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Preface

On one level, this text can be viewed as suitable for a traditional course on ordinary differen-
tial equations (ODEs). Since differential equations are the basis for models of any physical
systems that exhibit smooth change, students in all areas of the mathematical sciences and
engineering require the tools to understand the methods for solving these equations. It is
traditional for this exposure to start during the second year of training in calculus, where the
basic methods of solving one- and two-dimensional (primarily linear) ODEs are studied.
The typical reader of this text will have had such a course, as well as an introduction to
analysis where the theoretical foundations (the ε’s and δ’s) of calculus are elucidated. The
material for this text has been developed over a decade in a course given to upper-division
undergraduates and beginning graduate students in applied mathematics, engineering, and
physics at the University of Colorado. In a one-semester course, I typically cover most of
the material in Chapters 1–6 and add a selection of sections from later chapters.

There are a number of classic texts for a traditional differential equations course, for
example (Coddington and Levinson 1955; Hirsch and Smale 1974; Hartman 2002). Such
courses usually begin with a study of linear systems; we begin there as well in Chapter 2.
Matrix algebra is fundamental to this treatment, so we give a brief discussion of eigenvector
methods and an extensive treatment of the matrix exponential. The next stage in the tradi-
tional course is to provide a foundation for the study of nonlinear differential equations by
showing that, under certain conditions, these equations have solutions (existence) and that
there is only one solution that satisfies a given initial condition (uniqueness). The theoreti-
cal underpinning of this result, as well as many other results in applied mathematics, is the
majestic contraction mapping theorem. Chapter 3 provides a self-contained introduction to
the analytic foundations needed to understand this theorem. Once this tool is concretely
understood, students see that many proofs quickly yield to its power. It is possible to omit
§§3.3–3.5, as most of the material is not heavily used in later chapters, although at least
passing acquaintance with Theorem 3.10 and Lemma 3.13 (Grönwall) is to be encouraged.

However, this text does not aim to cover only the material in such a traditional ODE
course; rather, it aspires to serve as an introduction to the more modern theory of dynamical
systems. The emphasis is on obtaining a qualitative understanding of the properties of
differential dynamical systems, namely, those evolution rules that describe smooth evolution
in time.1 The primary concept of this study, the flow, is introduced in Chapter 4. The

1This is not to say that the dynamical systems that we study are always differentiable—vector fields need not
be smooth.

xvii



xviii Preface

qualitative theory is often concerned with questions of shape and asymptotic behavior that
lead us to use topological notions such as conjugacy in the classification of dynamics.

The classification of dynamical behavior begins with the simplest orbits, equilibria and
periodic orbits. As Henri Poincaré noted in his classic New Methods in Celestial Mechanics,
(1892, Vol. 1, §36),

what renders these periodic solutions so precious to us is that they are, so to
speak, the only breach through which we may attempt to penetrate an area
hitherto deemed inaccessible.

Only in the demonstration that dynamics in the neighborhood of some of these orbits is
conjugate to their linearization is it seen that the predisposition of applied scientists to
concentrate on linear systems has any value whatsoever.

The local classification of equilibria leads to the theory of invariant manifolds in
Chapter 5. The stable and unstable manifolds, proved to exist for a hyperbolic saddle, give
rise to one prominent mechanism for chaos—heteroclinic intersection. The center manifold
theorem is also important preparation for the treatment of bifurcations in Chapter 8.

As mathematicians, allow yourselves to become entranced by the exceptions to the
validity of linearization, namely, with those orbits that are nonhyperbolic. It is in the study
of these exceptions that we find the most beautiful dynamics—even in the case of the phase
plane, to which we return in Chapter 6. The first three sections of this chapter are fun-
damental; §§6.4–6.8 can be omitted in favor of later chapters. As we see in Chapter 8,
the exceptional cases form the organizing centers for the behavior of systems undergoing
changing parameters. A qualitative change in behavior under a small change of parame-
ters is called a bifurcation. A complete exegesis of theory of bifurcations requires a full
text on its own, and there are many excellent texts appropriate for a more advanced class
(Guckenheimer and Holmes 1983; Golubitsky and Schaeffer 1985; Kuznetsov 1995). We
introduce the reader to the basic ideas of normal forms and treat codimension-one and -two
bifurcations.

Perhaps the most exciting recent developments in dynamical systems are those that
show that even simple systems can behave in complicated ways, namely, the phenomena of
chaos. In Chapter 7, we introduce the reader to the concepts necessary for understanding
chaos: Lyapunov exponents, transitivity, fractals, etc. We also give an extensive discussion
of Melnikov’s method for the onset of chaos in Chapter 8. A more advanced treatment of
chaotic dynamics requires a discussion of discrete dynamics (mappings) and can be found
in texts such as (Katok and Hasselblatt 1999; Robinson 1999; Wiggins 2003).

The final chapter treats the subject closest to this author’s heart: Hamiltonian dynam-
ics. Since the basic models of physics all have a Hamiltonian (or Lagrangian) formulation,
it is worthwhile to become familiar with them. While a traditional physics text treats these
on a concrete level, this book provides an introduction to some of the geometrical aspects
of Hamiltonian dynamics, including a discussion of their variational foundation, spectral
properties, the KAM theorem, and transition to chaos. Again, there are several advanced
texts that go much further, for example (Arnold 1978; Lichtenberg and Lieberman 1992;
Meyer and Hall 1992).

While the proofs of many of the classical theorems are included, this text is not
just an abstract treatment of ODEs but an attempt to place the theory in the context of
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its many applications to physics, biology, chemistry, and engineering. Examples in such
areas as population modeling, fluid convection, electronics, and mechanics are discussed
throughout the text, and especially in Chapter 1. The exercises introduce the reader to many
more. Furthermore, to develop a geometrical understanding of dynamics, each student must
experiment; we provide some examples of simple codes written in Maple, Mathematica,
and MATLAB in the appendix, and we use the exercises to encourage the student to explore
further. There are several texts that focus completely on using one or more of tools like
these to explore dynamics (Lynch 2001; Baumann 2004).

I hope that this book conveys a bit of my amazement with the beauty and utility of this
field. Dynamical systems is the perfect combination of analysis, geometry, and physical
intuition. Central questions in dynamics have been formulated for centuries, and although
some have been solved in the past few years, many await solution by the next generation.

It is far better to foresee even without certainty than not to foresee at all. (Henri
Poincaré, The Foundations of Science)

James Meiss
Boulder, Colorado

March 2007



Chapter 4

Dynamical Systems

Science, as well as history, has its past to show—a past indeed, much larger;
but its immensity is dynamic, not divine. (James Martineau)

So far, our approach to the study of dynamics has been completely traditional: we con-
centrated on some simple, solvable systems—especially linear systems—and we proved
that more general, nonlinear systems actually have solutions. By contrast, the theory of
“dynamical systems” is more concerned with qualitative properties. In this chapter we will
seek to develop a classification of the qualitative properties of dynamics and to understand
asymptotic behavior—what happens as t → ∞. The first part of this study concerns the
trajectories of a dynamical system in a local neighborhood. The goals are to classify equi-
libria by their stability, invariant manifolds, and topological type. This information will be
used in later chapters to understand bifurcations and global dynamics.

4.1 Definitions
Behold the rule we follow, and the only one we can follow: when a phenomenon
appears to us as the cause of another, we regard it as anterior. It is therefore
by cause that we define time. (Henri Poincaré, 1914)

According to the Encyclopedia Britannica, dynamics is the “branch of physical science that
is concerned with the motion of material objects in relation to the physical factors that affect
them: force, mass, momentum, energy.” Since Newton showed that mechanical systems
are governed by differential equations, these do indeed provide good examples of dynamics.
However, a more general definition is

◃ dynamical system: An evolution rule that defines a trajectory as a function
of a single parameter (time) on a set of states (the phase space) is a dynamical
system.

Dynamical systems are therefore categorized according to properties of their phase space, of
their evolution rule, and of time itself. In this book, we consider systems with a continuous
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106 Chapter 4. Dynamical Systems

phase space, M , that is typically Rn or a more general space called a “manifold” such as the
cylinder or torus.21 Systems with a discrete phase space include the heads–tails model of
a coin toss and “cellular automata” (Wolfram 1983). We will also primarily study systems
with a continuous time variable, t ∈ R. Systems with a discrete time variable are called
“mappings” (Alligood, Sauer, and Yorke 1997; Devaney 1986).

The evolution rule can be deterministic or stochastic. A system is deterministic if for
each state in the phase space there is a unique consequent, i.e., the evolution rule is a function
taking a given state to a unique, subsequent state. Systems that are nondeterministic are
called stochastic: a standard example is the idealized coin toss. For this case, the phase
space is finite, consisting of the two states, heads and tails, and time is discrete taking the
values at which the coin is examined. The evolution rule states that a head or a tail is equally
likely at the next toss, independent of the current state of the coin.

When the evolution rule is deterministic, then for each time, t , it is a mapping from
the phase space to the phase space,

ϕt : M → M, (4.1)

so that x(t) = ϕt (xo) denotes the position of the system at time t that started at xo. Here we
assume that t takes values in some allowed range and that the initial value of time is zero,
so that ϕo(xo) = xo.

Every dynamical system has orbits or trajectories; namely, the sequence of states that
follow from or lead to a given initial state. The forward orbit is the set of subsequent states

"+
x ≡ {ϕt (x) : t ≥ 0} . (4.2)

Similarly, the preorbit is the set of sequences of states that lead, according to the evolution
rule, to the initial state. When the function ϕt is one to one, then the preorbit is simply the
set {ϕt (x) : t ≤ 0}; otherwise, it is possible that several prior points could lead to the same
x. Finally, the full orbit of a point x, "x , is simply the union of the forward and preorbits
of x.

The simplest orbit is an equilibrium, where the orbit is a single point: "x = {x}. A
periodic orbit, γ , is a closed loop; it can be viewed as an embedding of the circle S1 into
the phase space, γ : S1 → Rn. Note that for each x on a periodic orbit, there is a time T

such that the point returns to itself:

ϕT (x) = x. (4.3)

More generally orbits can be quasiperiodic, aperiodic, or chaotic; we will discuss these in
later sections.

An orbit is a special case of an

◃ invariant set: A set$ is invariant under a rule ϕt if ϕt ($) = $ for all t ; that
is, for each x ∈ $, ϕt (x) ∈ $ for any t .

Thus for each point x in an invariant set $, the entire orbit of x must be in $ as well. Just
as we define a forward orbit, we can also define a

◃ forward invariant set: A set $ is forward invariant if ϕt ($) ⊂ $ for all
t > 0.

21For our purposes, it is sufficient to think of a manifold simply as a smooth, multidimensional surface embedded
in Rn; see §5.5. More formal definitions are given in courses on differential geometry.
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ϕϕ

Figure 4.1. Illustration of the group property of a flow, ϕs(y) = ϕs (ϕt (x)) = ϕt+s(x).

4.2 Flows
In §3.4 the solution of the initial value problem (3.26) with initial condition y was denoted
by u(t; y), and it was shown that u is a C1 function of both t and y when the vector field is
C1. In this section, we will let

u(t; y)→ ϕt (y),

as in (4.1), so that the evolution rule is now thought of as a map from the phase space to
itself that is parameterized by time. To emphasize this change of point-of-view, we define
a class of evolution rules without reference to ordinary differential equations (ODEs):

◃ flow: Suppose the phase space for a dynamical system is a manifold M . A
complete flow ϕt (x) is a one-parameter, differentiable mapping ϕ : R×M →
M , such that

(a) ϕ0(x) = x, and

(b) for all t and s ∈ R,
ϕt ◦ ϕs = ϕt+s , (4.4)

where the composition symbol, ◦, means ϕt ◦ ϕs(x) ≡ ϕt (ϕs(x)).

For each fixed x, ϕt (x) defines a curve in M as t varies over R—the orbit (4.2). Property
(b) is known as the group property, since it implies that under the operation of composition,
the family of maps {ϕt : t ∈ R} is an additive group (see Figure 4.1). For example, the
group property for s = −t implies ϕt ◦ ϕ−t = ϕ0 = id (here id is the “identity” function,
id(x) = x), hence ϕt is an invertible function of x for each t , and moreover

(ϕt )
−1 = ϕ−t .

Consequently, for each t the flow ϕt is one-to-one and onto map on M: it is a bijection. The
group property also implies that two distinct trajectories cannot cross: if two trajectories
ever touch, say, at a point y = ϕt (x) = ϕs(z), then the group property implies thatϕt+r (x) =
ϕs+r (z) for all r ∈ R, and the trajectories coincide.
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Example: If ϕ is a flow and γ is a periodic orbit, then the group property and (4.3) imply
that

ϕT +s(x) = ϕs(x),

and so ϕ2T (x) = x and indeed ϕkT (x) = x for any integer k. If T is the minimum positive
value for which ϕT (x) = x, it is called the period of γ . It is also easy to see from the group
property that if y is any other point on γ , then it has the same period as x: ϕT (y) = y.

A flow is complete when it is defined for all t , so that the group property applies for all
time. Usually, when we use the term “flow” without any qualification we mean a complete
flow. Note that the group property implies that x(t) = ϕt−s (ϕs(xo)) = ϕt−s (x(s)) for any
time s along the trajectory. Therefore, x(s) can also be viewed as the “initial condition” for
the trajectory x(t), but one that is defined at the time s.

Since a flow is differentiable, it has an associated ODE, or more precisely a

◃ vector field : A vector field is a function f : M → Rn that defines a vector
v = f (x) at each point x in the phase space M .

The vector field associated with a flow is defined by

f (x) = d

dt
ϕt (x)

∣

∣

∣

∣

t=0
. (4.5)

This vector field is interesting because the flow is a solution of the differential equation
ẋ = f (x), as we show next.

Lemma 4.1. If ϕt (x) is a flow, then it is a solution of the initial value problem

d

dt
ϕt (xo) = f (ϕt (xo)), ϕo(xo) = xo,

for the vector field defined in (4.5).

Proof. Let x(t) = ϕt (xo). Differentiating and using the group property yields

dx

dt
= lim

ε→0

1
ε

[ϕt+ε(xo)− ϕt (xo)] = lim
ε→0

1
ε

[ϕε(x(t))− ϕo(x(t))] = f (x(t)).

Therefore, the flow is the solution of the differential equation ẋ = f (x).

When the flow is complete, the solutions to this differential equation exist for all time:
their maximal interval of existence is (−∞,∞).

Example: The function ϕt (x) = xeλt is a smooth map ϕ : R×R→ R, and can be seen to
satisfy the flow properties (a) and (b). Differentiation gives d

dt
ϕt (x) = λϕt (x), so that the

vector field associated with ϕt is simply f (x) = λx. Of course, ϕt is the general solution
of the ODE ẋ = λx.
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Example: Consider the function ϕt : R2 → R2 defined by

ϕt (x) =
(

ϕ1t (x)

ϕ2t (x)

)

=
(

x1e
−t

x2e
x1(e−t−1)

)

.

This function is clearly defined for all (x1, x2) ∈ R2 and t ∈ R, and it is C1 on this domain.
To see that it satisfies the flow properties note first that ϕ0(x) = x and that

ϕt (ϕs(x)) =
(

ϕ1s(x)e−t

ϕ2s(x)eϕ1s (x)(e−t−1)

)

=
(

x1e
−(s+t)

x2e
x1(e−s−1)ex1e

−s(e−t−1)

)

= ϕs+t (x).

Thus ϕt (x) is a flow. The vector field (4.5) associated with this flow is given by differenti-
ation:

d

dt
ϕt (x)

∣

∣

∣

∣

t=0
=
( −x1e

−t

−x2x1e
−t ex1(e−t−1)

)

t=0

=
( −x1

−x1x2

)

= f (x).

Note that f (x) is itself C1 on R2.

Not every differential equation defines a complete flow, because, as we saw in §3.5, the
solutions do not necessarily exist for all time. However, if they do, then the flow is complete.

Lemma 4.2. Let E be an open subset of Rn, and f : E → Rn a C1 vector field such that
the initial value problem ẋ = f (x), x(0) = xo, has a solution u(t; xo) ∈ E that exists for
all t ∈ R and all xo ∈ E. Then ϕt (xo) ≡ u(t; xo) is a complete flow.

Proof. Theorem 3.15 implies that u(t; xo) is a differentiable function of both t and xo.
Moreover, the solution is unique in any interval in which it exists. To identify the solution as
a flow, the group property must be demonstrated. Choose an s ∈ R and define x1 = u(s, xo).
The initial value problem starting at x1 has a solution that, by uniqueness, is given by the
same function u(t; x1). However, uniqueness also implies that this new solution must follow
the original solution; therefore,

u(s + t; xo) = u(t; x1) = u(t; u(s; xo)).

This is the group property (4.4).

4.3 Global Existence of Solutions
Theorem 3.10 (existence and uniqueness) implies that if a vector field f : E → Rn is
Lipschitz, then the initial value problem

ẋ = f (x), x(0) = xo, (4.6)

has a unique solution for t within a maximal, open interval J = (α,β) (recall Theorem 3.16).
As we have noted, such a solution defines a flow, although the flow is not complete when
either α or β is not infinite. Recall that a complete flow must obey the group property
(4.4) for all t and s ∈ R, and so the interval of existence must be all of R. This makes the
discussion of the global properties of the solutions of ODEs somewhat problematic.
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There are several ways in which this problem can be obviated. For example, whenever
the vector field f is bounded, the solutions do give a flow, as in the following theorem.

Theorem 4.3 (Bounded Global Existence). If f : Rn → Rn is locally Lipschitz and
bounded, then the solution of (4.6) defines a complete flow.

Proof. Since f is locally Lipschitz, a solution x(t) = u(t; xo) exists on some maximal,
open interval (α,β). By assumption, there is an M such that |f (x)| ≤ M . The integral
equation (3.10) then gives the inequality (for t > 0)

|x(t)− xo| ≤
∫ t

0
|f (x(s))| ds ≤ Mt.

If β were finite, then this inequality implies that x(t) is contained in the compact set
{x : |x − xo| ≤ Mβ}; however, this contradicts Theorem 3.17 (unboundedness). Conse-
quently, β is not the maximal value, and indeed there is no finite upper limit for the interval
of existence. Similarly, it can be argued that α cannot be finite and therefore that the solution
exists for all t . The solution defines a flow by Lemma 4.2.

For example, the flow of the vector field f (x) = sech(x) on R is complete. Unfor-
tunately, as shown in §3.5, the flow of an unbounded vector field such as f (x) = x2 is not
typically complete. Nevertheless, it is possible to show that any such flow is equivalent to
a complete flow.

Theorem 4.4. If f (x) is locally Lipschitz on Rn, then (4.6) is equivalent to

dy

dτ
= F(y) = f (y)

1 + |f (y)|

upon reparameterizing time. The vector field F defines a flow on Rn since it is Lipschitz
and bounded.

The use of the term “equivalence” for changing the definition of the time variable will
be discussed more in §4.7.

Proof. The original equation has a solution x(t) in some maximal interval (α,β). Define
y (τ (t)) = x(t) using the new time variable

τ =
∫ t

0
(1 + |f (x(s))|) ds. (4.7)

Since dτ
/

dt = 1+|f (x(t))| > 0, the transformation (4.7) is strictly monotone increasing,
so it defines a one-to-one mapping τ . Moreover, the differential equation for y(τ ) is

dy

dτ
= dx

dt

dt

dτ
= f (x)

1 + |f (x)| = F (y(τ )) . (4.8)
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Using the identity (ab − cd) = 1/2 [(a − c)(b + d) + (b − d)(a + c)], it is not too hard to
show that the new vector field F is locally Lipschitz:

|F(y)− F(x)| = |f (x)(1 + |f (y)|)− f (y)(1 + |f (x)|)|
(1 + |f (x)|)(1 + |f (y)|)

= 1
2

|(f (x)−f (y))(2+|f (x)|+|f (y)|)+ (|f (y)|− |f (x)|)(f (x)+f (y))|
(1 + |f (x)|)(1 + |f (y)|)

≤ |f (x)− f (y)| 1 + |f (x)| + |f (y)|)
(1 + |f (x)|)(1 + |f (y)|) .

Since the ratio above is bounded by one, F has the same Lipschitz constant as f . Moreover,
as the new vector field F is bounded, Theorem 4.3 implies that the solutions of (4.7) exist
for all time. The solution x(t) must be unbounded as t → α or β; consequently, the
transformation τ maps J onto the infinite interval (−∞,∞).

