)
 - morphogenetic —, 34–35
 - and formal causality, 216
 - in Physics, 30–32
 - semantic —, 28
- Finality or teleology
 - Aristotelian — and modern Science, 215
 - and formal causality, 204
 - complex —, 156
 - in embryology, 183
Genus [after Aristotle. Greek: genos] decomposition of the — into species, 183
definition of —, 193
dynamics in the spaces of a —, 199
— and transitive action, 194, 247
— and the continuum, 194, 195
genera and Hypergenera, 204
quantitative — and divisibility of matter, 186
master of a —, Note (17), 212
principle of the incommunicaibility of genera, 187

Geometry

G

Gastrulation

Gestaltheorie

Germinal

Gestation in, 18

Gift (M. Mauje)
syntactical aspect: morphology of trivalent sentences, 191
pregnantial effect of the gift, 27

Graph
category as the set of paths of an oriented —, Note (10), 19
Feynman —, 26

H

Heart
(animal), organogenesis, 90
—in the PB, 96
left side of the heart, right side, 94–96
(vegetal), Fig 4.1, 68

Hindrance
— of an act, 151
—, contingency and finality, 216

Imprinting
definition, 11–12
Note (12), 20

Individuation
criterion of — of a process, 214–245
— of an auto-homoeomorous part, 180
— of a concept, 5
— of a form, 4

Induction (embryology)
neurogeny —, 91–93

Infinity (Greek: apeiron)
— and continuum, 166–167

Information

generic —, 33, 119
positional — (Wolpert), 140

Insects

comparative embryology of insects and vertebrates, 129
social — effect of caste on morphology, 12

Investment

— of a salient form by a preg-
nance, 6
subjective — and objective —, 14
transition from subjective — to ob-
jective —, 36

Isogonic

— animals, 110

Isogenus

definition, 110

K

Kinetic (momentum)

Note (1), 64
transition between subjective and objective pregnancy, 42

L

Larval

protozontomans and deuterontomans distinguished by their larvae, 116
lysis of — tissues in metemorpho-
thesis, 115
— stage in insects, 135–137

Law

— of physics, 215

Lie groups

simulation of — in embryology, 98, 180

Line feature

thin detail of a salient form, 3

Logic

fogicism in modern Mathematics, Note (3), 186
— and Geometry, 2
Semiophysics: A Sketch

M

Matter
- after Aristotle [Greek: hyle]
- divisibility of, 185
- hyle toiké: local, 167
- matter-form opposition, 169
- proh été hyle: prime matter, 167

Myotome
- part of a somite, 88

N

Natural philosophy
- introduction, vii

Nephrotone
- part of a somite, 88

Neuron
- — dynamics simulate dynamics of the organism as a whole, 113–114
- interpretation of neuronal fibrations; the part of genus in the whole; and Note (16), 212

Neurulation
- model of, 91
- New-born babe
- the pregnancies of the neo-natal stage, 23

Non-separable [Greek: atomos]
- length (atomos gramma), 165

Note
- chord
- embryogenesis of the, Fig. 4.18, 87
- origin of the in vertebrates, 130

O

Object
- objectum abut subjectum, 206
- transitional — (Winnicott), 23
- subject-object opposition, 191–192

Note (6), 211

Ontogeny
- ontogeny recapitulates phylogeny, 22

Oogenesis
- Lamarckian effects in, 118

Organization
- biological — as a stratified set, 105

Organizing center
- oogenesis as a return to the, 118
- oscillation between and unfolding, 178–179
- the point, of the segment, 4
- return to the in amphibian gastrulation (formation of the mesoderm), 86–87
- return to the in Van der Pol’s system, Fig. 3.10, 54
- return to the in catastrophe theory, 176

P

Parasites
- parasite Bauplana, 116

Pavlovian conditioning
- source of pregnancies investing salient forms, 6–7

Phenotypical
- genetics, 112

Phora (movement in space: Aristotle)
- proceeding all other change, 184

Phylotherapy
- brief account of, 67

Phylogeny
- convergence of the, graph, 114–115
- graph, 110
- ontogeny recapitulates (for language), 22, 24

Phylum
- definition, 110
- Note (8), 141

Physiological blastula [PB]
- completed (neurogenic induction), Fig. 4.23, 93
- completed by an anti-predator cycle, Fig. 5.8 and 5.9, 131, 132
- of diplodonic animals, Fig. 5.4, 121
- and space, 113
- main diagonal: Interpretation, Fig. 4.25, 93