Global existence also can be proved for vector fields that are globally Lipschitz.

Theorem 4.5 (Lipschitz Global Existence). Suppose that f (x) is globally Lipschitz on
Rn. Then the solutions exist for all time, and therefore define a flow.

Proof. Beginning just as in the proof of Theorem 4.3, we obtain from the integral equation
(3.10) the inequality

|x(t)− xo| ≤
∫ t

0
|f (x(s))|ds ≤

∫ t

0
(|f (x(s))− f (xo)| + |f (xo)|) ds

for any 0 ≤ t ≤ β. The first term in the integral can be bounded using the global Lipschitz
constant, K , for f . Suppose that β is finite; then for all 0 ≤ t ≤ β,

|x(t)− xo| ≤ β |f (xo)| + K

∫ t

0
|x(s)− xo| ds,

which by the Grönwall inequality (3.30) implies that |x(t)− xo| ≤ β |f (xo)| eKt . Hence,
when 0 ≤ t ≤ β, x(t) is contained in the compact set

{

x : |x − xo| ≤ β |f (xo)| eKβ
}

.
However, by Theorem 3.17 (unboundedness) this is impossible, so β cannot be finite. A
similar argument shows that α is not finite.

In some cases, a system of ODEs has a singularity that gives rise to a finite interval of
existence. However, we can also often use the idea of rescaling time in this case to obtain
a set of equations with global solutions.

Example: Consider two point masses interacting through mutual gravitational forces, and
suppose that the velocity of the particles is tangent to the line connecting their masses.
Choose a reference frame fixed on one mass, and let the origin correspond to the position
of this mass. Denoting the position of the second particle by x ∈ R, Newton’s equations
for this system are then

ẋ = v, v̇ = −K

x2
sgn(x), (4.9)
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where K = G(m1 + m2). This is a Hamiltonian system—recall (1.12)—on the two-
dimensional phase space of position, x, and velocity, v, with energy H = 1/2v

2 − K
/

|x|.
However, we must restrict our attention to the set where x ̸= 0 to avoid a singularity in the
equation; consequently, the interval of existence is finite when a collision occurs (for exam-
ple, when H < 0). In 1920 Levi–Civita developed a transformation that regularizes this col-
lision singularity (Siegel and Moser 1971). By analogy with (4.7), he defines a new time by

τ =
∫ t

0

ds

x(s)
.

To simplify the equations, Levi–Civita also defines new dynamical variables (u, w) using
the transformation

x = u2

v = 2
w

u

⇔
u = √x

w = 1
2
v
√

x,

which is well defined for x > 0. Substituting these transformations into the system (4.9)
gives

du

dτ
= 1

2
v
√

x = w,

dw

dτ
= w2

u
− K

2u
= 1

2
Hu,

(4.10)

where H = (2w2 −K)
/

u2 is the energy in the new coordinates. Since H is a constant,
this system is effectively linear and its solutions are very simple; recall (2.20). Note that
this linear system is defined for all (u, w) and has a global interval of existence. When
H < 0, the solutions to (4.10) are oscillatory, and u changes sign; the negative values of u

correspond to fictitious imaginary positions of the masses.
It is much more complicated to regularize the collision of more than two point masses.

The three-body collision was studied by (McGehee 1974), but the behavior near a simulta-
neous collision of more than three bodies is still an unresolved question.

With these results, the concept of “flow” can be used to represent dynamics in most
situations of interest—though with a possible reparameterization of time.

4.4 Linearization
The simplest orbit of a dynamical system is one that does not move, an

◃ equilibrium: A point x∗ is an equilibrium of (4.6) if f (x∗) = 0.

Some authors use the term “critical point” or “singular point” in place of equilibrium. Neither
of these is, in my opinion, good terminology, as they seem to imply that something critical
or singular happens at equilibria, when in fact an equilibrium is not critical or singular at
all! It is simply a place where there is no motion. Moreover, it is standard to use the term
“critical point” for a point where the derivative of a function vanishes.
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Example: If the ODE is a gradient system ẋ = ∇V (x), then equilibria occur at critical points
of the “potential” V . Therefore, in this case the terminology “critical point” is appropriate
for the equilibria. The dynamics of a gradient system can be visualized by drawing the
contours of the potential, since the velocity is perpendicular to surfaces of constant V .

When f (x) is C1, it is reasonable to hope that the motion in the neighborhood of an
equilibrium can be studied by a Taylor series expansion of the ODE about x∗. To do this,
substitute x(t) = x∗ + δx(t) into the ODE (4.6) using f (x∗) = 0 to obtain

d

dt

(

x∗ + δx
)

= d

dt
δx = f (x∗ + δx) = f (x∗) + Df (x∗)δx + o(δx),

d

dt
δx = Df (x∗)δx + o(δx),

(4.11)

by Taylor’s theorem. Here the notation (pronounced “little oh of δx”) means

◃ g(x) = o (f (x)) as x → a if for all ε > 0 there is a neighborhood N(ε) of
a such that |g(x)| < ε |f (x)| for all x ∈ N(ε).

Recall from §3.1 that a neighborhood of a point a is any set that contains an open set
containing a. A similar notation is the “big oh” symbol, which means

◃ g(x) = O (f (x)) as x → a if there is a neighborhood N of a and a C ≥ 0
such that |g(x)| < C |f (x)| for all x ∈ N .

When f ∈ C2, then Taylor’s theorem implies that the remainder term in (4.11) is actually
O(δx2).

If we simply discard the o(δx) terms in (4.11), we obtain an ODE called the

◃ linearization: If f ∈ C1(E), then the linearization of ẋ = f (x) at the
equilibrium x∗ ∈ E is the differential equation

ẏ = Df (x∗)y. (4.12)

No justification, other than the desire for simplicity, has been given for neglecting the higher-
order terms in (4.11); nevertheless, (4.12) does give a faithful local representation for the
motion in some cases. Note that Df (x∗) = A is a constant matrix and so all our techniques
from Chapter 2 for solving linear systems apply. In particular, the general solution is
#(t, 0)yo where #(t, 0) is the fundamental matrix (2.46).

In §2.7 the solutions of linear ODEs were classified by their generalized eigenspaces
according to the sign of the real part of the eigenvalues, resulting in the decomposition
E = Eu ⊕ Es ⊕ Ec into the direct sum of unstable, stable, and center eigenspaces. We
can now use this decomposition to classify the behavior “near” an equilibrium. We first
generalize the notion of hyperbolic linear systems in §2.7 to general equilibria:

◃ hyperbolic: an equilibrium x∗ of a C1 vector field f is hyperbolic if none
of the eigenvalues of Df (x∗) have zero real part, or equivalently when Ec is
empty.
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Hyperbolic equilibria fall into three classes:

◃ sink: an equilibrium is a sink if all of the eigenvalues of Df (x∗) have
negative real parts (are in the left half of the complex plane), or equivalently
when E = Es ;

◃ source: an equilibrium is a source if all of the eigenvalues of Df (x∗) have
positive real parts, or equivalently when E = Eu; and

◃ saddle: an equilibrium is a saddle if it is hyperbolic, but not a sink or a
source, equivalently when E = Es ⊕ Eu.

Recall that in §2.2 an equilibrium was called a stable node when its eigenvalues are real
and negative and an unstable node when they are real and positive. The classification into
sink and source above includes these cases but also allows the eigenvalues to be complex.
When some or all of the eigenvalues of Df (x∗) are complex, we can indicate this by adding
some additional modifiers to the classification:

◃ focus: there is a subspace with complex eigenvalues with nonzero real part, or

◃ center: there is a subspace with purely imaginary eigenvalues.

For example, a four-dimensional saddle with two pairs of eigenvalues λ1,2 = 1 ± 2i and
λ3,4 = −2 ± 4i is called a saddle-focus. There are many varieties of foci, depending upon
the number of complex eigenvalues. If we wish to be more precise in the classification, we
can specify the dimension of each of the invariant subspaces.

Example: Consider the set of ODEs on R3:
⎛

⎝

ẋ

ẏ

ż

⎞

⎠ = f (x, y, z) =

⎛

⎝

x − y

z + y2

x + yz

⎞

⎠ . (4.13)

Solving the three equations f (x, y, z) = 0 gives three equilibria, (0, 0, 0), (1, 1,−1), and
(−1,−1,−1). The Jacobian of the vector field at a general point is

Df =

⎛

⎝

1 −1 0
0 2y 1
1 z y

⎞

⎠ .

The characteristic polynomial of this matrix is

p(λ) = det(λI −Df ) = λ3 − (3y + 1)λ2 − (z− 3y − 2y2)λ+ 1 + z− 2y2.

Perhaps the hardest part of linear stability analysis is to find the roots of p(λ). The critical
points and critical values of p can be used to determine the relevant information even
without explicitly finding the eigenvalues. For example, a cubic polynomial always has
one real root; however, it has three real roots only if it has two real critical points, two
values ci such that p′(ci) = 0, and if the signs of p at the two critical points are opposite,
so p(c1)p(c2) < 0.

The first equilibrium (0, 0, 0) of (4.13) has the characteristic polynomial

p(λ) = λ3 − λ2 + 1.
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x

z

y

(1,1,–1)

(–1,–1,–1)

Figure 4.2. Several orbits of the system (4.13) near its three equilibria.

Since p′(c) = 3c2 − 2c, there are critical points at c1 = 0 and c2 = 2
/

3, where p(ci) > 0.
Thus, there is only one real root. Since p(0) = 1, the real root, λ1, is negative; and since
p(−1) = −1, then −1 < λ1 < 0. A numerical solution shows that λ1 ≈ −0.7548.
The remaining roots must be complex, λ2,3 = α ± iβ. The sum of the eigenvalues is
tr(Df ) = 1 = λ1 + 2α, so that α = 1/2(1 − λ1) > 1/2. Numerically, α ≈ 0.8774. As a
consequence, the origin is a hyperbolic saddle. Since one pair of eigenvalues is complex, it
can be called a saddle-focus. Here, Eu is two-dimensional, and Es is one-dimensional.

The second equilibrium, (1, 1,−1), has the characteristic polynomial

p(λ) = λ3 − 4λ2 + 6λ− 2.

The critical points of p are complex, so p has only one real root. Since p(0) < 0 and p(1) >

0, then 0 < λ1 < 1. Moreover, since Re(λ2,3) = α = 1/2 (tr(Df )− λ1) = 1/2(4− λ1) > 0,
this point is a source-focus and has a three-dimensional unstable space.

Finally, the equilibrium (−1,−1,−1), has characteristic polynomial

p(λ) = λ3 + 2λ2 − 2,

which has critical points at c1 = 0 and c2 = −4
/

3, where p(ci) < 0, so again there is a
single real root, 0 < λ1 < 1. So α = 1/2 (tr(Df )− λ1) = 1/2(−2 − λ1) < 0. Thus, this
point is a saddle-focus with a two-dimensional stable space and a one-dimensional unstable
space. Some orbits of this system are shown in Figure 4.2.

One of the major questions that we will soon address is, “To what extent does the solution of
the full system look like the solution of the linear system?” Moreover, what is meant by look
like? A partial answer to this will be provided by the Hartman–Grobman theorem in §4.8.
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Figure 4.3. Lyapunov stability.

4.5 Stability
In §2.7 we said a system is linearly stable if it has bounded forward orbits; in other words,
each orbit stays a bounded distance from the equilibrium at the origin. In that section we
also defined the concepts of spectral stability and asymptotic linear stability. For nonlinear
systems, these definitions are deficient: simply being bounded does not characterize the long
time dynamics. A better definition of stability refers to orbits that are close: an equilibrium
is stable if orbits that start “nearby” stay “nearby.” Aleksandr Lyapunov (pronounced
lēah·pū′·nof) (1857–1918) formalized this idea in 1892:

◃ Lyapunov stability: An equilibrium x∗ of a flow ϕt is (Lyapunov) stable if
for every neighborhood N of x∗ there is a neighborhood M ⊂ N such that if
x ∈ M , then ϕt (x) ∈ N for all t ≥ 0.

This construction is sketched in Figure 4.3. An equilibrium that is not stable is called
unstable.

For a metric space, Lyapunov stability is equivalent to the assertion that for every
ε > 0 there is a δ > 0 such that whenever x ∈ Bδ(x

∗), we have ϕt (x) ∈ Bε(x
∗) for all

t ≥ 0; recall (3.1). Whenever the word “stability” is used without qualification, it should
be taken to mean “Lyapunov stability.”

For a one-dimensional ODE, the stability of an equilibrium, x∗, is easily investigated
by examining the graph of the function f near x∗, as we discussed in §1.3. For example, if
there is a δ > 0 such that f (x) < 0 for x ∈ (x∗, x∗+ δ) and f (x) > 0 for x ∈ (x∗ − δ, x∗),
then x∗ is Lyapunov stable, since all points in the interval (x∗ − δ, x∗+ δ) move toward x∗

monotonically. This is illustrated by the middle equilibrium in Figure 4.4. Generalizing the
terminology from the linear case, such a point is a sink. By contrast, if the signs of f are
reversed, then the flow moves locally away from the equilibrium and x∗ is unstable, and it
is called a source (e.g., the leftmost equilibrium in Figure 4.4). If x∗ is a zero and f has the
same sign on both sides, then the point is often somewhat misleadingly called semistable—
even though by Lyapunov’s definition it is really unstable! This case corresponds to the
rightmost equilibrium in Figure 4.4. If f (x) = 0 on an interval about x∗, then there is an
interval of equilibria, and each equilibrium in the interior of this interval is stable.

These notions of sink, source, and semistable equilibria are topological: they follow
without any assumptions on the smoothness off . Whenf ∈ C1(R), however, these stability
properties are related to hyperbolicity. For example, when Df (x∗) ̸= 0, the equilibrium is
hyperbolic; it is stable when Df (x∗) < 0 and unstable when Df (x∗) > 0.
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f

x

Figure 4.4. Illustration of the three types of equilibria for a one-dimensional ODE.
The left equilibrium is a source, the middle a sink, and the right is semistable.

Example:The logistic ODE (1.7), ẋ = rx(1−x), has an unstable equilibrium x∗ = 0 when
r > 0, because Df (0) = r , and a stable one at x∗ = 1 where Df (1) = −r . Moreover,
every initial condition in the interval (0,∞) moves monotonically toward 1. Indeed, for
any ε, choose any δ ∈ (0, min(ε, 1)) and x ∈ [1− δ, 1 + δ]; then |ϕt (x)− 1| < δ < ε.
Hence x∗ = 1 is Lyapunov stable.

Example: f (x) = x2 − x cos x. This function, shown in Figure 4.5, has precisely two
zeros, x0 = 0, and x1 = cos(x1) ≈ 0.739085. The solution x(t) is monotone increasing if
x < x0 or x > x1, and monotone decreasing in the interval (x0, x1). Accordingly, x∗ = 0
is a stable equilibrium, while x∗ = x1 is unstable.

A nonhyperbolic equilibrium, one for which Df (x∗) = 0, can be either stable or unstable.
For example, the point x = 0 for ẋ = x2 is semistable but not Lyapunov stable, even though
all points starting with negative initial conditions asymptotically approach the origin. The
problem is that there is no neighborhood containing the origin for which points stay close.

Example: Supposef ∈ C1(R) and Df (0) = 0. There are four typical cases:

(a) f (x) = −x3, here graphical analysis implies x = 0 is stable, a sink;

(b) f (x) = +x3, unstable, a source;

(c) f (x) = ±x2, semistable; and

(d) f (x) ≡ 0, infinitely many equilibria.

This monotonic motion toward or away from an equilibrium is specific to one-
dimensional systems; higher-dimensional systems can exhibit oscillation. Moreover, even
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Figure 4.5. Graph of f (x) = x2 − x cos x.

in the linear case, the distinction between the two neighborhoods M and N is needed because
the eigenvectors of a matrix are not typically orthogonal.

Example:A matrix is normal if it commutes with its adjoint: [A∗, A] = 0, where A∗ = ĀT

is the conjugate transpose of A. It is not hard to see that the eigenspaces of a normal matrix
are orthogonal. The dynamics of a stable linear system with a nonnormal matrix can exhibit
a surprising temporary growth. Consider, for example,

ẋ =
( −1 10

0 −2

)

x ⇒ x(t) = c1e
−t

(

1
0

)

+ c2e
−2t

( −10
1

)

. (4.14)

The general solution shows that every initial condition is attracted to the origin, so the origin
should be stable. However, points that start in the disk of radius δ about the origin can leave,
at least for a while. For example, setting c1 = 9, c2 = 1, then x(0) = (−1, 1). However,
the second eigenvector quickly decays, leaving a large horizontal component. Consequently,
the orbit can move away from the origin for some time, as shown in Figure 4.6.

However, we can easily obtain a crude bound on |x(t)|, given that |x(0)|2 =
(c1 − 10c2)

2 + c2
2 ≤ δ2. This implies that both |c2| ≤ δ and |c1| ≤ 11δ so that

|x(t)|≤
∣

∣c1e
−t − 10c2e

−2t
∣

∣+
∣

∣c2e
−2t
∣

∣ ≤ |c1| e−t + 11 |c2| e−2t

≤ 22δ = ε.
(4.15)

So, if we choose δ = ε
/

22 we are guaranteed that every point that starts in the δ ball remains
in the ε ball.

A more stringent version of stability is the property of

◃ asymptotic stability: An equilibrium x∗ is asymptotically stable if it is stable
and there is a neighborhood N of x∗ such that every point in N approaches x∗

as t →∞.
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Figure 4.6. Orbits of the system (4.14) that start in a neighborhood M never leave N .

An asymptotically stable equilibrium is also called an attracting equilibrium. This is the
simplest case of the concept called an attractor; see §4.10. Note that by this definition, an
attractor must attract a neighborhood.

Example: We showed that the origin is a stable equilibrium of (4.14). Moreover, the
inequality (4.15) implies that every point is asymptotic to the origin, so it is asymptotically
stable as well.

There are ODEs that have equilibria with a neighborhood that eventually attracts all
nearby points but which is nevertheless not Lyapunov stable. In this case, nearby points may
move a large distance from the equilibrium. A physical model ODE system is often derived
to be valid only in some neighborhood of an equilibrium; consequently, when orbits move
far from the equilibrium the model may no longer be valid and it would not be appropriate
rely on the eventual return to define asymptotic stability.

Example: Consider the system

ṙ = r(1− r),

θ̇ = sin2 (θ/2) ,
(4.16)

where (r, θ) are polar coordinates in the plane. As shown in Figure 4.7, there are two equi-
libria, the origin and (1, 0). The origin is unstable; indeed the r dynamics is decoupled from
the θ dynamics, and graphical analysis immediately shows that every r > 0 is asymptotic
to r = 1. Similarly the θ equation is uncoupled and since sin2(θ

/

2) ≥ 0, the point θ = 0
is “semistable.” However, since θ is a periodic coordinate, even the points with θ = δ > 0,
which move away from the equilibrium point, will eventually return to θ = 0. Therefore,
every initial condition in R2 except the origin is attracted to the point (1, 0). However, this
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Figure 4.7. Phase space of the example (4.16).

point is not Lyapunov stable since for any ε < 2, there are nearby points—for example
(1, δ)—that leave the ball of radius ε about the equilibrium.

Example (Vinograd):Amore complicated example of this behavior was given in (Vinograd
1957):

ẋ = x2 (y − x) + y5

r2(1 + r4)
, ẏ = y2 (y − 2x)

r2(1 + r4)
, (4.17)

where r is the polar radius, r2 = x2 + y2. To analyze this system, first note that the origin
is the only equilibrium, since ẏ = 0 implies either y = 0 or y = 2x. In the latter case if
ẋ = 0 as well, then

x3 + 32x5 = 0 ⇒ x = 0 or x2 = −1
/

32.

So the only real solution is x = y = 0. Note that ẏ|y=0 = 0, so the line y = 0 is invariant.
On this line x is governed by ẋ|y=0 = −x/(1+x4); therefore, since sgn(ẋ) = −sgn(x) and
ẋ ̸= 0 unless x = 0, x(t) monotonically moves toward the origin, so that the origin attracts
all points on this line. It is much harder to show that every point in the plane approaches
the origin as t → ∞, but a numerical solution (shown in Figure 4.8) indicates that this is
so. More interestingly, the picture indicates that many orbits in any δ-ball leave the ball
B1/2

(0) no matter how small δ is chosen. In fact, it seems that there is a family of homoclinic
loops from the origin, i.e., orbits that leave the origin and go a finite distance away before
returning as t → ∞ (see §5.2). These loops are what prevent the origin from being an
attractor. The behavior of this system near the origin is studied in §6.2.

When f is C1, the local behavior near an equilibrium is often governed by the lin-
earization, (4.12). For example, asymptotic linear stability is sufficient to imply asymptotic
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Figure 4.8. Phase plane of the Vinograd example (4.17).

stability of the equilibrium for the nonlinear system, if it is differentiable. The main point
is that in this case we can extract the nonlinear part of f near x∗ by writing

f (x) = Df (x∗)(x − x∗) + g(x − x∗).

The assumption that f is C1 is sufficient to guarantee that the remainder term is small, i.e.,
that g(δx) = o(δx). This follows from the definition of the derivative

0 =
[

lim
δxj→0

fi(x
∗ + δxj )− fi(x

∗)

δxj

− (Df )ij (x
∗)

]

= lim
δxj→0

gi(δxj )

δxj

.

Note that if f (x) is C2, then g(δx) = o(δx2), by the Taylor remainder theorem. However,
we will not need this additional assumption to prove the desired result.22

Theorem 4.6 (Asymptotic Linear Stability implies Asymptotic Stability). Let f : E →
Rn be C1 and have an equilibrium x∗ such that all the eigenvalues of Df (x∗) have real
parts less than zero. Then x∗ is asymptotically stable.

Proof. Rewrite the differential equations using y = x − x∗, defining A = Df (x∗), and
g ≡ f (x)− A(x − x∗), to obtain

ẏ = Ay + g(y). (4.18)

22This theorem also follows from either the Hartman–Grobman or the stable manifold theorem; see below.
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Variation of parameters can be used to obtain an integral equation for the solution. Let
y = etAη(t), and substitute this into the ODE (4.18) to obtain η̇ = e−tAg(y(t)). Formally
integrating this equation and substituting again for y gives the integral equation:

y(t) = etAyo +
∫ t

0
e(t−s)Ag(y(s))ds. (4.19)

By assumption, there is an α such that if λ is any eigenvalue of A, then Re(λ) < −α < 0.
The estimate (2.44) in §2.7 implies that for any vector v there is a K ≥ 1 such that

∣

∣etAv
∣

∣ ≤ Ke−αt |v| , t ≥ 0. (4.20)

Since f is C1, then g(y) = o(y), so, for any ε there is a δ such that if y ≤ δ, |g(y)| ≤ ε |y|,
and thus from (4.19) using (4.20) we obtain

|y(t)| ≤ Ke−αt |yo| + Kε

∫ t

0
e−α(t−s) |y(s)| ds.

Let ξ(t) = eαt |y(t)|, and use Grönwall’s Lemma 3.13 to obtain

ξ(t) ≤ Kδ + Kε

∫ t

0
ξ(s)ds ⇒ ξ(t) ≤ KδeKεt ⇒ |y(t)| ≤ Kδe−(α−Kε)t .

Hence, providing ε < α
/

K , then |y| → 0 and stays bounded below Kδ for all t ≥ 0. In
conclusion, if M is the ball of radius δ, then N is the ball of radius Kδ.

Example: The origin is an equilibrium of the system

ẋ = −x − y − r2,

ẏ = x − y + r2,

where r is the polar radius. The origin is a stable focus since

Df (0, 0) =
( −1 −1

1 −1

)

has eigenvalues λ = −1 ± i. To show that adding nonlinear terms does not change the
topological character, we want to construct an attracting neighborhood of the origin. To study
this system, it is easier to use the differential equation for r .23 Noting that 2rṙ = 2xẋ +2yẏ

ṙ = 1
r

(

x
(

−x − y − r2)+ y(x − y + r2)
)

= r(−1 + y − x).

Since −r ≤ x, y ≤ r , then y − x ≤ 2r . If r < 0.5, then −1 + y − x < 0, and so ṙ < 0
at any point in the open disk of radius 1/2. This implies that the origin is asymptotically
stable, because r is monotonically decreasing. Note that there is another equilibrium point
at (−1, 0). This equilibrium has eigenvalues λ = ±

√
2 and is therefore a saddle. Orbits

near the saddle can go to infinity.

23We will find this technique extremely useful in our study of the global structure of flows in the plane in
Chapter 6.



4.6. Lyapunov Functions 123

4.6 Lyapunov Functions
Lyapunov devised another technique that can potentially show that an equilibrium is stable—
the construction of what is now called a “Lyapunov function.” An advantage of this method
is that it can sometimes prove stability of a nonhyperbolic equilibrium; a disadvantage is
that there is no straightforward construction of Lyapunov functions.

Lyapunov functions are nonnegative functions that decrease in time along the orbits
of a dynamical system:

◃ Lyapunov function: A continuous function L : Rn → R is a (strong) Lya-
punov function for an equilibrium x∗ of a flow ϕt on Rn if there is an open
neighborhood U of x∗ such that L(x∗) = 0, L > 0 for x ̸= x∗, and

L(ϕt (x)) < L(x) ∀ x ∈ U\
{

x∗
}

and t > 0. (4.21)

The function L is a weak Lyapunov function if (4.21) is replaced by L (ϕt (x)) ≤ L(x).
Typically, L is aC1 function and (4.21) can be guaranteed by requiring thatdL

/

dt < 0.
This can be computed using the chain rule:

dL

dt
= ∇L(x) · f (x). (4.22)

Consequently, in the smooth case, the condition that L is a Lyapunov function is that its
gradient vector points in a direction opposed to that of the vector field f .

If such a nonincreasing function can be found, the equilibrium is stable.

Theorem 4.7 (Lyapunov Functions). Let x∗ be an equilibrium point of a flow ϕt (x). If
L is a weak Lyapunov function in some neighborhood U of x∗, then x∗ is stable. If L is a
strong Lyapunov function, then x∗ is asymptotically stable.

Proof. First we prove stability. We can assume that x∗ = 0 without loss of generality.
Choose any ε small enough so that Bε(0) ⊂ U and define m = min{L(x) : |x| = ε}, as
in Figure 4.9. The constant m exists because Bε(0) is compact and, since L is positive
definite, m > 0. Since L decreases as x → 0,there exists a δ < ε such that L(x) < m for
all x ∈ Bδ(0). Since L is nonincreasing along orbits then L(ϕt (x)) < m for all x ∈ Bδ(0).
Therefore, since L remains less than the minimum on |x| = ε, ϕt (x) ∈ Bε(0). Consequently,
the origin is stable.

Now we prove asymptotic stability. If x ∈ Bδ(0), then ϕt (x) ∈ Bε(0) for all positive
time. Since Bε(0) is compact, the Bolzano–Weierstrass theorem, Theorem 3.1, implies that
for any sequence ti → ∞, the sequence ϕti (x) must have limit points. Suppose one of
these limit points is not the origin, i.e., there is a sequence of times tn → ∞ such that
ϕtn (x)→ z ̸= 0. By continuity L(ϕtn (x))→ L(z), and since L is strictly decreasing, the
sequence of values must decrease monotonically with n:

L(ϕtn (x)) > L(ϕtn+1(x)) > · · · > L(z). (4.23)

Now consider the orbit, ϕs(z) of the limit point z. Again, since z is not the equilibrium,
L(ϕt (z)) < L(z) for any positive s, and hence by continuity L(ϕtn+s(x)) → L(ϕs(z)) <

L(z). This implies for large enough n that, since x(tn) is arbitrarily close to z, L(ϕtn+s(x)) <
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Proof. By assumption every orbit in M is bounded; this implies the function λ defined by

λ(x) = sup
t≥0

∣

∣ϕt (x)− x∗
∣

∣

for x ∈ M is continuous. Indeed, asymptotic stability implies that for any ρ there is a time
T (ρ) such that |ϕt (x)− x∗| < ρ whenever t > T (ρ). As a consequence, the supremum
in the definition need only be taken over a finite interval of time. Moreover, since ϕt (x) is
continuous for any fixed time, the norm |ϕt (x)− x∗| is also continuous. To show that λ is
also continuous, take any x, y ∈ M \ Bρ(x

∗); then

|λ(x)− λ(y)| =
∣

∣

∣

∣

∣

sup
0≤t≤T (ρ)

|ϕt (x)− x∗|− sup
0≤t≤T (ρ)

|ϕt (y)− x∗|
∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

sup
0≤t≤T (ρ)

(|ϕt (x)− x∗|− |ϕt (y)− x∗|)
∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

sup
0≤t≤T (ρ)

(|ϕt (x)− ϕt (y)|)
∣

∣

∣

∣

∣

.

Since ϕt (x) is continuous as a function of x, for any ε > 0 there is a δ(t) > 0 such that
if |x − y| < δ(t), then |ϕt (x)− ϕt (y)| < ε. Therefore, |λ(x)− λ(y)| < ε for the choice
δ = inf 0≤t≤T (ρ) δ(t), and |x − y| < δ, which implies continuity.

Notice also that λ(x∗) = 0, and otherwise that λ(x) > 0, so it satisfies two of the
properties that are needed to be a strong Lyapunov function. Moreover, λ(ϕt (x)) ≤ λ(x)

when t ≥ 0, because

λ(ϕt (x)) = sup
s>0

|ϕs(ϕt (x))− x∗| = sup
s>0

|ϕs+t (x)− x∗|
= sup

s>t
|ϕs(x)− x∗| ,

and the last expression is definitely not larger thanλ(x). Consequently, λ is a weak Lyapunov
function. We now show that (4.25) is a strong Lyapunov function. Note that for any t > 0,

L(ϕt (x)) =
∫ ∞

0
e−sλ(ϕs+t (x))ds ≤

∫ ∞

0
e−sλ(ϕs(x))ds =L(x).

If the two sides of this inequality were equal, then λ(ϕt+s(x)) = λ(ϕs(x)) for all s > 0.
However, this is impossible since if we set t = (n− 1)s, then we would have λ(ϕns(x)) =
λ(ϕs(x)) for all n. This cannot happen since if x ̸= x∗, λ(ϕs(x)) ̸= 0, but ϕns(x)→ x∗, so
that λ(ϕns(x))→ 0.

Although this theorem guarantees that a strong Lyapunov function exists for an asymp-
totically stable equilibrium, it is not possible to construct it in general unless the flow can be
obtained analytically—in which case there is no reason to find L! However, there are cases
in which it is not hard to find a Lyapunov function and for which stability is not obvious
(see Exercise 8).
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Example: The Lorenz system, (1.33), is

ẋ = σ (y − x),

ẏ = rx − y − xz,

ż = xy − bz,
(4.26)

where we assume, as in the physical model, that the parameters r, σ , and b are positive. The
equilibrium at the origin has linear stability determined by the Jacobian

Df (0) =

⎛

⎝

−σ σ 0
r −1 0
0 0 −b

⎞

⎠ .

The z direction corresponds to an eigenvector with eigenvalue λ = −b and is therefore
always attracting for b > 0. The other two eigenvalues are determined by

λ2 + (σ + 1)λ+ σ (1− r) = 0.

This implies that the x − y plane is attracting when r < 1 but becomes a saddle for r > 1.
Consequently, when r < 1 the origin is asymptotically stable and when r > 1 it is unstable.
Linear analysis cannot tell us what happens when r = 1.

We now attempt to construct a Lyapunov function. Beginning with a general quadratic
in (x, y, z), one can fairly quickly see that the function

L = 1
2

(

x2

σ
+ y2 + z2

)

will work. Differentiation yields

dL

dt
=
(

yx − x2
)

+ ryx − y2 − xyz + zxy − bz2

= (r + 1)xy −
(

x2 + y2 + b2z2)

= −
(

x − r + 1
2

y

)2

−
(

1− (r + 1)2

4

)

y2 − bz2,

where we completed the square on the first two terms to get the third line. Therefore, when
r < 1 and b > 0, this is negative definite, confirming again that the origin is asymptotically
stable. Interestingly, this analysis applies for any values of (x, y, z), so that the origin is
globally asymptotically stable.

When r = 1, dL
/

dt = 0 on the line Z = {(x, y, z) : x = y, z = 0}. This means
that L is not a strong Lyapunov function. However, the following argument will imply that
since this set is not invariant (because dz

/

dt
∣

∣

Z
̸= 0), the origin is asymptotically stable in

this case as well!

As in the previous example, it is sometimes possible to conclude that the equilibrium
is asymptotically stable for the case that L is a weak Lyapunov function, provided that we
know something about the dynamics on the set where dL

/

dt = 0.

Theorem 4.9 (LaSalle’s Invariance Principle). Suppose x∗ is an equilibrium for ẋ =
f (x) and suppose that L is a weak Lyapunov function on some compact, forward-invariant
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neighborhoodU of x∗. LetZ = {x ∈ U : dL
/

dt = 0} be the set whereL is not decreasing.
Then if x∗ is the largest forward invariant subset ofZ, it is asymptotically stable and attracts
every point in U .

Proof. For any x ∈ U , suppose z is a limit point of the trajectory x(t) ∈ U . Then
L(ϕs(z)) = L(z) for all s > 0, since if L(ϕs(z)) < L(z) we would have a contradiction
with the inequalities in (4.23). Consequently, ϕs(z) ∈ Z for all s > 0, so that z must be
forward invariant, and therefore, by assumption, z = x∗.

Example: A slightly more realistic model than the logistic equation (1.7) adds “delay,”
modeling the fact that the gestation period is nonzero, and so the competition that affects
current births is in the past. One type of delay is to introduce a second variable y that
represents the population at an earlier era. The model then becomes

ẋ = rx (1− y) ,

ẏ = b(x − y).

Note that at equilibrium y = x and so x = 0 or x = 1 as for (1.7). Our goal is to show that
the point (1, 1) is the limit of all initial conditions in the positive quadrant. First note that
the positive quadrant is forward invariant. To leave it, the orbit would have to pass through
the x- or y-axis. When x = 0, ẋ = 0, so this is an invariant line. When y = 0, then ẏ ≥ 0,
so the orbit cannot cross to negative y.

We next transform to coordinates centered at the equilibrium of interest. Let (ξ, η) =
(x − 1, y − 1) so that

ξ̇ = −rη (1 + ξ) ,

η̇ = b(ξ − η).
Note that (0, 0) is a linearly stable equilibrium for this equation when b and r are positive
since then tr(Df (0, 0)) = −b < 0 and det(Df (0, 0)) = rb > 0 (recall §2.2). A simple
quadratic function will not work as a Lyapunov function for this system, nor will any
polynomial of finite order. However, after some guesswork—see (MacDonald 1978)—a
Lyapunov function can be found:

L(ξ, η) = ξ − ln (1 + ξ) + r

2b
η2.

Note that L(0, 0) = 0, and that since ξ − ln(1 + ξ) ≥ 0 when ξ > −1, then L is positive.
Furthermore, differentiation gives

dL

dt
= −rη(ξ + 1)

(

1− 1
ξ + 1

)

+ rη(ξ − η) = −rη2.

Accordingly, L is strictly decreasing except on the set Z = {(ξ, η), η = 0, ξ > −1} . How-
ever, the equations of motion imply that the only invariant point in Z is the origin since
η̇|Z = bξ ̸= 0 otherwise. Therefore, according to LaSalle’s invariance principle, (0, 0)

attracts the orbits of all initial conditions with ξ > −1. Equivalently, in the original coor-
dinates, the point (1, 1) is the forward limit of all points in the right half-plane.
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Hamiltonian systems—recall §1.4—often have Lyapunov functions. Suppose that
H : R2 → R, and consider the Hamiltonian system

ẋ = ∂H

∂y
, ẏ = −∂H

∂x
. (4.27)

The value of H(x, y) typically represents the “energy” of the system. It is constant along
trajectories, because

dH

dt
= ∂H

∂x
ẋ + ∂H

∂y
ẏ = ∂H

∂x

∂H

∂y
− ∂H
∂y

∂H

∂x
≡ 0. (4.28)

Therefore, if H(xo, yo) = E, then so does H(x(t), y(t)). If (x∗, y∗) is an equilibrium, then
the function

L(x, y) = H(x, y)−H(x∗, y∗)

is zero at the equilibrium and constant along trajectories; consequently, if it can be shown that
L is positive in some neighborhood of the equilibrium, then it is a weak Lyapunov function.

Example: Consider the system
ẋ = y,

ẏ = x − 3ax2.
(4.29)

These equations have the form (4.27), since if y = ∂H
/

∂y, then H(x, y) = 1/2y
2+V (x), for

an arbitrary function V . Similarly, demanding that x− 3ax2 = −∂H
/

∂x gives H(x, y) =
T (y)−1/2x

2+ax3, for an arbitrary function T . These two equations are consistent, implying
that (4.29) is Hamiltonian and we obtain H(x, y) = 1/2(y

2 − x2) + ax3.
The system (4.29) has two equilibria, (0, 0) and (1

/

3a, 0). The first is a saddle, and the
second is a center. The Hamiltonian provides a Lyapunov function in a neighborhood of the
center. We can see this most easily by shifting coordinates, defining ξ = x−1

/

3a to obtain

H = 1/2
(

y2 + ξ 2)+ aξ 3 + H
(

1
/

3a, 0
)

.

Therefore, for ξ small enough, H has contours about y = ξ = 0 that are approximately
circular. In conclusion, L = 1/2

(

y2 + ξ 2
)

+ aξ 3 is a weak Lyapunov function, and the
equilibrium

(

1
/

3a, 0
)

is a “topological center”—see §6.2.

We will discuss more examples of this type in §5.1 (see also Exercise 8).
Although Hamiltonian systems correspond to “conservative” dynamics, engineering

systems often have damping.

Example: Suppose x ∈ Rn are coordinates and y ∈ Rn are the conjugate momenta, with
the Hamiltonian H(x, y) = 1/2|y|2 + V (x). Here, V (x), the potential energy, gives rise to
the force F = −∇V . This system is conservative; the simplest model for damping is an
additional force proportional to the momentum, which gives the set of equations

ẋ = y,

ẏ = −∇V (x)− γy,
(4.30)

where γ is the damping coefficient. The “energy” of this system is given by the function
H(x, y). If we assume that ∇V (0) = 0, so that the origin is an equilibrium, then the origin
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Figure 4.10. Phase space of the damped pendulum (4.30) with V (x) = − cos x,
and γ = 0.1. V has critical points on the x-axis at nπ . The points (2kπ, 0) are asymptot-
ically stable, while ((2k + 1)π, 0) are saddles. On the right is shown a forward invariant
region U enclosing the origin. U is bounded by pieces of the unstable manifolds (see §5.1)
of the saddles at x = ±π and by part of the x-axis. To prove that U exists, we would have
to show that the unstable manifolds (see Chapter 5) of the saddles first cross the x-axis in
the interval (−π,π).

is a critical point of H , since
∇H = (∇V (x), y)T .

Moreover, when D2V (0) is a positive definite matrix, the Hessian matrix,

D2H(0) =
(

D2V (0) 0
0 I

)

,

is also positive definite so that the origin is a minimum of H . In this case, the contours of
H are closed near the origin. Moreover,

dH

dt
= y · (−∇V − γy) + y · ∇V = −γ |y|2 ≤ 0;

therefore, the origin is stable.
If 0 is the only critical point of V , then LaSalle’s invariance principle implies that the

origin is asymptotically stable. The set for which dH
/

dt = 0 is Z = {(x, y) : y = 0}. Now
since ẏ|Z = −∇V (x), whenever x is not a critical point of V , then ẏ ̸= 0 on Z. We can
conclude that if 0 is the only critical point of V , the only invariant subset of Z is the origin.

The analysis above could be generalized to the case where there are more critical
points of V if it could be proved that there exists a neighborhood, U , of the origin—like
that depicted in Figure 4.10—that does not include other critical points and that is forward
invariant.
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4.7 Topological Conjugacy and Equivalence
An important task in dynamical systems is to determine whether two dynamical systems that
seemingly look “different” are actually the same but are just written in different forms. A
system that looks complicated may actually be quite simple in a different coordinate system.
A classification of equivalent systems will considerably reduce the work to be done, for
example, in bifurcation theory (see Chapter 8). Moreover, the study of these equivalence
classes leads to notions of sensitivity of dynamics to modification of the system—what is
called structural stability.