Physiological functions in the —,
- Fig. 5.2, 117
- localization of functions, 116
- ontology of the, Fig. 4.10, 4.11, 79, 81
- ontology of the seen as a questionnaire sequence, 184
- global schema, Fig. 4.2, 70

Pivot
- sentences with pivot topic structure, 24

Plants
- “fractal” morphology of, 66

Plethotaxy (P. Grandjean)
- definition, 106

Podomerism
- metamerism restricted to certain parts of the organism, 126
- Note (17), 142

Postivism
- the fear of drowning in metaphysics, 218–220

Pragmatism
- a certain return to animal nature —, 218

Predation loop
- definition of [SSM], 61
- revised, 71
- seen from the vantage point of the prey (completed PB), 130–131

Predication
- geometric model of, 151

Pregnancy
- definition, 6
- source forms of a —, 9
- intersection between salient forms and —, 41
- investment of a salient form by a —, 6
- notion of preprogram, 43
- individualizing —, 9
- objective —, 14
- figurative effects, 16
- subjective (Pavlovian conditioning), 6–7
- as a vector of causality, 33
in cultural life, 37
scientific progress as objectification of a, 36
— propagation and syntactic structures, 26, 191
taxonomy, 28
Preprogram
definition, 43
Primary-ternarity (in the sense of C.S. Pierce)
— associated with the logos apophantos, 205
theory of C.S. Pierce, 4, 28
Privation [Aristotle, Greek: steréisis]
state of, 74
privative states (steréitikas diatheîsas), 185
— it is also a certain form, 175
role of — in embryogeny, 181
role of — in the emergence of form, 216
Progress (scientific)
role of empathy in —, 35-36
Protophysics
quoted, 3
Protostomians
their larval stages, 116
one of the two superphyla, 69
Protocypiicality
gradient in the extension of a concept, 199-200
Potency, potentiality [Aristotle, Greek: dunamei]
the act boundary to the potential (ABP), 169
definition, 147
limits of validity of (ABP), Note (10), 187
the "potentialities" of homoeomerous parts, 172
Psycho-analysis
introduced in Notes (1) and (3), 38
Quantum mechanics
the quantum aspect in Aristotelian physics, viii
causality in —, 216
tunnel effect, 14
identity of salient form and pregnancy in —, 17
unintelligibility of —, 218
relation with the a priori, 1
quantum field theory, 43
Questionnaire
tree structure of a —, simulating embryological finality, Note (10), 187
Quiddities [Aristotle, Greek: to ti en
eital]
logoi of homoeomerous substances, 148
the problem of — is little understood, 186
Reaction-diffusion (equations of)
limits of their use in biology, 47
Recapitulation
the Haeckel-Müller law, 111
van Baer's law, 112
ontogeny recapitulates phylogeny, or Haeckel's biogenetic law for language, 22
Relativity
the principle of — known before Newton or Einstein, 50
Einstein's — does not affect the a priori validity of Euclidean geometry, 1
Rivers
phenomenon brought to light by F. and M. Diener, Note (5), 64
S
Salience, saliency, salient forms
actions of a salient form on a pregnancy flow: preprogram, 43
definitions, viii
figurative effects, 16
interaction between salient forms, or collision, 41
investing of a salient form by a pregnancy, 6
individuated salient form, 4
salient form as opposed to a feature, 3
Satisfaction
expressed by the middle voice in the SVO sentence, 191
— of the subject, 26
Sclerotome
part of a somite, 88-89
Semiphysics
term due to Jean Petitot, vii
Sensation
syntactic properties of verbs of —, 37, 202
Sign (in the sense of C.S. Peirce), 13
Smoothing
— of a catastrophe, 88-89
modulated — of a catastrophe, 119-120
Setion (theory of)
Note (15), 39
Somatoeleus
dorsal part of the lateral mesoderm, 88
Somite
structure of a —, Fig. 4.19, 89
Soul [Greek: psyche]
— of an anhomoemerous part, 178-179
— plurality of the (functional) — of a living being, 181
Species [after Aristotle, Greek: eidos]
— provided by the motor of the act
—, 149
— as "secondary entity", 246-247
final — (eschaton eidos), 181, 209
— as part of a genus, 193-194
scission through bifurcation, viii
Spinal (axis)
organogenesis of the —, 94-95
ontogenetically, 94
phylogenetically, 130
Splanchnopleure
ventral part of the lateral mesoderm, 88-89
Stratification
mathematical theory used in the description of an organism, 109
Substrate [Aristotle, Greek: hypokeimenon]
axiomatic —, 144
abstract —, 168, 194
Symbol
mathematical —: partial differential equation derived from the main part of a propagation equation, 4
Symmetries
— of the chief BPNs, 125
— of the physical universe, 218
— in vertebrates, 94
Syntactic (structures)
hypothesis as to the origin of —, 26
interpretation in terms of salience and pregnancy, 5
universality of —, 189
Topos
space unknown to Aristotle, 166
— and its rediscovery, 205
topoë in philosophical erudition, Note (2), 186
Transitional
— objects (Winnicott), 23
Transitive (sentence)
description, 26-27
various forms of transitivity, 201–202
Triploblastica
universality of the three germinal layers, 77–78
Turbulence
weak — (Ruelle-Takens theory), 77
Notes (5) and (8), 103