There are several different notions of equivalence, depending upon the degree of
smoothness required for the transformation. The definitions require some notions from
basic set theory and topology. Suppose that A and B are two topological spaces (recall
§3.1). A map h: A→ B is

◃ surjective or onto if for every b ∈ B, there is at least one a ∈ A such that
h(a) = b,

◃ injective or one-to-one if whenever h(a) = h(a′), then a = a′, and

◃ bijective if it is both surjective and injective.

Note that a bijective map has an inverse: since for each b there is exactly one a such
that b = h(a), the map h−1 : B → A is defined by setting a = h−1(b). Note that h−1 is
both a left and a right inverse for h: h(h−1(b)) = b and h−1(h(a)) = a. These notions are
used to define one of the most fundamental concepts in topology:

◃ homeomorphism: A map h : A→ B is a homeomorphism if it is continuous,
is bijective, and has a continuous inverse.

For example, the map h : (0,∞) → (0, 1) defined by h(x) = 1
/

(1 + x2) is a
homeomorphism. Similarly, the map f : S→ S defined by

f (θ) = θ + a cos θ (4.31)

is a homeomorphism only when |a| < 1, since it is otherwise not one-to-one; see Fig-
ure 4.11.24

Topology declares that two spaces are equivalent if there is a homeomorphism from
one to the other. It is this notion that implies that a mug of coffee and a doughnut are the
“same” (though one gives you a buzz from caffeine and the other from sugar). Conversely,
if it can be shown that there is no homeomorphism from one space to another, then they are
topologically distinct spaces.

It is natural to also define a notion of “smooth” equivalence:

◃ diffeomorphism: Amap f : A→ B is a diffeomorphism if it is a C1 bijective
map with a C1 inverse.

24Challenge for the topologically inclined: find an example of a continuous, bijective map that is not a homeo-
morphism. At least one of the spaces must have an exotic topology, because every continuous, bijective map from
a compact space to a Hausdorff space is a homeomorphism (Hocking and Young 1961).
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Figure 4.11. The function (4.31) for a = 0.5, 1.0, and 1.5. The last case is not a
homeomorphism since the graph is not monotone.

For example, f : R→ R, given by f (x) = x+1/2 sin x is a diffeomorphism, but f (x) = x3

is not because its inverse, f −1(x) = x
1
3 , is not C1. Note that every diffeomorphism is also

a homeomorphism. Recall from §4.2 that a flow is a C1 bijection from the phase space to
itself, and thus the map ϕt for each time t is a diffeomorphism.

With these definitions in our toolbox, we are now prepared to understand the key
notion of equivalence of two flows,

◃ topological conjugacy: Two flows ϕt : A → A and ψt : B → B are
conjugate if there exists a homeomorphism h : A → B such that for each
x ∈ A and t ∈ R

h(ϕt (x)) = ψt (h(x)). (4.32)

It is clear that for such a homeomorphism to exist, A and B must be topologically equivalent
spaces. Often, two systems are simply said to be conjugate as a shorthand for topologically
conjugate. A diagram that represents (4.32) is

x
ϕt−→ ϕt (x)

h ↓ ↓ h

y
ψt−→ ψt (y)

.

The two paths in this diagram, x
h→ y

ψt→ψt (y) and x
ϕt→ϕt (x)

h→ψt (y), which represent
the right- and left-hand sides of (4.32), respectively, must give the same result, namely,
ψt (h(x)). We say, in this case, that the “diagram commutes.”

Example:The flow on R generated by ẋ = −x isϕt (x) = xe−t . Under the homeomorphism
y = h(x) = x3, this is equivalent to the new flow

ψt (y) = (xe−t )3 = ye−3t .

This is the solution of the linear equation ẏ = −3y. Consequently, these two ODEs are
topologically conjugate.
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Figure 4.12. Orbits of conjugate systems must be in a one-to-one correspondence.

Conjugacy implies that each trajectory of ψ corresponds to a trajectory of ϕ, and
vice versa. For example, if x∗ is an equilibrium of ϕ, then since ϕt (x

∗) = x∗ for all
t,ψt (h(x∗)) = h(x∗) = y∗ and so y∗ is an equilibrium of ψ . Thus, h provides a one-to-
one correspondence between the equilibria of two conjugate flows. Similarly, if ϕt (xo) is
a periodic orbit of ϕ with period T , i.e., ϕt+T (xo) = ϕt (xo), then ψt (yo) = h(ϕt (xo)) =
h(ϕt+T (xo)) = ψt+T (yo), so ψt (yo) is also a periodic orbit of ψ with the same period; see
Figure 4.12.

Topological conjugacy can be too restrictive a condition because, in addition to the
fact that trajectories “look” the same in phase space, (4.32) implies that the curves have
identical temporal parameterizations. A slightly more general notion that still captures the
shape and direction of the flows as curves in phase space is

◃ topological equivalence: Two flows ϕt : A → A and ψt : B → B are
equivalent if there exists a homeomorphism h : A → B that maps the orbits
of ϕ onto the orbits of ψ and preserves the direction of time. That is, there is a
map τ : A× R→ R that is monotone increasing with t and

h(ϕτ (x,t)(x)) = ψt (h(x)). (4.33)

Example: If we temporarily relax the requirement that a flow exist for all time, then

ψt (y) = y

1 + ty

is the flow corresponding to the ODE ẏ = −y2. For y ∈ R+, it exists only on the interval
t ∈ (y−1,∞). This flow is equivalent to ϕt (x) = xe−t under the transformations h(x) = x,
and τ (x, t) = ln (1 + xt), since

h(ϕτ (x,t)(x)) = xe− ln(1+xt) = x

1 + xt
= ψt (h(x)).

Note that the orbits of ψ are qualitatively the same as those of ϕ; for example, the point
y = h(0) = 0 is an equilibrium, and if y > 0, then ψt (y) → 0 as t → ∞, just as
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Figure 4.13. Construction of a homeomorphism for a one-dimensional flow.

ϕt (x) → 0. We used this notion of equivalence in our proof of the theorem in §4.3 that
each ODE is equivalent to one with a complete flow.

Two topologically equivalent flows must, in some precise sense, exhibit the same
“orbit structure.” In particular, for the one-dimensional case, it is quite easy to make a
precise statement since the behavior is quite limited.

Theorem 4.10 (One-Dimensional Equivalence). Two flows ϕ andψ inR are topologically
equivalent if and only if their equilibria, ordered on the line, can be put in a one-to-one
correspondence, and if and only if the corresponding equilibria have the same topological
type (sink, source, or semistable).

Proof. If a homeomorphism h exists, then to each equilibrium of ϕ there must be a corre-
sponding equilibrium of ψ and vice versa; thus we can put the equilibria in a one-to-one
correspondence. The correspondence is ordered since h is monotone. Conversely, suppose
that ϕ and ψ have corresponding equilibria. We will next explicitly construct h, and show
that the flows not only are equivalent but are actually conjugate.25

Suppose first, for simplicity, that there are finitely many equilibria. Denote the equi-
libria of ϕ by x∗1 < x∗2 < · · · < x∗n and ofψ by y∗1 < y∗2 < · · · < y∗n . It is clear that we must
define h(x∗i ) = y∗i . Choose points αi such that αo < x∗1 < α1 < x∗2 < · · · < x∗n < αn, and
points βi that are similarly intertwined with y∗i , as shown in Figure 4.13. We can arbitrarily
define h(αi ) = βi .To complete the construction of the homeomorphism in an interval be-
tween two equilibria h : (x∗i , x∗i+1)→ (y∗i , y∗i+1), note that for each xo ∈ (x∗i , x∗i+1), since

25The necessity also follows from the Hartman–Grobman theorem.
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ϕt (xo) is either monotonically increasing or decreasing with t , there is a unique time to ∈ R

such that ϕto (xo) = αi . As sketched in Figure 4.13, define

h(xo) = yo = ψ−to (βi ).

This function is a homeomorphism (it is one-to-one since the flow is monotone, and it is
continuous and has a continuous inverse sinceψ does). Note also that since ϕto−t (ϕt (xo)) =
αi we have

h(ϕt (xo)) = ψ−(to−t)(βi ) = ψt

(

ψ−to (βi )
)

= ψt (h(xo)) ,

as required. This construction applies in each such interval bounded by two equilibria. We
can similarly deal with the two intervals (−∞, x∗1 ) and (x∗n,∞). This yields the required
homeomorphism on R.

If the number of equilibria is countably infinite, or even uncountably infinite, the
analysis is similar.

Generally, when the dimension of the phase space is larger than one, we must know
more than just the number and topological type of the equilibria to determine whether two
flows are equivalent; see Exercise 13. We will see such systems in §8.11 when we discuss
homoclinic bifurcations.

Sometimes we will not be satisfied by mere topological equivalence—we will want
differential properties to be the same. In a previous example we saw that the eigenvalues are
not preserved by a topological equivalence (they changed from−1 to−3 at the equilibrium).
A notion that does preserve this information is

◃ diffeomorphic: Two flows ϕt : A→ A and ψt : B → B are diffeomorphic
if there is a diffeomorphism h such that h(ϕt (x)) = ψt (h(x)).

We also call two flows smoothly equivalent when, in addition to the diffeomorphism h, there
is an increasing diffeomorphism τ (x, t) such that (4.33) is satisfied.

Example: The map h : R → (−1, 1) defined by h(x) = tanh(x) is a diffeomorphism.
Applying this to the flow ϕt (x) = xe−t gives the new flow ψt = h ◦ ϕt ◦ h−1, or explicitly

ψt (y) = tanh
(

e−t tanh−1(y)
)

.

This flow has the vector field

ẏ = g(y) = d

dt
ψt (y)|t=0 =

(

y2 − 1
)

tanh−1(y).

This ODE has only one equilibrium, y = 0, in the interval (−1, 1); since Dg(0) = −1,
it is stable just like x = 0 is for the flow ϕ. The new flow has equilibria at y = ±1 as
well, but these are not within the space (−1, 1); they correspond to the points x = ±∞ in
the original space. The limiting behaviorψt (y) →

t→−∞
∓1, for y < 0 and y > 0, respectively,

reflects the behavior of the original flow, since ϕt (x) →
t→−∞

∓∞ for x < 0 and x > 0,
respectively.
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h

ẋ = f (x) ẏ = g(y)

Figure 4.14. Equivalence between two one-dimensional vector fields, (4.34).

Although our example on page 131 showed that the flows xe−t and ye−3t are topologi-
cally conjugate, we did not show them to be diffeomorphic, since x3 is not a diffeomorphism.
In fact, these two flows cannot be diffeomorphic, as we will see next.

If two flows are diffeomorphic, then the vector fields are related by the derivative of
the conjugacy. Suppose that ẋ = f (x) generates the flow ϕ and ẏ = g(y) generates ψ .
Then

d

dt
ψt (y) = g (ψt (y)) = d

dt
h (ϕt (x)) = Dh (ϕt (x))

d

dt
ϕt (x) = Dh (ϕt (x)) f (ϕt (x)) .

Setting t = 0 in these relations gives a relation between the vector fields:

g(y) = g(h(x)) = Dh(x)f (x). (4.34)

Equation (4.34), sketched in Figure 4.14, is precisely the result that we would obtain if we
simply transform coordinates using the differential equations:

y = h(x) ⇒ dy

dt
= Dh(x)

dx

dt
= Dh(x)f (x) = g(y).

It is easy to see that the eigenvalues of equilibria are preserved by a diffeomorphism.
Suppose that x∗ is an equilibrium of ϕ, and Dxf (x∗) = A is the Jacobian matrix. Then
upon differentiation of the relation (4.34) by x, we have

Dyg(y)Dxh(x) = Dxh(x)Dxf (x) + D2
xh(x)f (x).

Since h is a diffeomorphism the matrix H = Dh(x∗) is nonsingular, and since f (x∗) = 0
at the equilibrium,

B ≡ Dyg(y∗) = HAH−1.

So the matrices are related by a similarity transformation and therefore have the same
eigenvalues (recall Exercise 2.8).

Note in particular that two linear flows can be diffeomorphic only if the fundamental
subspaces Eu, Es , and Ec have the same dimensions; we will see below that this holds more
generally. Conversely, two linear ODEs with distinct eigenvalues cannot be diffeomorphic;
see Exercise 6. Indeed, two linear flows are diffeomorphic only if their matrices are similar,
as shown below.
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Theorem 4.11 (Linear Conjugacy). The flows ϕt and ψt of the linear systems ẋ = Ax and
ẏ = By are diffeomorphic if and only if the matrix A is similar to the matrix B.

Proof. Assume first that A is similar to B, i.e., there is a nonsingular matrix H such that
HA = BH. The map h(x) = Hx is clearly a diffeomorphism and

h(ϕt (x)) = HetAx = etHAH−1
Hx = etBh(x) = ψt (h(x)),

which implies that the flows ϕ and ψ are diffeomorphic. Conversely, suppose there is a
diffeomorphism g such that g(ϕt (x)) = ψt (g(x)). Setting g(0) = c, then g(ϕt (0)) = c =
ψt (c), so c is an equilibrium of ψ . Let h(x) = g(x)− c. Then

h(ϕt (x)) = ψt (g(x))− c = ψt (h(x) + c)− c = ψt (h(x)). (4.35)

Thus h(x) conjugates the flows and fixes the origin. Define the matrix H = Dh(0),
and differentiate (4.35) with respect to x, to obtain, at x = 0, HetA = etBH . Taking the
time derivative of this relation at t = 0 yields HA = BH , so the matrices are linearly
conjugate.

Example: The matrices

A =
( −2 0

0 −2

)

, B =
( −2 1

0 −2

)

are not similar. Indeed, suppose there were an invertible matrix such that HA = BH . Then
if (u, v)T is a column of H , we would have−2u+v = −2u and−2v = −2v; consequently,
v = 0 and u = c. Since this is true for each column, H would be singular. However, there
does exist a topological conjugacy between the flows ϕt (x) = etAx and ψt (y) = etBy. To
find y = h(x) = (h1(x1, x2), h2(x1, x2)), we first find the flows

ϕt (x1, x2) =
(

e−2t x1, e
−2t x2

)

,

ψt (y1, y2) =
(

e−2t (y1 + ty2) , e−2t y2
)

.

The second component of the conjugacy h2(ϕt (x)) = ψ2t (y) implies

h2
(

e−2t x1, e
−2t x2

)

= e−2t y2 = e−2t h2(x1, x2),

which has a particular solution h2(x1, x2) = x2. The first component of the conjugacy
requires that h1

(

e−2t x1, e
−2t x2

)

= e−2t (h2(x1, x2) + tx2). To solve this set, h1(x1, x2) =
x1 + f (x2), to find

f (e−2t x2) = e−2t (f (x2) + tx2) .

A solution to this is f (x) = −1/2x ln |x|, and if we define f (0) = 0, then f is continuous at
x = 0. Putting this result together with h1 gives homeomorphism

(y1, y2) = h(x) =
(

x1 −
1
2
x2 ln |x2| , x2

)

;
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however, h is not a diffeomorphism since its derivative does not exist at the origin. At every
other point the vector fields can be transformed using (4.34):

ẏ1 = ẋ1 −
1
2
ẋ2 ln |x2|−

1
2
ẋ2 = −2y1 + y2,

ẏ2 = ẋ2 = −2y2,

showing conjugacy as we expect.

This example can be generalized to show that topological conjugacy of hyperbolic
systems depends only on the dimensions of their stable and unstable subspaces: for example
a system with complex eigenvalues can be conjugate to one with real eigenvalues; see
Exercise 7.

Theorem 4.12. SupposeA andB are two real, hyperbolic n×nmatrices and ϕt (x) = etAx

andψt (y) = etBy the corresponding flows. Thenϕ andψ are topologically conjugate if and
only if the dimensions of the stable and unstable spaces ofA are equal to the corresponding
dimensions for B.

Sketch of Proof. The necessity of this condition is easy to see. Any homeomorphism
h : Rn → Rn must map bounded sets to bounded sets. Moreover, for any x ∈ Es

A, we
have limt→∞ ϕt (x) = 0; consequently, since h is continuous limt→∞ h (ϕt (x)) = h(0) =
limt→∞ ψt (h(x)). Since h(0) is bounded, then y = h(x) must be in Es

B , and indeed
h(0) = 0 because every orbit in Es

B approaches the origin. Consequently, h : Es
A → Es

B

is a homeomorphism, which implies that these spaces must have the same dimension. The
same can be said for the unstable spaces.

The proof of the converse requires a bit more work: given that the dimensions of
the stable and unstable spaces are the same we must construct the conjugacy. Since the
stable spaces Es

A and Es
B are invariant under the flows, we start by constructing a map

hs : Es
A → Es

B . A similar map hu can be constructed for the unstable spaces. In the
end, we write any vector x = πu(x) + πs(x), where πi are projection operators onto
the unstable and stable spaces of A, respectively, and the full conjugacy is then h(x) =
hs(πs(x)) + hu(πu(x)).

The proof is simple for the case when A and B are semisimple and all their eigenvalues
are real. Then both A and B are linearly conjugate to real diagonal matrices and so to the
systems ẋi = λixi and ẏi = µiyi . Order the eigenvalues so that λ1 ≥ λ2 ≥ · · · λk ≥ 0 >

λk+1 ≥ · · · ≥ λn and similarly for µi . By our previous argument the number, k, of positive
eigenvalues must be the same. Now we construct conjugacies for each one-dimensional
system, mapping λi to µi , by choosing

hi(xi) = sgn(xi) |x|ai , where ai = µi

/

λi .

Then hi(e
λi t xi) = eµi tsgn(xi) |xi |ai = eµi thi(xi). Whenever λi ̸= µi , hi is not a diffeo-

morphism. Note also that we cannot get out of this difficulty by relaxing the conjugacy
requirement to one of equivalency, since the ratio of the eigenvalues may be different for
different i, and thus we would need a different time scaling for each dimension.

In the general case we construct hs by first finding norms that are adapted to the
matrices A and B. These norms are constructed so that ∥etAπs(x)∥A ≤ e−αt∥πs(x)∥A for
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t ≥ 0, i.e., eliminating the constant K in (4.20). The point of these norms is that each
trajectory crosses its respective unit sphere ∥x∥ = 1 exactly once. The unit spheres in
the new norms are then used to define hs as the “identity” map from the A-sphere to the
B-sphere. The homeomorphism is extended from the spheres by flowing, just like we did
for the one-dimensional case. The full proof is given, for example, in (Robinson 1999, see
§4.7).

4.8 Hartman–Grobman Theorem
We showed in §4.7 that linear, hyperbolic systems come in a few equivalence classes,
categorized solely by the dimension of their stable and unstable spaces. Now we show that
nonlinear systems sometimes “look like” their linearizations near hyperbolic equilibria. The
formal statement of this result was proved independently by Hartman in 1960 and Grobman
in 1959.

Theorem 4.13 (Hartman–Grobman). Let x∗ be a hyperbolic equilibrium point of a C1

vector field f (x) with flow ϕt (x). Then there is a neighborhood N of x∗ such that ϕ is
topologically conjugate to its linearization on N .

It is interesting to note that while the theorem requires a smooth ODE, it does not
say that the flow is diffeomorphic to its linearization. A theorem due to Sternberg does
provide a diffeomorphism; however, it requires an additional hypothesis: the eigenvalues
must satisfy a “nonresonance” condition (Sternberg 1958).

Note that the Hartman–Grobman theorem requires that the equilibrium be hyperbolic.
As we shall see in Chapter 6, the topological classification of nonhyperbolic equilibria will
depend upon more than just the linearization of the system.

Discussion of Proof. The construction of the homeomorphism is rather clever and poten-
tially useful, so we sketch it here. As is now usual, we begin with an ODE of the form

ẋ = Ax + g(x),

where A is a hyperbolic matrix, and the term g ∈ C1 represents the nonlinear term, so that
g = o(x). Define also the flow of the linear equation ψt (x) = etAx. Since the theorem is
to be proved only locally, we can modify the ODE by defining a new nonlinearity g̃ such
that g̃(x) = g(x) for some neighborhood N of 0, and g̃(x) = 0 for x outside some larger
neighborhood M . This can be done so that g̃ is still a smooth function. Moreover, g̃ is
bounded, since it vanishes outside a compact set. Let ϕt be the flow for the modified ODE.
This flow agrees with the linear flow while the orbit stays outside M . (See the following
examples to understand why this modification is needed.)

Our goal is to find a homeomorphism h satisfying

ψt (h(x)) = h (ϕt (x)) , that is, h(x) = e−tA ◦ h ◦ ϕt (x). (4.36)

Suppose first that H is a homeomorphism that satisfies (4.36) for one value of time, say,
t = 1, e.g.,

H1(x) = e−AH1(ϕ1(x)). (4.37)
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Figure 4.15. The homeomorphism (4.36).

In addition, suppose we can show that H1 is the unique such homeomorphism (among the
class of continuous functions such that H1 − id is bounded). Now let

Ht(x) = e−tA ◦H1 ◦ ϕt (x);

a sketch of this relation is shown in Figure 4.15. We then claim that Ht is also a homeo-
morphism that satisfies (4.37). This follows from the group property of the flow ϕ:

e−A ◦Ht ◦ ϕ1(x) = e−A ◦ e−tA ◦H1 ◦ ϕt ◦ ϕ1(x)

= e−tA ◦ e−A ◦H1 ◦ ϕ1 ◦ ϕt (x)

= e−tA ◦H1 ◦ ϕt (x) = Ht(x).

Consequently, Ht satisfies (4.37); however, since we asserted that H1 is the unique such
homeomorphism, we must have Ht = H1. Therefore,

H1 = e−tA · H1 · ϕt (x).

So H1 is also the homeomorphism for any time t! This can be seen as well by considering
the following diagram:

x
ϕt→ x(t)

ϕ1−t→ x(1)

H1 ↓ H1 ↓ H1 ↓
y

etA

→ y(t)
e(1−t)A

→ y(1)

.

We have just shown that this diagram commutes; that is, if we go from x to y(1) by any
path we obtain the same result.
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So we reduce the problem to solving for H1, the conjugacy at t = 1. Basically, we
can do this iteratively by starting with the assumption that H

(0)
1 (x) = x, and defining

H
(i+1)
1 (x) = e−A ◦H

(i)
1 ◦ ϕ1(x), i = 0, 1, . . . . (4.38)

The theorem actually proves that there is a neighborhood of the origin for which (a version
of) this iteration converges and that H1 is unique among all homeomorphisms that are near
the identity.

The full proof of the theorem is in (Robinson 1999, §5.7).

Example: The simple two-dimensional system

ẋ = x,

ẏ = −y + x2

has a saddle equilibrium at the origin. The linear matrix for the saddle isA =
(1 0

0 −1

)

, which
is conveniently diagonal, so that etA (x, y)T =

(

etx, e−t y
)T . The nonlinear system can be

easily solved analytically to obtain the flow

ϕt (x, y) =
(

etx

e−t y + 1
3

(

e2t − e−t
)

x2

)

.

As a consequence, the homeomorphism H = H1 in (4.37) must satisfy the equation

H(x, y) = e−AH(ϕ1(x, y)) =
(

e−1 0
0 e

)

H(ex, e−1y + kx2), (4.39)

where k = e3−1
3e

. It is convenient to solve for the two components of H separately;
let H = (K, L)T . Then the iterative equation (4.38) for K is

K(i+1)(x, y) = 1
e
K(i)

(

ex,
1
e
y + kx2

)

.

The superscripts on this equation indicate that we will attempt to solve it iteratively. Starting
with K(0)(x, y) = x, the identity, then K(1) = 1

e
(ex) = x; thus, K(x, y) = x is the solution.

The formal iterative equation for L from (4.39) is

L(i+1)(x, y) = eL(i)

(

ex,
1
e
y + kx2

)

,

which looks like it should be amenable to iteration in the same way. However, because
there is a factor of e in front of the right-hand side, we cannot iterate this equation in the
form as written—the result will diverge (try it and see!). Instead we must invert it. To do
this, set ξ = ex and η = y

/

e + kx2, so that x = ξ
/

e, and y = e
(

η − kξ 2
/

e2
)

. Using this
to invert the equation above and write it as an iteration yields

L(i+1)(x, y) = 1
e
L(i)

(

1
e
x, ey − k

e
x2
)

.
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Figure 4.16. Phase planes for the nonlinear flow (left) and linear flow (right) in
(4.40). The constructed homeomorphism maps the two families of curves onto each other.

As before we start the iteration with the identity, L(0)(x, y) = y, and now obtain

L(1)(x, y) = 1
e
L(0)

(

1
e
x, ey − k

e
x2
)

= 1
e

(

ey − k

e
x2
)

= y − ke−2x2,

L(2)(x, y) = 1
e

(

ey − k

e
x2 − ke−2

(x

e

)2
)

= y − ke−2(1 + e−3)x2,

L(3)(x, y) = 1
e

(

ey − k

e
x2 − ke−2(1 + e−3)

(x

e

)2
)

= y − ke−2(1 + e−3 + e−6)x2.

This series limits to

L(x, y) = y − ke−2(1 + e−3 + e−6 + e−9 + · · · )x2 = y − ke−2

1− e−3
x2 = y − 1

3
x2.

So the actual homeomorphism is H(x, y) =
(

x, y − x2
/

3
)

. The reader is encouraged to
verify that this actually works by doing the calculation (4.36).

Example: The homeomorphism for the Hartman–Grobman theorem is guaranteed to exist
only in a neighborhood of the origin. We can see that this is the case if we consider the
ODEs

ẋ = 2x,

ẏ = 4y + x2,

which have a source at the origin. The flow for this system and its linearization are

ϕt (x, y) =
(

e2t x

e4t (y + tx2)

)

, etA

(

x

y

)

=
(

e2t x

e4t y

)

. (4.40)

These flows are shown in Figure 4.16. If we attempt the calculation as we did in the previous
example, we will find that H(x, y) = (x, y + g(x, y)) but that the iteration for g does not
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converge. Instead of doing this, we modify the vector field:

ẋ = 2x,

ẏ = 4y + b(x2),

where the function b is a “bump” function. That is, we want b(ξ) = ξ for small ξ and for
it to vanish for large ξ . So we set

b(ξ) =
{

ξ, |ξ | < ε,

0, |ξ | > δ,

for some arbitrarily chosen 0 < ε < δ. We assume that b connects these two values
smoothly.26 The new vector field has a flow identical to the original nonlinear one when
x2 < ε but is identical to the linear flow when x2 > δ. The fact that the Hartman–Grobman
theorem is only locally valid is made manifest by this modification.

When we integrate the modified equations, we obtain x(t) = e2t xo and

y(t) = e4t

(

yo +
∫ t

0
e−4sb(e4sx2

o )ds

)

≡ e4t
(

yo + B(x2
o , t)

)

.

The new function B(x2, t) cannot be obtained explicitly—especially since we have not
explicitly specified b! However, we do know that if x2(s) < ε for all 0 < s < t , i.e.,
if |xo| <

√
εe−2t , then b(x2(s)) = x2(s) along the entire integration path and we obtain

B(x2
o , t) = tx2

o . Similarly, if x2(s) > δ for all 0 < s < t, i.e., if |xo| >
√
δ, then

b(x2(s)) = 0, so that B(x2
o , t) = 0. Setting t = 1, and letting B(x2) = B(x2, 1), we have

B(x2) =
{

x2, |x| <
√
εe−2,

0, |x| >
√
δ.

Putting the new flow into (4.37), we obtain the equation for H :

H(x, y) = e−AH(ϕ1(x, y)) =
(

e−2 0
0 e−4

)

H
(

e2x, e4(y + B(x2)
)

.

As before we write H = (K, L)T . The equation for K has the simple solution K(x, y) = x.
For L we obtain

L(x, y) = e−4L
(

e2x, e4(y + B(x2)
)

.

Iterating this starting with L(0)(x, y) = y, we get

L(1)(x, y) = y + B(x2),

L(2)(x, y) = y + B(x2) + e−4B(e4x2),

L(3)(x, y) = y + B(x2) + e−4B(e4x2) + e−8B(e8x2).

After N steps this gives the obvious result

L(N)(x, y) = y +
N−1
∑

n=0

e−4nB(e4nx2).

26It is a standard trick in analysis that such “bump” functions can be made arbitrarily smooth, and even C∞;
see, for example, (Friedman 1982, Problem 3.3.1).
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Note that if we set B(x2) = x2, then this series sums to Nx2, which does not converge as
N → ∞. However, since B vanishes when its argument is large, then the series actually
terminates after finitely many terms. Explicitly, choose an N such that e4Nx2 ≥ δ, or
N(x) ≥ 1

4 ln(δ
/

x2), then B(e4Nx2) = 0, so that this term and all the following ones vanish.
Using this we can “take the limit” to obtain

L(x, y) = y +
N(x)
∑

n=0

e−4nB(e4nx2).

Since the sum is finite, it is convergent. This is the local homeomorphism guaranteed by
the theorem. Note that it is not unique because we have considerable freedom in choosing
b; however, once we have chosen the function b(x), we get a unique homeomorphism.

The Hartman–Grobman theorem implies Theorem 4.6: if x∗ is a hyperbolic equilib-
rium point with Re(λ) < 0, then since the linear system is asymptotically stable, so is the
nonlinear system.

The Hartman–Grobman theorem says nothing about the structure of the motion in the
neighborhood of a nonhyperbolic equilibrium. This case is considerably more intricate—we
will discuss it in Chapter 6 and Chapter 8.

4.9 Omega-Limit Sets
We now develop some terminology that will help in the classification of orbits. Since—as
we saw in §4.3—up to reparameterization of time, ODEs give rise to complete flows, we
now consider a general flow, ϕt (x). Our goal is to study properties of the orbits,

$x = {ϕt (x) : t ∈ R} . (4.41)

In some cases, as in (4.2), we will consider just the forward orbit of x, the set

$+
x =

{

ϕt (x) : t ∈ R
+} , (4.42)

or the similarly defined backward orbit, $−x . One of the main goals of theory of dynamical
systems is to give a geometrical classification of the types of orbits that occur in a given
flow.

One important characterization of orbits is their “ultimate” or asymptotic behavior
as t → ∞, if this exists in some sense. Asymptotic behavior is defined in terms of limit
points; recall §3.1: a point y is a limit point of the forward orbit of x if there is a sequence
t1 < t2 < · · · < tk . . . such that tk → ∞ and ϕtk (x) → y as k → ∞. The asymptotic
behavior of an orbit is its

◃ omega-limit set: The collection of all limit points of $+
x is the omega-limit

set of x, denoted ω(x).

It is easy to see from the definition that if z ∈ $x , ω(z) = ω(x). Thus instead of ω(x),
we can just as well write ω($x), the ω-limit set of the entire trajectory. Similarly, we can
define a limit set for t →−∞:
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Figure 4.17. The omega-limit set can be a limit cycle.

◃ alpha-limit set: α(x) is the collection of all limit points of "−x .

A simple example of anω-limit set is an asymptotically stable equilibrium, another example
is a periodic orbit that attracts a trajectory; see Figure 4.17. Such an orbit is called a

◃ limit cycle: A periodic orbit γ that is the omega or alpha-limit set of a point
x /∈ γ is a limit cycle.

Thus, a limit cycle is an invariant loop with the property that there is a nearby orbit that spirals
either toward it or away from it.27 As we will see in Chapter 6, limit cycles are common for
planar flows and more generally can arise through a “bifurcation” of an equilibrium when
it becomes unstable; see §8.8.

Example: The planar system

ẋ = x(1− r2)− y,

ẏ = y(1− r2) + x
(4.43)

is most easily analyzed in polar coordinates. The radial equation is

ṙ = 1
r

(xẋ + yẏ) = r(1− r2). (4.44)

This one-dimensional system has a source at r = 0 and a sink at r = 1 (negative values of
r are not allowed). The dynamics of θ = tan−1(y

/

x) are given by

θ̇ = 1
r2

(xẏ − yẋ) = 1
r2

(x2 + y2) = 1.

27Sometimes limit cycles are defined as isolated periodic orbits. This definition is not equivalent to ours, as a
periodic orbit in a planar system could bound a disk of other periodic orbits and still be the limit of a spiraling
trajectory from the outside.
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Thus the dynamics on the circle γ = {(r, θ) : r = 1} are simply θ(t) = θo+t : it is a periodic
orbit. The orbit γ is an asymptotically stable limit cycle because the radial equation shows
that r(t)→ 1 for any r(0) ̸= 0.

Note that a limit cycle is closed (the loop γ includes all of its limit points) and
invariant, ϕt (γ ) = γ . These properties are generally true for ω-limit sets, as we will see in
the following three fundamental lemmas that define the basic structure of ω-limit sets.

Lemma 4.14 (Closure). ω(x) = ⋂

T≥0 %̄
+
ϕT (x), where %̄

+
x is the closure of the forward orbit

of x. Hence, ω(x) is closed.

Proof. If z ∈ ω(x), then z ∈ %̄+
ϕT (x) = cl {y : y = ϕt (x), t ≥ T } for any T , since this

includes all limit points. Therefore, z is in the intersection of these sets. This proves that
ω(x) ⊂ ⋂

T≥0 %̄
+
ϕT (x). Now suppose that z ∈ ⋂T≥0 %̄

+
ϕT (x), or equivalently for any T ,

z ∈ %̄+
ϕT (x). If there is a time t such that z = ϕt (x), then there must be a larger time for

which this is true as well; this implies that z must appear infinitely often in the orbit %+
x ,

and so z ∈ ω(x). Otherwise z is in the closure of %+
x but is not in the orbit itself, and by

definition of “closure,” it is a limit point of the orbit. Finally, recall that the intersection of
a family of closed sets is closed.

Lemma 4.15 (Invariance). The ω-limit set is invariant.

Proof. If y ∈ ω(x), then there is a sequence tk such that ϕtk (x) → y. Continuity then
implies that for any fixed s ∈ R, ϕtk+s(x)→ ϕs(y). Therefore, ϕs(y) ∈ ω(s).

Now suppose that there is a metric ρ(x, y) defined on the phase space; recall §3.2.
We define the distance between a point, x, and a set, S, by

ρ(x, S) = inf
y∈S

ρ(x, y).

We will show next that when an orbit of a flow is bounded, it must approach its ω-limit set,
in the sense that ρ(ϕt (x),ω(x))→ 0; in this case we say that ϕt (x)→ ω(x). We will also
show that in this case that ω(x) is

◃ connected : Aset S is connected if it cannot be partitioned into two nonempty
sets such that each subset has no points in common with the closure of the other.

Thus, R+ is connected; for example, it can be partitioned into A = (0, 1), and B = [1,∞),
but Ā ∩ B = {1} is not empty.

Lemma 4.16 (Compact and Connected). If the forward orbit of x is contained in a
compact set, then ω(x) is nonempty, compact, and connected. Furthermore, ϕt (x)→ ω(x)

as t →∞.

Proof. The sets %̄+
ϕT (x) = cl {ϕt (x) : t ≥ T } are nested, since %̄+

ϕT +s (x) ⊂ %̄+
ϕT (x) for any

s > 0. Since, by assumption, the forward orbit of x is contained in a compact set, each
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Figure 4.18. Attracting figure-eight orbit of (4.45) for µ = 0.5.

!̄+
ϕT (x) is also compact. According to Lemma 4.14, ω(x) is the intersection of these sets, and

the intersection of a collection of nested closed sets is nonempty; then ω(x) is nonempty.
Moreover, since ω(x) is closed and contained in a compact set, it is compact.

Now suppose that ω(x) is not connected, i.e., that there are two disjoint, closed
components A and B such that ω(x) = A ∪ B. By definition, for any zA ∈ A there is a
sequence of times tkA

for whichϕtkA
(x)→ zA. Similarly for zB ∈ B. Since for each sequence

tk → ∞, there are infinitely many neighboring times for which tkA
< tkB

< tkA+1 and so
the orbit segment {ϕt (x) : tkA

≤ t ≤ tkB
} connects points arbitrarily close to zA to points

arbitrarily close to zB . Since ω(x) is closed, it contains the limits of these segments and
therefore cannot be disconnected. (More generally, any intersection of a nested collection
of compact, connected sets is connected.)

Finally, suppose that ρ(ϕt (x),ω(x)) does not go to zero. Then there must be
a subsequenceϕtk (x) of points that stay a distance δ away fromω(x). However, since this se-
quence is contained in a compact set, it has a convergent subsequence, which
would be a limit point not in ω(x), but this is a contradiction. In conclusion, ρ(ϕt (x),

ω(x))→ 0.

Example: Consider the system

ẋ = y,

ẏ = x − x3 − µy

(

y2 − x2 + 1
2
x4
)

.
(4.45)

When µ = 0, (4.45) is a Hamiltonian system with H = 1/2(y
2 − x2 + 1/2x

4). The level set
H = 0 is a figure eight, with H < 0 inside its lobes and H > 0 outside; see Figure 4.18. The
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Figure 4.19. Phase portrait of the system (4.46), showing the nullclines (blue and
brown).

term proportional to µ in the y-equation is specially chosen so that it vanishes on H = 0.
Thus, any orbit that starts on this curve will stay on it even when µ ̸= 0. Note that the rate
of change of energy is given by

dH

dt
= ∂H

∂x
y + ∂H

∂y

(

x − x3 − 2µyH
)

= −2µy2H.

Consequently, when y ̸= 0 and H < 0 (inside the lobes of the figure eight), H is increasing
and when H > 0 (outside the figure eight), H is decreasing. Therefore, trajectories move
toward the figure eight contour except possibly when y = 0. Only the points (0, 0) and
(±1, 0) on this set are invariant, so we can conclude, using LaSalle’s invariance principle,
Theorem 4.9, that |H(x(t), y(t))| monotonically decreases to zero as t → ∞ for every
point except the equilibria (±1, 0).

We can, therefore, completely characterize the ω-limit sets for each point in the plane.
A point x inside the right lobe of the figure eight (but not at the equilibrium (−1, 0)) has
an ω-limit set given by the entire right lobe—each point on the lobe is a limit point of its
trajectory. A similar discussion applies to points inside the left lobe. Any point outside
the two lobes (i.e., with H > 0) has the entire figure eight as its ω-limit set. The ω-limit
set of any point on the figure eight is the origin. Finally, each equilibrium is its own
ω-limit set.

If ω(x) is not compact, then it need not be connected.

Example: Consider the system

ẋ = y + x(1− y2),

ẏ = (1− y2)(y − x).
(4.46)

There is a spiral source at the origin, and the lines y = ±1 are invariant. Let R =
{(x, y) ̸= (0, 0) : |y| < 1} be the open region that is bounded by these lines. A numerical
phase portrait, see Figure 4.19, shows that trajectories starting in R spiral outward and
approach either y = +1 or y = −1. However, they appear to continually spiral and
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never settle down on either line. In particular, when the trajectory crosses the nullcline
Ny = {y = x}, then ẏ changes sign: in particular if y > 0 and is approaching 1, then it
will cross this line and begin to diverge from 1. Thus for any point z ∈ R, it appears that
ω(z) = {y = 1}∪ {y = −1}, which is not connected. The conclusion can be made rigorous
by consideration of the global phase portrait; see Exercise 6.14.

There are two other characterizations of long-time behavior that are of interest:

◃ nonwandering: A point x is nonwandering if for every neighborhood W of
x and every time T > 0 there is time t > T such that ϕt (W) ∩W ̸= ∅.

In other words, a nonwandering point has nearby points that continually return. Conse-
quently, any periodic orbit is nonwandering. Moreover, it can be shown that every point in
an ω-limit set is nonwandering; see Exercise 14.

◃ minimal set: A set S is minimal if it is closed, nonempty, and invariant and
does not contain any such set as a proper subset.

For example, a periodic orbit is minimal, but the union of two periodic orbits is not.

Theorem 4.17. Suppose S is compact; then S is minimal if and only if for each x ∈ S we
have S = ω(x).

Proof. First assume that S = ω(x) but is not minimal. Then there is a closed set B ⊂ S

that is invariant. However, if x ∈ B, then ω(x) ∈ B. This is a contradiction, so S must
be minimal. Now assume that S is minimal, but there is an x ∈ S for which ω(x) ̸= S.
Since S is compact, so is ω(x), and Lemma 4.14 implies that ω(x) is invariant, so S has an
invariant subset. Again, this is a contradiction.