U
Universals (linguistic)
arguments in favor of —, 29–30

V
Valence
— of a verb (Teanière), 24
Vegetal
(animal gradient +), 77
Vertebra
organogenesis, Fig. 4.29, 90
Vertebrates
embryology of —, 84
supposed origin of —, viii

Z
Zoophyta
sessile marine animals, 67, 119

<table>
<thead>
<tr>
<th>INDEX OF NAMES</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>Adorno, Theodor, 63</td>
</tr>
<tr>
<td>Al Kindi, 141</td>
</tr>
<tr>
<td>Andersen, E.S., 187</td>
</tr>
<tr>
<td>Archimedes (Thrust), 129</td>
</tr>
<tr>
<td>Argemi, Jose, 56</td>
</tr>
<tr>
<td>Aristotle, viii, 1–3, 37, 45, 66, 68, 74, 97, 105, 113, 144, 146–149, 150, 159, 169, 177, 181, 184</td>
</tr>
<tr>
<td>Arno1'd, V.L., 64</td>
</tr>
<tr>
<td>Aubert, M., et al., 187</td>
</tr>
<tr>
<td>Averroes, 30</td>
</tr>
</tbody>
</table>

| **B** |
| Bachelard, Gaston, 25 |
| Bacon, Francis, 232 |
| Van Baer, 112 |
| Benvenstein, Emile, 247 |
| Bergé, Pierre; Pomeau, Yves; Vidal, Christian, 103 |
| Bergson, Henri, 55–220 |
| Berlinski, David, 176 |
| Bernardin de Saint-Pierre, Jacques-Henri, 217, 220 |
| Von Bertalanffy, Ludwig, 100 |
| Botti (Numbers), 110 |
| Birkes, Arthur W., 17 |
| Bloomfield, Leonard, 190, 211 |
| Boltzmann, Ludwig, 186 |
| Boudon-Bourricand, 39 |
| Bouligand, Yves, 140 |
| Roveri, Theodor, 104 |
| Brains, 38 |
| Braunstein, Valentino, 143 |

| **C** |
| Cajétan, 234, 252 |
| Cantor, Georg Friedrich, viii |
| Carnot, Sardi, 247 |
| Cassirer, Ernst, 25, 39 |
| Chandoquis, Rosine, 115, 141 |
| Charcot, Jean-Martin, 21 |
| Chemin, H.F., 168 |
| Chido, 104 |
| Christophe, Fig. 7.4, 177 |
| Costa de Beauregard, 216 |
| Couillet, P.; Gombaud, J.M.; Tressor, Ch., 59, 80 |
| Cournot, Antoine Augustin, 220 |
| Curie, Pierre, 39 |
| Cuvier, Georges, 104, 106, 140 |

| **D** |
| Dagognet, François, 142 |
| Dedekind, Richard, viii |
| Delso1, Michel, 141 |
| Descentes, René, 166, 169 |
| Diener, Franeline and Marc, 53 |
| Diederich, Jean, 1 |
| Dold, Albrecht, 211 |
T
Ternibre, Lucien, 24, 25, 39, 150, 190
St. Thomas Aquinas, 238
Tort, Patrick, 140
Trendelenburg, Friedrich, 247
Tricot, J., 243
Turing, A.R., 47

V
Valéry, Paul, 139, 143, 166
Van der Pol-Léonard (Equation of),
75, 88, 97, 114
Van der Waals (Equation of), 25
Vesalius, Andreas, 53

W
Waddington, Conrad Hal, 10, 19, 33,
211
Weiss, Paul, 17
Wertheimer, Max, 17
Weyl, Hermann, 123
Whitehead, Alfred North, 249
Whorf, Benjamin, 189, 190, 211
Wigner, Eugene Paul, 220
Wildgen, W.; Mottron, C.L., 38
Winnicott, Donald W., 23, 38
Winter, Ploog and Latta, 20

X
Xenocrates, 165

Z
Zecman, E.C., 64