4.10 Attractors and Basins
Informally, an attractor is an invariant set toward which all nearby trajectories move. We saw
in §4.5 that any equilibrium that is linearly asymptotically stable satisfies this condition. Our
goal is to define the notion of attractor without reference to the kind of orbit or orbits that it
contains; indeed, some attractors consist of infinitely many orbits. We start by generalizing
the definition stability that we used for equilibria in §4.5 to arbitrary invariant sets (recall
the definition of invariant set in §4.1):

◃ stability: An invariant set # is stable if for any neighborhood N of # there
is a subset M of N such that all points that start in M stay in N for all t > 0.

◃ asymptotic stability: An invariant set# is asymptotically stable if it is stable
and there is a neighborhood N such that for each x ∈ N , ρ(ϕt (x),#)→ 0 as
t →∞.

Since these definitions always refer to a neighborhood of the invariant set, we will
define an attractor by constructing a special neighborhood that will envelope it:
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◃ trapping region. A set N is a trapping region if it is compact and ϕt (N) ⊂
int(N) for t > 0.

Here, “int(N)” denotes the “interior” of the set N . Thus, a trapping region is strictly
“forward invariant.” Note also that ϕt+s(N) = ϕs(ϕt (N)) ⊂ int(ϕt (N)) ⊂ int(N) for any
s, t > 0; thus the sequence of sets ϕti (N) is nested for any increasing sequence ti .

Trapping regions are computationally and analytically quite easy to find: it is sufficient
that the vector field point inward everywhere on the boundary. The maximal invariant set
inside a trapping set is called an

◃ attracting set: Aset" is an attracting set if there is a compact trapping region
N ⊃ " so that

" =
⋂

t>0

ϕt (N). (4.47)

Note that since the collection {ϕt (N) : t ≥ 0} is a set of closed and nested sets, the inter-
section, ", is closed and nonempty. For compact sets there is no difference between the
concepts of asymptotic stability and attracting set.

Lemma 4.18. An attracting set is asymptotically stable. Conversely, if a compact set is
asymptotically stable, then it is an attracting set.

Proof. First, suppose " is an attracting set; then by definition every point in any trapping
region N stays in N , so " is stable, and approaches "—so it is asymptotically stable.

Conversely, assume that A is compact and asymptotically stable. To show it is an
attracting set we must construct a trapping set. Since A is asymptotically stable, there is a
neighborhood U of A for which all points approach A and stay in some larger neighborhood
D. Since A is compact, a compact subset of U can be chosen if needed. Now we have to
find a subset of U that is forward invariant. Since all points x ∈ U eventually approach A,
there exists a time T (x) for each x ∈ U such that ϕt (x) ∈ U for all t > T (x). Moreover,
since U is compact, the function T (x) has a maximum:

Tmax = max
x∈U

(T (x)) .

Therefore, N = ϕTmax(U) ⊂ U . By construction ϕt (N) ⊂ int(N), so N is a trapping region
for A.

Any attracting set has a maximal trapping region that is called the stable set of " or
the

◃ basin of attraction, Ws("): The basin (or stable set) of an invariant set" is
the set of all points x for which ρ(ϕt (x),")→ 0 as t →∞.

Thus if " is an attracting set with trapping region N , then

Ws(") =
⋃

t≤0

ϕt (N).
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Note that the definition of asymptotic stability is equivalent to the fact that ! is stable and
! ⊂ int(Ws(!)). This concept also provides another way of stating Lemma 4.16: if the
forward orbit of x is contained in a compact set, then x ∈ Ws(ω(x)).

Example: Consider a diagonalizable linear system with a matrix A whose eigenvalues are
all negative. The system can be put in diagonal form by a linear coordinate transformation
to obtain ẋj = λj xj . The unit square N = {x :

∣

∣xj

∣

∣ ≤ 1} is mapped to the set ϕt (N) =
{

x :
∣

∣xj

∣

∣ ≤ eλj t
}

⊂ int(N) when t > 0, so N is a trapping region. Moreover, the origin is
an attractor and the entire phase space is the basin of the origin: Ws({0}) = Rn.

Following Charles Conley, an attractor is an attracting set with an additional assump-
tion of “irreducibility” (Ruelle 1981). Basically, we would like to decompose attracting
sets into their fundamental components. There are several possible requirements that one
could add to our definition; for example, an attractor could be minimal (Perko 2000), “chain
transitive” (Robinson 1999), or contain a dense orbit (Guckenheimer and Holmes 1983).
We follow (Field 1996) to define an

◃ attractor: A set ! is an attractor if it is an attracting set and there is some
point x such that ! = ω(x).

Example: Consider the system

ẋ = x(1− x2),

ẏ = −y.

There are three equilibria (0, 0) (a saddle), and (±1, 0) (sinks). The set! = {−1 ≤ x ≤ 1,

y = 0} is, by our definition, an attracting set. Its basin is the entire plane. For the trapping
set we could take any rectangular disk enclosing !. Note that there is no orbit, however,
that approaches all the points in !; indeed, almost every trajectory approaches one of the
two sinks. Thus the only attractors for this example are the equilibria (±1, 0).

The definition of attractor that we give follows the school of Conley (Conley 1978;
Easton 1998). A related concept, a measure attractor, is due to John Milnor: it is a set that
attracts a set of positive measure but does not necessarily have an attracting neighborhood
(Milnor 1985a, b). There are interesting examples of sets that attract many but not all points
in a neighborhood, and even sets whose basin is nowhere dense (Alexander et al. 1996). We
will always assume that an attractor has an attracting neighborhood.

Example: In §4.6 it was shown that the Lorenz system (4.26) has a Lyapunov function about
the origin when σ > 0, b > 0, and r < 1. Lorenz studied the system at much different
values: σ = 10, b = 8

/

3, and r = 28. Here, it has an attracting set that appears to be a
“strange” set: a fractal.28 We can demonstrate that this system does have an attractor, when
σ, b > 0, by constructing a trapping region. Consider the ball

BR =
{

(x, y, z) : x2 + y2 + (z− r − σ )2 ≤ R2} . (4.48)

28We will discuss strange sets in §7.3.



4.10. Attractors and Basins 151

x

z

y
x

z

y

Figure 4.20. Two views of a numerical approximation of the Lorenz Attractor for
(σ, b, r) = (10, 8

/

3, 28). The axes shown are centered at (0, 0, 20) and are of length 50.

The vector field on the surface of the ball can be shown to point inward if R is chosen large
enough. To see this, compute the derivative of the functionC(x, y, z) = x2+y2+(z−r−σ )2

to obtain

1
2

d

dt
C = σxy − σx2 + rxy − y2 − xyz + (z− r − σ )(xy − bz)

= −σx2 − y2 − bz2 + (r + σ )bz

= −σx2 − y2 − b

(

z− r + σ

2

)2

+ b
(r + σ )2

4
.

Since b and σ are positive, the set on which dC
/

dt = 0 defines an ellipsoid,

E =
{

(x, y, z) : σx2 + y2 + b

(

z− r + σ

2

)2

= b
(r + σ )2

4

}

,

such that outside E, dC
/

dt < 0. To guarantee that this is true on the surface of the ball
BR for some R requires finding an R such that BR ⊂ E. The maximum distance from the
origin for points on E occurs on one of the axes; this gives the inequality

R >
|r + σ |

2
max

(

2,
√

b,

√

b

σ

)

. (4.49)

For the classic Lorenz parameters this requirement is R > 38; so for example, B39 is a
trapping region. The resulting attractor is amazingly complex, as shown in Figure 4.20.

The Lorenz attractor, ", is commonly visualized by numerically computing a single
trajectory. Thus it appears to be the ω-limit set of an arbitrary point and qualifies as an at-
tractor. It is not obvious, however, from the numerical simulations exactly how complicated
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the dynamics are on !: it is possible that ! is simply a very long periodic orbit. Indeed
showing that there is no attracting periodic orbit for the classic Lorenz system was listed
by Stephen Smale as his 14th mathematical problem for the 21st century (Smale 1998).
Recently this has been proved using rigorous numerical computation (Tucker 2002). An
attractor that is geometrically complicated, such as the Lorenz attractor, is called a strange
attractor; see §7.3.

Note that not every ω-limit set is an attractor. As an example, the origin in (4.45) is
the ω-limit set for any initial condition that starts on the figure eight but it is not an attractor
because points in its neighborhood have limit points on the figure eight. The figure eight
itself, however, is an attractor according to our definition. Note that this attractor is not a
minimal set and thus does not satisfy Perko’s definition of attractor.

4.11 Stability of Periodic Orbits
A periodic orbit is an invariant set and can be stable (recall example (4.43)) or unstable. It
is natural to first study their stability using the same method of linearization that we used
for equilibria in §4.4. Indeed, we will show that linearization provides valid results in the
same situation as in that case: when the orbit is linearly asymptotically stable.

Suppose that x(t) = γ (t) = γ (t+T ) is a periodic orbit of period T for the differential
equation ẋ = f (x). If the vector field f ∈ C1 we can linearize the ODE about γ by setting
x(t) = γ (t) + y(t) and expanding f in a Taylor series to obtain

d

dt
(x + y) = f (γ (t)) + d

dt
y = f (γ (t) + y) = f (γ (t)) + Df (γ (t))y + o(y).

If we neglect the o(y) term we obtain the linearization

d

dt
y = Df (γ (t))y = A(t)y, (4.50)

where the matrix, A(t), is a periodic function of time. Such systems can be analyzed using
Floquet theory, as we did in §2.8.

Recall from (2.46) that the fundamental matrix solution of (4.50) can be written
$(t, to), and that the matrix M = $(T , 0), is called the monodromy matrix. The eigen-
values of M are the Floquet multipliers, and Floquet’s theorem (Theorem 2.13) shows that
all of the solutions of (4.50) are bounded whenever the Floquet multipliers have magnitude
smaller than one.

For the case (4.50), one of the Floquet multipliers is trivially unity.

Theorem 4.19. The monodromy matrixM for the linearization of a system ẋ = f (x) about
a periodic orbit γ (t) always has at least one unit eigenvalue.

Proof. Since x(t) = γ (t) is a solution of the original nonlinear equations, so is x(t) =
γ (t + τ ) for any phase shift τ . Differentiate this solution with respect to τ and set τ = 0 to
give

d

dτ
[γ̇ (t + τ ) = f (γ (t + τ ))]

∣

∣

∣

∣

τ=0
⇒ d

dt
γ̇ = Df (γ (t))γ̇ (t).
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Therefore, γ̇ is a solution of the linearized equations: γ̇ (t) = "(t, 0)γ̇ (0). However, since
γ is periodic, γ̇ (T ) = γ̇ (0) and is therefore an eigenvector of the monodromy matrix with
eigenvalue (Floquet multiplier) one.

Note that the vector γ̇ (t) is tangent to γ at the point γ (t). A simple interpretation
of Theorem 4.19 is that two nearby points on the same orbit stay close for all time. Since
there is always a unit multiplier, a periodic orbit cannot be asymptotically stable in the same
sense as an equilibrium. However, the unit multiplier is associated with the “trivial” tangent
direction and does not affect the stability of the invariant set γ . Thus we will say a periodic
orbit is linearly stable if all of its Floquet multipliers have magnitude at most 1, |µi | ≤ 1.
Moreover, the orbit is linearly asymptotically stable if all of its multipliers apart from the
trivial unit multiplier have magnitude strictly less than one, |µi | < 1 for i = 2, . . . , n.

Abel’s theorem, Theorem 2.11, gave one nontrivial relation between the Floquet mul-
tipliers,

det(M) = exp
∫ T

0
tr (Df (γ (s))) ds. (4.51)

Since det(M) = ∏

i µi , this relation determines the product of the multipliers. For the
planar case, this is all the information we need: in R2, the 2× 2 monodromy has one unit
multiplier, µ1 = 1. The second nontrivial multiplier thus determines the stability of the
periodic orbit, and µ2 = det(M).

Example: Consider again the planar system (4.43). Consider the limit cycle γ = {(r, θ) =
(1, θo + t) : t ∈ R}. Choosing θo = 0 and returning to rectangular coordinates so that
γ = {(x, y) = (cos t, sin t) : t ∈ R} gives the linearized matrix

Df (γ (t)) =
( −2x2 −1− 2yx

1− 2yx −2y2

)

=
( −2 cos2 t −1− 2 sin t cos t

1− 2 sin t cos t −2 sin2 t

)

.

As promised, the derivative of the solution, γ̇ = (− sin t, cos t)T , is a solution of the
linearized ODE:

d

dt

( − sin t

cos t

)

=
( −2 cos2 t −1− 2 sin t cos t

1− 2 sin t cos t −2 sin2 t

)( − sin t

cos t

)

=
( − cos t

− sin t

)

.

A second solution can be easily obtained by linearizing the r equation (4.44) about its
equilibrium r = 1, to obtain δṙ = −2δr , showing that a linearized solution should take
the form (δx, δy) = δroe

−2t (cos t, sin t). Indeed, substituting this into the linearized ODE
yields an identity. We can conclude that the fundamental matrix solution to the linear
equation is

"(t, 0) =
(

e−2t cos t − sin t

e−2t sin t cos t

)

,

which gives a monodromy matrix

M = "(2π, 0) =
(

e−4π 0
0 1

)

.

The Floquet multipliers are simply the elements on the diagonal, µ1 = 1 and
µ2 = e−4π .
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If tr(Df ) vanishes identically, then (4.51) implies that det(M) = 1; this means that a
planar, “incompressible” flow has both multipliers equal to one (see §9.2).

Example: Any C2 Hamiltonian system in the plane, (4.27), has both Floquet multipliers
equal to one, since f = (∂H

/

∂y, ∂H
/

∂x), so that tr(Df ) = ∂2H
/

∂x∂y − ∂2H
/

∂y∂x =
0. If one is careful with indices, one can show that tr(Df ) = 0 for Hamiltonian systems in
any dimension (recall (1.13)), which means that the product of the Floquet multipliers for
these systems is always one.

If the Hamiltonian depends explicitly on time, H(x, y, t), the system (4.27) is still
called a Hamiltonian system; however, the energy is no longer conserved. Indeed, (4.28)
becomes

dH

dt
= ∂H

∂x
ẋ + ∂H

∂y
ẏ + ∂H

∂t
= ∂H

∂t
̸= 0.

As we discussed in §1.2, a two-dimensional nonautonomous system is equivalent to an
autonomous one on a three-dimensional space. If we suppose that H is a periodic function
of time, H(x, y, t) = H(x, y, t + T ), then the third variable can be taken to be an angle,
say, θ = t

/

T , so the phase space is M = R2 × S1, and the ODEs are

ẋ = ∂

∂y
H(x, y, T θ), ẏ = − ∂

∂x
H(x, y, T θ), θ̇ = 1

T
.

A periodic orbit of this system is a curve γ (t) = (x(t), y(t), θ(t)) whose period must be
some multiple of T , since the angle returns to itself “mod 1.” Since the third component
of the new three-dimensional vector field is constant, the result tr(Df ) = 0 still holds. In
this case there are three Floquet multipliers. One multiplier will be one, µ1 = 1, and so
µ2µ3 = 1 as well.

Consequently, periodic orbits of Hamiltonian systems are never asymptotically stable.
The only case in which they are linearly stable is if all Floquet multipliers are on the unit
circle. This will be discussed in Chapter 9.

The relationship between linear asymptotic stability and true asymptotic stability in
the sense of §4.10 is most easily discussed by introducing the concept of Poincaré maps.

4.12 Poincaré Maps
Maps are dynamical systems in the sense of §4.1 when the set of allowed time values
is discrete. While much of the theory of dynamical systems can be developed for maps
themselves (Arrowsmith and Place 1992; Devaney 1986; Guckenheimer et al. 1983; Katok
and Hasselblatt 1999; Robinson 1999; Strogatz 1994; Wiggins 2003), our primary interest
in maps will be to discuss the behavior of a flow in the neighborhood of a periodic orbit.
The Poincaré map naturally arises in this context.

A map is defined by a function P : M → M through the relation x ′ = P(x), where
x ′ ∈ M denotes the new point that arises from the initial point x ∈ M .29 For a map, an

29We always use the symbol “D” to represent derivative and reserve the prime symbol ′ for the iterate of a map.
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S

f(x)

x
′x

Figure 4.21. Construction of a Poincaré map from a flow on a section S.

orbit is no longer a function x(t) of t ∈ R but is instead a sequence {xt : t ∈ Z}. Using this
subscript notation, the dynamics is given by the iteration

xt = P(xt−1).

Maps arise naturally from flows by taking sections of the flow. For a flow in Rn, a section, S,
is a surface of dimension d = n− 1 (i.e., a codimension-one surface) such that the velocity
vector is not tangent to S at any point. That is, if n̂x is the unit normal to S at x, then S is a
section if f (x) · n̂x ̸= 0 for all x ∈ S.

A Poincaré map for a section S is obtained by choosing an x ∈ S, and following the
flow ϕt (x) to find the first return to S: let τ (x) be the first positive time for which ϕt (x) ∈ S.
The map is defined by

P(x) = ϕτ (x)(x), (4.52)

as illustrated in Figure 4.21. Note that τ (x) might not exist for all x ∈ S, in which case the
Poincaré map is not well defined. The best scenario occurs when S is a

◃ global section: If the orbit of every point x ∈ Rn eventually crosses an n−1
dimensional surface S and then returns to S at a later time, then S is a global
section.

In this case the Poincaré map is defined for all x ∈ S.

Example: A system with a natural angle variable that is always increasing has a global
section. For example, the skew-product30 system

ẋ = f (x, θ),

θ̇ = 1,

30A system ẋ = f (x) is a skew product if the variables can be separated as x = (y, z) such that the equations
become ẏ = f1(y, z) and ż = f2(z).
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S x
γ(t)

′x

Figure 4.22. Poincaré section in the neighborhood of a periodic orbit.

where x ∈ Rn, and θ ∈ S1, has a global section S = {(x, θ) : θ = θo} ∼= Rn−1, since all
trajectories cross this section with unit speed in the θ direction. This can also be generalized
to the case that θ̇ = g(x, θ), provided that g > 0 everywhere.

If S and S̃ are two global sections, then the corresponding Poincaré maps are conjugate.
This follows since the flow takes every point x ∈ S to a point on S̃ after some time τ (x). The
homeomorphism h : S → S̃ is defined by h(x) = ϕτ (x)(x). Each global section contains
the same information about the flow.

A locally defined Poincaré map always exists in a neighborhood of a periodic orbit
γ , as shown in Figure 4.22. The section S is assumed to be a (small) disk containing a
point xo ∈ γ that is oriented perpendicular to the vector field f (xo). By continuity, there is
always some neighborhood of this point for which the vector field will be transverse to the
disk. Moreover, continuity with respect to initial conditions, recall §3.4, implies that points
“near” γ will stay “near” for any finite time t , and so they must intersect the disk at a time
that is near the period, T = τ (xo).

For example, suppose that a flow in the plane has a periodic orbit. Then the section
is a line segment that is perpendicular to the periodic orbit at a point on the orbit.

Example: Let (r, θ) be polar coordinates and consider the system

ṙ = r + αr3,

θ̇ = ν.

When α < 0 there is a unique periodic orbit at r∗ = (−α)−1/2. It is not hard to solve
explicitly for r(t) by separation of variables:

t + c =
∫

dr

r(1 + αr2)
= 1

2
ln
∣

∣

∣

∣

r2

1 + αr2

∣

∣

∣

∣

⇒ r(t; ro) = ro
√

(1 + αr2
o )e−2t − αr2

o

.

The solution for θ is trivial: θ(t) = θo + νt . Let the positive x-axis represent S. The radius
r is a good coordinate on S and the Poincaré map P : S → S is simply the value that r
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r

1

2
0

10 ro

′r

Figure 4.23. Poincaré map (4.53) for α = −1 and ν = rπ . The periodic orbit
corresponds to the intersection of the graph r ′ = P(r). It is stable because DP(1) < 1.
The stair-stepped curve is the graphical iteration of ro = 0.3.

takes after one period of the angle, or at t = 2π
/

ν:

r ′ = P(r) = r
√

(1 + αr2)e−4π/ν − αr2
. (4.53)

For this one-dimensional case, the Poincaré map and its iteration can be visualized graph-
ically; see Figure 4.23. Consider an initial condition ro. Move vertically up to P(ro) to
obtain r1. Put this value onto the r-axis by moving horizontally to the diagonal. To get r2

move again vertically to the function value P(r2). The resulting series of lines, as shown
in the figure, resembles a staircase. (For more complicated maps the picture looks like a
cobweb and so is typically called the cobweb diagram.) The staircase picture implies that if
the slope at a fixed point is less than one in magnitude, then the equilibrium is stable, since
iterates move monotonically in the direction of the fixed point.

Generally, the computation of the stability of a periodic orbit requires that we consider
the linearization of the flow in the neighborhood of the periodic orbit. One must typically
resort to numerical methods to solve for the Floquet multipliers, even if the periodic orbit is
known analytically. It is often convenient numerically to compute the Poincaré map (4.52)
and study stability of an orbit by this method. One advantage is that the Poincaré map acts
on the section S that has dimension n − 1, one less than the flow. Moreover, the removed
dimension corresponds to the motion along the periodic orbit and thus to the neutral Floquet
multiplier µ1 = 1. Consequently, stability computed using the Poincaré map is the same as
that from the Floquet spectrum:
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Theorem 4.20. Let γ be a periodic orbit of a C2 flow ϕ, S be a local section through a
point xo ∈ γ , and P : S → S be the Poincaré return map. If the monodromy matrix of γ
is M , then

spec(M) = spec(DP (xo)) ∪ {1}.

Proof. Suppose x ∈ S, and τ (x) is the time of first return to S. The Poincaré map is
given by (4.52), where we restrict x to S. For the moment, ignore this restriction, and let
Q(x) = ϕτ (x)(x) for any x near γ . Differentiating Q with respect to x gives

DQ(x) = Dxϕτ (x)(x) + d

dt
ϕτ (x)(x) (Dxτ (x))T .

Here the last term is the “outer product” of the flow vector f (x(τ (x)) and the gradient vector
Dτ (x). This latter vector represents the change in period with respect to x; it can be called
the “twist.” When x = xo ∈ γ , τ (xo) = T , DϕT (xo) = M , and ϕT (xo) = xo so that

DQ(xo) = M + f (xo)(Dτ (xo))
T .

We can take the section S to consist of points orthogonal to the flow vector at xo, i.e.,
x = xo + ξ , where f (xo)

T ξ = 0. If wi, i = 1, 2, . . . , n − 1, are a set of orthonormal
basis vectors perpendicular to f (xo), then the transpose of the n × (n − 1) matrix W =
(w1, w2, . . . , wn−1) is a projection onto vectors in the section. The matrix DP(xo) in the
wi basis has the representation WT DQ(xo)W . Since WT f (xo) = 0, we obtain

DP(xo) = WT MW.

Consequently, if v is an eigenvector of DP(xo) with eigenvalue µ, then since WWT = I ,
the (n− 1)× (n− 1) identity matrix, Wv is an eigenvector of M with the same eigenvalue.
The only vector not in the projected space is f (xo), which is an eigenvector of M with
eigenvalue one.

This theorem shows that, up to the trivial Floquet multiplier, µ1 = 1, linear stability
of a periodic orbit can be computed from the Poincaré map.

Finally we are ready to state the result about linear stability.

Theorem 4.21. If γ is a periodic orbit of a C2 flow that is linearly asymptotically stable
(the spectrum of its Poincaré map is inside the unit circle), then it is asymptotically stable.

Proof. The proof of this theorem is similar to the proof of Theorem 4.6. Following that
analysis, let xo ∈ γ , and xo +y ∈ N ∩S, where N is a neighborhood of γ and S is a section.
Write the Poincaré map at xo + y as P(xo + y) = xo + DP(xo)y + g(y). Thus

y ′ = DP(xo)y + g(y).

Since the orbit γ is linearly asymptotically stable, the spectrum of DP(xo) is contained in
the interior of the unit circle. Analogously to (4.20), for any n ≥ 0 we can bound the orbit
of this linear mapping by

∣

∣DP n(xo)y
∣

∣ < Kµn |y|
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for some 0 < µ < 1 and K ≥ 1. Since the flow is smooth, g(y) = o(y), that is, for any
ε there is a neighborhood Nε ⊂ S of xo such that |g(y)| < ε |y| for all y ∈ Nε. Using
the discrete analogue of the integrating factor and the Grönwall lemma, it is possible to
see that there is an ε such that if yo ∈ Nε, then the sequence yn limits to xo as n → ∞
and is bounded in distance from xo. We leave the details to the reader. Since the Poincaré
maps through any two local sections to γ are topologically conjugate, this implies that γ is
asymptotically stable.

4.13 Exercises
1. Show that the following functions are flows on the spaces indicated. Find the vector

field for each flow.

(a) ϕt (x) = x + tanh t

1 + x tanh t
, x ∈ [−1, 1],

(b) ϕt (x, y) =
(

x cos(r2t) + y sin(r2t)

−x sin(r2t) + y cos(r2t)

)

, r2 = x2 + y2, (x, y) ∈ R2.

2. Find and analyze the linear behavior near each equilibrium of the following systems
on R2. Classify the equilibria. Are they linearly stable or unstable? Sketch the local
behavior you obtained in the phase plane and compare with a numerical phase plane
plotter that shows the global solutions.

(a)
ẋ = y

ẏ = x − x3 − ay
,

(b)
ẋ = x2 − y2 − 1
ẏ = 2y

,

(c)
ẋ = y − x2 + 2
ẏ = 2y2 − 2xy

,

(d)
ẋ = −4x − 2y + 4
ẏ = xy

.

3. The centrifugal governor (see Figure 4.24) was patented by James Watt in 1789 to
control the steam engine. It is described by the set of ODEs (Pontryagin 1962)

ϕ̇= ψ,

ψ̇ = n2ω2 sin ϕ cosϕ −&2 sin ϕ − b
m
ψ,

ω̇= 1
I
(µ cosϕ − F) ,

similar to those first derived by Vishnegradskii in 1876. Here the dynamical variables
are ϕ ∈ [0,π ], the angle between the spindle S and the “flyball arms” of length L, ω,
the rotational velocity of the flywheel, and ψ , the angular acceleration. Constants in
the equation are n the transmission ratio of the gears—the ratio between the angular
velocity of the spindle and flywheel, & = √g/L the arm pendulum frequency, b

friction of the flywheel, m the flyball mass, I the moment of inertia of the flywheel,
F the torque load on the engine, and µ, representing the steam-driven torque caused
by closing the valve as the collar rises on the spindle.



160 Chapter 4. Dynamical Systems

Boiler
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mm

L

L

Engine

ϕ
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flywheel
S

Figure 4.24. Sketch of Watt’s centrifugal governor.

(a) Show that by rescaling time, setting τ = "t , and defining new variables,
(x, y, z) =

(

ϕ,ψ
/

", nω
/

"
)

, the equations can be reduced to the system

ẋ = y,

ẏ = sin x
(

z2 cos x − 1
)

− εy,

ż = α (cos x − β)

for new parameters (α,β, ε), all positive.

(b) Show that if β is small enough, there is a unique the equilibrium (x∗, y∗, z∗).

(c) Linearize about the equilibrium and find the characteristic polynomial.

(d) Show that there is a critical value, εo(α,β), such that if ε > εo, then the
equilibrium is asymptotically stable, and if 0 < ε < εo, then the equilibrium is
a saddle.

(e) It can be shown that the system undergoes a Hopf bifurcation (see Chapter 8) at
εo. Solve the equations numerically and demonstrate that as ε decreases through
εo the equilibrium becomes unstable and there is an attracting limit cycle.

4. Are the following functions homeomorphisms? Are they diffeomorphisms? If the
functions depend upon parameters, then so might your answers. Explain.

(a) f : [0, 1]→ [0, 1], f (x) = ax(1− x),

(b) f : R→ R, f (x) = ax + b sin(2πx),

(c) f : [0, 1]→ S1, f (x) = [x + b sin(2πx) ] mod 1,



4.13. Exercises 161

(d) f : S1×R→ S1×R, f (x, y) = ([x+y+b sin(2πx)] mod 1, y + b sin(2πx)),

(e) f : R2 → R2, f (x, y) = (y + ax(1− x),−bx).

5. Use the iterative construction of the Hartman–Grobman homeomorphism H to obtain
an approximation for the conjugacy for the flow of the system on R3 given by

ẋ = −x,

ẏ = −y + x2z,

ż = 2z

to its linearization at (0, 0, 0). Show that the iteration is not globally convergent.
Discuss how to modify the iteration to make it locally convergent, using a “bump
function.”

6. Which of the ODEs ẋ = Ax with the following matrices are topologically conjugate?
Which are diffeomorphic? Which are linearly conjugate?

(a)
( −2 −1

3 2

)

, (b)
(

2 0
0 2

)

, (c)
( −5 −2

5 1

)

, (d)
(

2 1
1 2

)

,

(e)
(

7 −10
5 −8

)

, (f )
(

3 1
−1 1

)

, (g)
( −5 1
−6 0

)

, (h)
(

1 0
−2 −1

)

.

7. Construct a topological conjugacy between the linear systems with the matrices

A =
(

1 −1
1 1

)

, B =
(

2 0
0 2

)

.

(Hint: Transform to polar coordinates and assume the homeomorphism has the form
h(r, θ) = (hr(r), hθ (r, θ)). The r-dependence of hθ will involve ln r .)

8. Construct Lyapunov functions to determine the stability of the equilibrium (0, 0) for
the following systems on R2.

(a)
ẋ = −x + y − y2 − x3

ẏ = x − y + xy
,

(b)
ẋ = y − x2 + 3y2 − 2xy

ẏ = −x − 3x2 + y2 + 2xy
.

(Hints: Try a power series for L, starting with quadratic terms. Add higher-order
terms if necessary. Sometimes it is easier to check for a Hamiltonian than it is to
construct L ab initio.)

9. An asymptotically stable linear system always has a Lyapunov function of the form
L = xT Sx.

(a) Show that when all the eigenvalues of A have negative real parts, then the “Lya-
punov equation” (4.24) has the unique, positive definite, symmetric solution

S =
∫ ∞

0
eτA

T

eτAdτ. (4.54)
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(Hint: Premultiply (4.24) by etAT

and postmultiply by etA. Note that the left-
hand side of (4.24) then becomes a total derivative. Remember that eAT +A ̸=
eAT

eA in general.)

(b) Compute S for the matrix A =
(−2 1

0 −2

)

, and demonstrate explicitly that
dL
/

dt < 0.

10. The Lyapunov function defined in Exercise 9 also works when nonlinear terms are
added to the ODE. Consider the system ẋ = Ax + g(x), where g(x) = o(x) and
A is a matrix whose eigenvalues have negative real parts. Show that there is a
neighborhood U of the origin for which the function L = xT Sx, where S is given
by (4.54), is a strong Lyapunov function. (Hint: You may need to use the Cauchy–
Schwarz inequality |⟨u, v⟩| ≤ ∥u∥ ∥v∥.)

11. In 1965 Goodwin proposed the model

ẋ = 1
1 + zm

− ax, ẏ = x − by, ż = y − cz,

for the regulation of enzyme synthesis of a product in a cell. Here a, b, c are positive
constants, and m is a positive integer (m = 1 for Goodwin’s original model) (Murray
1993, §6.2). Here x represents the concentration of messenger RNA, y the enzyme,
and z the product. The nonlinear term in these equations represents the negative
feedback of the product on the RNA, since as z grows, the growth rate of x decreases.

(a) Show that there is a trapping set of the form N = {(x, y, z) : 0 ≤ x ≤ X, 0 ≤
y ≤ Y, 0 ≤ z < Z} for suitably chosen values X, Y, and Z. Take care to think
about the dynamics on the coordinate axes.

(b) Find the unique equilibrium in N , and show that it is asymptotically stable when
m = 1. It also can be shown with more work that this is true for any m < 8.
(Hint: The characteristic polynomial has only stable roots only if it satisfies the
Routh-Hurwitz criterion; see Exercise 2.11.) Consequently the attracting set in
! contains this equilibrium. While this system was initially proposed to model
oscillatory behavior, a recent general result implies that no such cycle exists for
m ≤ 4 and indeed that the attracting set ! in N is the equilibrium (Enciso and
Sontag 2006).

12. Assume that the flowϕt : A→ A is conjugate to the flowψt : B → B with conjugacy
h : A→ B.

(a) Show that if ω(x) is the omega limit set for x ∈ A under ϕ, then h(ω(h−1(y))

is the omega limit set for y = h(x) ∈ B under ψ .

(b) Show that if ! is an invariant set for ϕ, then h(!) is an invariant set for ψ .

(c) Show that if Ws(!) is the basin of !, then h(Ws(!)) is the basin of h(!).

(d) Show that if ! is an attractor, then so is h(!).
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13. Suppose that ϕ and ψ are flows on R2 that each have exactly two equilibria that are
both saddles. Suppose for the flow ϕ that the unstable set of one saddle corresponds
to the stable set of the other but that this is not true for ψ . Show that ϕ and ψ are not
topologically equivalent.

14. Show that if y ∈ ω(x), then y is nonwandering.

15. An alternative trapping set to (4.48) for the Lorenz system (4.26) is the ellipsoid

EC =
{

rx2 + σy2 + σ (z− 2r)2 ≤ C
}

.

Find the minimal value of C such that every trajectory eventually enters EC . Does
this give a better bound than that represented by (4.49)?

16. Let (r, θ) be a point in the phase space R+ × S that obeys the system

ṙ = r(1 + a cos θ − r2),

θ̇ = 1,

where |a| < 1.

(a) Show that the circle r = 0 is periodic orbit with period 2π .

(b) Compute the monodromy matrix M = '(2π, 0) for the circle r = 0 and show
that its Floquet multipliers are µ = 1 and e2π . (Hint: The linear system has
solutions (0, δθ(t)) and (δr(t), 0.)

(c) Show that there are two circles r = r− and r = r+ such that if 0 < r < r−, then
ṙ > 0, and if r > r+, then ṙ < 0. Thus the region N = {(r, θ), r− < r < r+}
is a trapping region. Our next goal is to show that the attracting set in N is a
periodic orbit.

(d) Let S be the ray {(r, 0)}. Argue that S is a global section. Let P : R+ → R+

be the Poincaré map on S.

(e) Suppose that the orbit of the point (rL, 0) has the property 0 < P(rL) < r−.
Argue that P(rL) > rL. Alternatively, suppose that the orbit of(rH , 0) has the
property that P(rH ) > r+. Then argue that P(rH ) < rH .

(f) Apply the intermediate value theorem to P(r) to show that there is a point
(r∗, 0), where rL < r∗ < rH , whose orbit is periodic.

(g) Show that the Floquet multipliers of the new orbit are µ = 1 and e−4π . Con-
sequently, the new periodic orbit is asymptotically stable. (Hint: To do the
integral

∫ 2π
0 r2(t)dt use the differential equation to set r2 = 1+a cos θ − ṙ

/

r .)

17. The Shimizu–Morioka model is a simplified model of the Lorenz system when r is
large (Shilnikov 1993). It is given by

ẋ = y,

ẏ = x − αy − xz,

ż = −βz + x2,

where (x, y, z) ∈ R3, and α,β ∈ R.
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(a) Find all of the equilibria for this system depending the values of α and β (there
can be three).

(b) Find the eigenvalues of the equilibrium that exists (is a point in R3) for all
parameter values, and classify its stability type as a function of α and β.

18. Consider your adopted system of quadratic differential equations (recall §1.6 and
Exercise 1.10). If possible, find a set of values of the reduced parameters for which
one of your systems equilibria (x∗, y∗, z∗) is spectrally stable. If there are no such
equilibria, then prove so. Otherwise, attempt to construct a Lyapunov function for
a neighborhood of your stable equilibrium. It would probably be good to attempt to
use a quadratic function

L(x, y, z) = α(x − x∗)2 + β(y − y∗)2 + γ (z− z∗)2,

though you might have to experiment with adding cross terms to the equation, or
going to a higher degree. This is a case where you may or may not succeed; indeed,
your system may not have a simple Lyapunov function. You will get full credit for
making a convincing attempt—for example, by showing that the function above is
not a Lyapunov function for any values of α,β, γ .



Chapter 5

Invariant Manifolds

Nunquam praescriptos transibunt sidera fines. (Never will heavenly bodies
transgress their prescribed bounds.) (Henri Poincaré 1890)

Hyperbolic fixed points of a linear ordinary differential equation (ODE) have stable, Es ,
and unstable spaces, Eu, determined by the eigenvectors of the associated matrix at the
fixed point. We showed in §2.6 that these spaces are invariant under the dynamics of the
linear system. In this chapter we will show that there are also invariant subspaces Wuand
Ws that are generalizations of Eu and Es for a nonlinear ODE with a hyperbolic fixed
point. Some local information about these subspaces can be inferred from Theorem 4.12
(Hartman–Grobman), which implies that when an equilibrium is hyperbolic, the flow in
its neighborhood is topologically conjugate to the linearized flow. Here, however, we will
obtain much more precise control over the structure of these subspaces, showing that they
are “manifolds” that are smoothly tangent to the linear subspaces. We begin by looking at
a few simple examples where the manifolds can be found analytically.

5.1 Stable and Unstable Sets
Stable and unstable sets are collections of orbits that are forward or backward asymptotic
to a given orbit. Recall that in §4.10 we defined the stable set, or basin of attraction, of an
invariant set ! as the set of points forward asymptotic to !:

Ws(!) = {x /∈ ! : ϕt (x)→ ! as t →∞} . (5.1)

We can also define the backward basin or unstable set of ! as the set of points that are
backward asymptotic to it:

Wu(!) = {x /∈ ! : ϕt (x)→ ! as t →∞} . (5.2)

Generally the stable and unstable sets are invariant.

165
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Figure 5.1. Phase portrait of (5.3) with a = 1.

Lemma 5.1. The stable and unstable sets of an invariant set ! are themselves invariant
sets.

Proof. We must show that whenever z ∈ Ws(!) we have ϕs(z) ∈ Ws(!) for any s ∈ R.
This follows from the group property of the flow: by definition (5.1), ϕs(z) is a point such
that ϕt (ϕs(z)) = ϕs+t (z) → ! as t → ∞. Since this holds for any s, the stable set is
invariant. A similar argument applies to the unstable set.

In some special cases we can find the stable and unstable sets analytically. For
example, consider a Hamiltonian H(x, y) in the plane with a saddle equilibrium at a point
(x∗, y∗). The energy contours H(x, y) = H(x∗, y∗) = E that emanate from the saddle
correspond to the stable and unstable sets of the saddle—since these are curves they are
called the stable and unstable manifolds.

Example: The Hamiltonian for the system (4.29) is

H(x, y) = 1
2
(y2 − x2) + ax3, (5.3)

where we takea > 0. Since the linearization for the equilibrium at the origin has the Jacobian
Df (0) =

(0 1
1 0

)

, it is a saddle. The energy at the saddle point is H(0, 0) = E = 0; this
contour corresponds to the curves y± = ±x

√
1− 2ax, shown in Figure 5.1, that intersect

at x = (2a)−1. Since orbits lie on contours of constant H , the union of these two curves,
like every contour of H , is an invariant set. Noting the direction of the flow (from ẋ = y),
we see that

Wu(0, 0) = {(x, y) : H(x, y) = 0, x > 0 or x, y < 0} ,

Ws(0, 0) = {(x, y) : H(x, y) = 0, x > 0 or x < 0 and y > 0} .

Here we specifically do not include the equilibrium as part of the stable and unstable sets.
Note that the positive-x branches of the two manifolds coincide; moreover, these branches
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bound the set of orbits that are oscillating about the center equilibrium at ((3a)−1, 0). Orbits
outside this closed loop are unbounded. Since this loop separates two topologically distinct
types of motion, we call it a “separatrix”; see §5.2.

When the ODE is linear and hyperbolic, Rn = Es ⊕ Eu and the stable and unstable
sets of the origin correspond to Es and Eu. Our task in this chapter is to generalize these
subspaces to the nonlinear case. We will see that when the equilibrium is hyperbolic, its
linear stable and unstable sets give a “linear approximation” to the stable and unstable
manifolds of the equilibrium.

Example: For the Hamiltonian (5.3), the stable and unstable manifolds of the origin corre-
spond to the curves y± = ±x

√
1− 2ax; recall Figure 5.1. As we will see in §5.4, the stable

manifold theorem implies that the local unstable manifold is the unique invariant curve
emanating from the origin that is tangent to the unstable eigenvector of Df (0), in this case
the vector v+ = (1, 1)T . Since dy+

/

dx = 1 at x = 0, this shows that the local unstable
manifold of the origin is indeed the set Wu(0) =

{

(x, y+(x)) : x ∈ (−∞, 1
/

2a)
}

. Simi-
larly, the local stable manifold is Ws(0) =

{

(x, y−(x)) : x ∈ (−∞, 1
/

2a)
}

and is tangent
to the stable eigenvector v− = (1,−1)T .

5.2 Heteroclinic Orbits
In special situations it is possible that Wu(!) and Ws(!) may coincide or perhaps have
points of intersection. The realization that there could be such intersections (in particular
transverse intersections) is what led Poincaré to understand that the dynamics of the n-body
problem (n point masses interacting under their mutual gravitational attraction) could be
very complicated. The discovery of this complexity—and indeed the beginnings of what
we now call chaos—arose from a mistake in a manuscript that Poincaré had submitted in
1888 to King Oscar of Sweden for a mathematics prize to be awarded to the first person to
“find a solution” to the n-body problem! Although Poincaré was awarded the prize in 1889,
his initial essay had mistakenly asserted that if Wuintersects Ws , then they must coincide.31

The story of this mistake and its subsequent correction (leading to Poincaré having to pay
for the entire print run of the issue of Acta Mathematica containing the original essay) is
elegantly told in (Diacu and Holmes 1996).

The corrected version of Poincaré’s paper (Poincaré 1889) began his extensive study
of the complexity induced by two types of orbits; the first type he calls a

◃ heteroclinic orbit: An orbit " is heteroclinic if each x ∈ " is backward
asymptotic to an invariant set A and forward asymptotic to an invariant set B,
i.e., " ⊂ Wu(A) ∩Ws(B).

The second class is a special case of the first; Poincaré called the second type a doubly
asymptotic or

◃ homoclinic orbit: " is homoclinic if each x ∈ " is both forward and back-
ward asymptotic to the same invariant set A, i.e., " ⊂ Wu(A) ∩Ws(A).

31Some of the consequences of noncoincident intersections are discussed in §8.13 et seq.
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Figure 5.2. Contours of the Hamiltonian (5.4).

This definition could be generalized to say that an orbit !h is homoclinic to another orbit !
if every point on !h is both forward and backward asymptotic to !.

In a two-dimensional phase space, a saddle equilibrium has both a stable and an
unstable set and each is one-dimensional. The uniqueness theorem implies that if a branch
of Wuintersects a branch of Ws , then they must coincide; therefore, in a two-dimensional
phase space homoclinic orbits form impenetrable boundaries—we saw such a boundary in
Figure 5.1. Orbits such as these are called separatrices, as they separate phase space into
regions that cannot communicate. Poincaré’s mistake in 1888 was the conclusion that this
must happen in higher-dimensional systems; we will see how this fails in §8.13.

For the case of Hamiltonian systems in the plane, separatrices are common. Since
H is constant along trajectories, recall (4.28), any closed contour of a Hamiltonian H that
intersects one or more critical points (note that ∇H = 0 implies also that the point is an
equilibrium) gives a separatrix. When a heteroclinic orbit connects two saddle equilibria,
it is also called a saddle connection.

Example: Heteroclinic orbits can be constructed by choosing an H that has several saddle
points with the same energy. For example, the function f = 1/2r

2−r3 sin(3θ) in polar coor-
dinates has a triangular contour f = 1

/

54. Translating this back to rectangular coordinates
yields the Hamiltonian

H = 1
2

(

x2 + y2)+ y3 − 3x2y. (5.4)

As can be seen in Figure 5.2, H has three saddle equilibria (x, y) = (±
√

3
/

6, 1
/

6), and
(0,−1

/

3) on the contour H = 1
/

54. There are three heteroclinic orbits connecting these
saddles. When such a collection of heteroclinic orbits divides the plane into two regions we
call it a separatrix cycle.
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Figure 5.3. Non-Hamiltonian system (5.6) with a homoclinic orbit. Here a = 1.

The existence of a saddle connection is unusual for general ODEs in the plane; how-
ever, with some care we can construct examples that do have a connection.

Example: Given a Hamiltonian system with a homoclinic orbit, it is easy to construct a
non-Hamiltonian system that has one as well; such an example was given in (4.45). More
generally, the contour H(x, y) = E is preserved by the differential equations

dx

dt
= ∂H

∂y
+ (H(x, y)− E)g1(x, y),

dy

dt
= −∂H

∂x
+ (H(x, y)− E)g2(x, y)

(5.5)

for any functions g1 and g2. If this contour contains a homoclinic orbit, then (5.5) will have
a homoclinic orbit too. In the example (5.3), the homoclinic orbit was at E = 0; therefore,
the system

ẋ = y + H(x, y)x,

ẏ = x − 3ax2 + H(x, y)y,
(5.6)

shown in Figure 5.3, still has the same homoclinic loop as the original Hamiltonian
flow shown in Figure 5.1. Note that the origin is still a saddle. There are two more equilibria
at y∗ = 1/2ax∗

4
where x∗ is a real root of the sixth-order polynomial −4 + 12ax + a2x6.

For a > 0, the positive root of this polynomial is near the original center; however, this
point is now a stable focus and attracts every point inside the homoclinic loop; see
Exercise 2.
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5.3 Stable Manifolds
We can sometimes find Wu and Ws analytically even for the non-Hamiltonian case if the
system of equations is a skew product; for example, if one of the equations of an ODE
system in R2 is independent of the other. This kind of example seems special at first, but
will prove to be of great use to us in the next section in the general proof of the stable
manifold theorem.

Example: For example, suppose that (x, y) ∈ R2 and

ẋ = −x,

ẏ = y + g(x).
(5.7)

Here, we will assume that g is C1 and that g(0) = 0. The latter condition ensures that the
origin is an equilibrium. The Jacobian of the origin is

Df (0) =
( −1 0

Dg(0) 1

)

.

This matrix has eigenvalues λ = ±1 and so is hyperbolic. The unstable eigenvector is
vu = (0, 1)T so that the unstable subspace is the y-axis:

Eu = {(x, y) : x = 0} .

The second eigenvector is vs = (2,−Dg(0))T , so that the stable subspace is the line

Es = {(x, y) : Dg(0)x + 2y = 0} .

Our goal is to find the stable and unstable sets of the origin. The ODEs are simple enough
that the flow is easily obtained. Solving the x equation gives x(t) = xoe

−t . Substituting
this into the y equation yields a nonautonomous linear equation. We can use the integrating
factor method (recall Exercise 2.17) to find

d

dt
(e−t y) = e−t g(xoe

−t ) ⇒ e−t y(t) = yo +
∫ t

0
e−sg(xoe

−s)ds.

Upon changing integration variables, setting u = e−s , and putting the two solutions together,
we obtain the expression for the flow:

ϕt

(

x

y

)

=

⎛

⎝

xe−t

yet + et

∫ 1

e−t

g(xu)du

⎞

⎠ .

Since this is the general solution, we can find the set of points (x, y) that lie, for example,
on the unstable manifold by asking which points have ϕt (x, y)→ (0, 0) as t →−∞. This
immediately implies that x = 0, since otherwise the first component is unbounded. In this
case, since g(0) = 0, the second component becomes yet , which does approach 0. So we
have shown that Wu(0, 0) is simply the y-axis.
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Es
=Eu

Ws

Wu

Figure 5.4. Sketch of stable and unstable manifolds for (5.7).

The stable set, Ws(0, 0), is the set such that ϕt (x, y)→ (0, 0) as t →∞. This means
that x can be arbitrary, but y must be chosen specifically since we require

0 = lim
t→∞

y(t) = lim
t→∞

et

(

y +
∫ 1

e−t

g(xu)du

)

.

We claim that for each x there is a solution of the form y(x) = −
∫ 1

0 g(xu)du. To see this,
substitute it into the limit to obtain

lim
t→∞

y(t) = lim
t→∞

et

(∫ 1

e−t

g(xu)du−
∫ 1

0
g(xu)du

)

= − lim
t→∞

et

(

∫ e−t

0
g(xu)du

)

.

Since g(0) = 0 and g ∈ C0, then for any ε, there is a δ such that |g(xu)| < ε for all
|xu| < δ. If we choose t large enough so that |x| e−t < δ, then the magnitude of the integral
is bounded by εe−t . Since this is true for any ε, the limit is zero as required. Thus, we have
shown that

Ws =
{

(x, y(x)) : y(x) = −
∫ 1

0
g(xu)du

}

, (5.8)

as sketched in Figure 5.4. For example, if

g(x) = − sin x, (5.9)

we can easily do the integral in (5.8) to obtain the function

y(x) = −1
x

∫ x

0
sin(ξ)dξ = 1− cos x

x
.

The phase portrait of this case is shown in Figure 5.5.
Note that Ws is tangent to Es at the origin because its slope is

dy

dx

∣

∣

∣

∣

x=0
= −

∫ 1

0
Dg(xu)udu

∣

∣

∣

∣

x=0
= −1

2
Dg(0),

which is precisely the slope of Es . This tangency property will be generalized to the fully
nonlinear case below. Since y is expressed as a function of x in (5.8) and each x determines
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Figure 5.5. Phase portrait for (5.7) with g(x) given by (5.9). Here the unstable
manifold is the y-axis (red line) and the stable manifold is the blue curve. Several other
trajectories are also shown.

a unique point on Es , the stable manifold is a graph over Es . Finally, both Wu and Ws are
smooth curves, that is, they are manifolds.

In the construction of the manifolds in the example above, we noticed that Ws is
a graph over Es . To use this property for a general hyperbolic equilibrium, we define
projection operators onto Es and Eu. A projection is a linear operator π : Rn → Rn such
that π ◦ π = π . We will define two projections πu and πs such that πu + πs = id; see
Figure 5.6. These projections formalize the idea of finding components of a vector “along
the eigenvectors.” Recall from §2.6 that any vector can be written as a linear combination
of generalized eigenvectors,

x =
n
∑

j=1

cjvj .

In other words, there is a nonsingular matrix P = [v1, v2, . . . , vn] such that x = Pc and
c = P−1x. If the first k of these vectors span Eu, then the projections are given by

πu(x) =
k
∑

j=1

cjvj , πs(x) =
n
∑

j=k+1

cjvj .
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Figure 5.6. Projections onto Eu and Es .

Example: For the system (5.7) P = (vu, vs) =
(0 2

1 −Dg(0)

)

, so that

(

cu

cs

)

= P−1
(

x

y

)

= 1
2

(

Dg(0) 2
1 0

)(

x

y

)

=
(

1
2Dg(0)x + y

1
2x

)

.

Thus, the projection operators onto Eu and Es are

πu

(

x

y

)

= cuvu =
(

0
y + 1

2xDg(0)

)

, πs

(

x

y

)

= csvs =
(

x

− 1
2xDg(0)

)

.

With these examples under our belt, we proceed to develop a general understanding of the
stable and unstable manifolds of a saddle equilibrium. We begin by restricting our study to
a neighborhood of the equilibrium to construct the “local” manifolds.

5.4 Local Stable Manifold Theorem
In this section we will show that the stable and unstable sets of a hyperbolic equilibrium
are actually smooth manifolds when the vector field is C1. Suppose that x∗ is a hyperbolic
equilibrium with linearization Df (xo) = A. We can always shift coordinates so that the
equilibrium is at the origin by replacing x → x + x∗, so that the equations take the form

ẋ = Ax + g(x), (5.10)

where g(x) = f (x + x∗) − Ax represents the nonlinear terms in the equation so that
g(0) = 0 and Dg(0) = 0. Since A is hyperbolic, there is an α > 0 such that |Reλi | > α for
all eigenvalues λi of A. The projection operators are πs : Rn → Es and πu : Rn → Eu.
Note that since A leaves Es and Eu invariant, it commutes with the projections

πuA = Aπu and πsA = Aπs .

The same is true for the fundamental matrix etA. Moreover, the estimate (2.44) in §2.7
implies that there is a K ≥ 1 such that

∣

∣etAπsx
∣

∣ ≤ Ke−αt |πsx| ,
∣

∣e−tAπux
∣

∣ ≤ Ke−αt |πux| ,
t ≥ 0. (5.11)
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Our goal is to prove that the stable set Ws for (5.10) is a smooth manifold, and our main tool
is the contraction-mapping theorem (what else!). The first step is to find the appropriate
operator, T , and function space. To motivate the construction of T —which generalizes
the operator (3.11) used to prove existence and uniqueness—we first study a simpler set of
affine ODEs.

Lemma 5.2. Consider the affine, nonautonomous initial value problem

ẋ = Ax + γ (t), πsx(0) = σ ∈ Es. (5.12)

Suppose A is hyperbolic and γ (t) is bounded and continuous for t ≥ 0. Then the unique
solution, x(t; σ ), of (5.12) that is bounded for positive time is

x(t) = etAσ +
∫ t

0
e(t−s)Aπsγ (s)ds −

∫ ∞

t

e(t−s)Aπuγ (s)ds. (5.13)

The uniqueness of the solution (5.13) is surprising because only “half” of the initial condi-
tions have been specified, the stable components σ . We will see that the assumption that x

is bounded for t > 0 is enough to determine its unstable components.

Proof. The general solution of the forced linear equation can be obtained by the integrating
factor method or the method of variation of parameters. To implement the latter, guess a
solution of the form x(t) = etAξ(t). Substitute this into the ODE to obtain ξ̇ = e−tAγ (t),
which can be solved trivially by integrating. If we specify the initial condition x(τ ) at some
arbitrary time t = τ , the general solution to (5.12) has the form

x(t) = e(t−τ )Ax(τ ) +
∫ t

τ

e(t−s)Aγ (s)ds. (5.14)

Our goal is to find a particular case of (5.14) that is bounded in forward time. We write
x(t) = πux(t) + πsx(t) and consider these two projections separately.

First set τ = 0 and take the stable projection of (5.14). Noting that πsx(0) = σ , we
obtain

πsx(t) = etAσ +
∫ t

0
e(t−s)Aπsγ (s)ds.

To show that this expression is bounded as t →∞, we use the assumption that γ is bounded,
i.e., that there is a δ such that |γ (s)| ≤ δ for all s ≥ 0. Imposing the bound (5.11) then gives

∣

∣

∣

∣

∫ t

0
e(t−s)Aπsγ (s)ds

∣

∣

∣

∣

≤ K

∫ t

0
e−(t−s)α |πsγ (s)| ds ≤ K

α
δ.

Consequently, the stable projection of our solution is indeed bounded.
Projecting (5.14) onto the unstable space yields

πux(t) = etA

(

e−τAπux(τ ) +
∫ t

τ

e−sAπuγ (s)ds

)

. (5.15)
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We must choose πux(t) so that (5.15) remains bounded. Since the exponential etAπu

generally grows without bound, a necessary condition is that the term in parenthesis in
(5.15) limits to zero as t →∞, that is, if

e−τAπux(τ ) = −
∫ ∞

τ

e−sAπuγ (s)ds.

Since this is true for any τ , we can replace τ by t in this equation to obtain

πux(t) = −
∫ ∞

t

e(t−s)Aπuγ (s)ds. (5.16)

Substitution of (5.16) back into (5.15) gives an identity; therefore, (5.16) is a solution for
the unstable projection. We now show that (5.16) is indeed bounded. The integral in (5.16)
can be bounded using the bound (5.11) on eτAπu for τ = t − s < 0:

|πux(t)| =
∣

∣

∣

∣

∫ ∞

t

e(t−s)Aπuγ (s)ds

∣

∣

∣

∣

≤ K

∫ ∞

t

e(t−s)α |πuγ (s)| ds ≤ K

α
δ.

Thus, (5.16) is both necessary and sufficient for the unstable projection being bounded.
Adding the stable and unstable projections gives the promised result (5.13).

We now return to (5.10), where γ (t) is replaced by the nonlinear function g(x). If we
similarly replace γ (s) in integrand of (5.13) with g(x(s)), the resulting integral equation
is satisfied by a solution of (5.10). Just as for the integral operator (3.11), which we used
to prove existence and uniqueness, the new integral equation can be viewed as an operator
on a suitable function space. Indeed we will show that this operator is a contraction map
whose fixed point is the stable manifold of (5.10). Since g is nonlinear, we must restrict the
analysis to a neighborhood of the equilibrium where g is sufficiently small; thus, we will
only prove the existence of a “local” stable manifold, Ws

loc: the set of points on Ws that
remain in some neighborhood of the equilibrium for all t ≥ 0. The global stable manifold
will be constructed from the local one in §5.5.

Theorem 5.3 (Local StableManifold). LetA be hyperbolic, g ∈ Ck(U), k ≥ 1, for some
neighborhood U of 0, and g(x) = o(x) as x → 0. Denote the linear stable and unstable
subspaces of A by Es and Eu. Then there is a Ũ ⊂ U such that local stable manifold of
(5.10),

Ws
loc(0) ≡

{

x ∈ Ws(0) : ϕt (x) ∈ Ũ , t ≥ 0
}

,

is a Lipschitz graph over Es that is tangent to Es at 0. Moreover, Ws(0) is a Ck manifold.

Since this is a rather long proof, we divide it into three parts. In the first part we prove
that there is a unique, forward bounded solution for each point σ ∈ Es close enough to
the origin. We then show in the second part that these solutions actually are on the stable
manifold, since they are asymptotic to 0. In the final part of the proof, we show that these
solutions lie on a smooth, Lipschitz graph.
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Proof (Part 1). By analogy with (5.13), define an operator T : C0(R+, Rn)→ C0(R+, Rn)

for a given point σ ∈ Es of A by

T (x)(t) = etAσ +
∫ t

0
e(t−s)Aπsg(x(s))ds −

∫ ∞

t

e(t−s)Aπug(x(s))ds. (5.17)

It is clear that if x ∈ C0(R+, Rn), then so is T (x). It is not hard to show that a sufficiently
small, continuous fixed point of T , x : R+→ U is a C1 solution of the ODE (5.10), call it
x(t; σ ) (see Exercise 5).

We first show that T is a contraction map and therefore that the fixed point of T exists
and is unique. To do this, define a closed subset of the function space C0(R+) by

Vδ =
{

x ∈ C0(R+, R
n) : ∥x∥ ≤ δ

}

, (5.18)

where ∥x∥ is the sup-norm (3.3). As discussed in §3.2, this space with the sup-norm is
complete. Since g(x) = o(x) as x → 0 (recall §4.4), then for any ε > 0—no matter how
small—there is a δ, such that when x ∈ Vδ , then |g(x(t)| ≤ ε |x(t)|. Using the bounds
(5.11) in (5.17) we obtain

|T (x)(t)| ≤ Ke−tα|σ |+Kε

∫ t

0
e−(t−s)α|x(s)|ds +Kε

∫ ∞

t

e(t−s)α|x(s)|ds ≤ K|σ |+ 2
Kε

α
δ

for any for t ≥ 0. The necessary bound ∥T (x)∥ ≤ δ can be satisfied by requiring, e.g.,

|σ | < δ
/

2K and ε ≤ α
/

4K. (5.19)

These requirements define the neighborhood

Ũ =
{

x : |g(x)| ≤ α

4K
|x|
}

∩ U (5.20)

that effectively defines δ, since ε can be made arbitrarily small for a sufficiently small δ
We now show that T is a contraction. Since g ∈ C1, and ∥Dg(x)∥ ≤ ε for |x| ≤ δ,

then (3.8) implies that |g(x)− g(y)| ≤ ε |x − y| for x, y ∈ Bδ(0). Using this and (5.11)
gives

|T (x)− T (y)| ≤ Kε ∥x − y∥
(∫ t

0
e−(t−s)αds +

∫ ∞

t

e(t−s)αds

)

≤ 2
Kε

α
∥x − y∥ .

Therefore, T is a contraction when ε ≤ α
/

4K , which we already assumed, and the
contraction-mapping theorem implies that T has a unique fixed point in Vδ . Since there is
a unique fixed point x(t; σ ) for each σ ∈ Es providing |σ | < δ

/

2K , the set x(0; σ ) is a
graph over Es .

Proof (Part 2). To show that x(t; σ ) is a point on the stable manifold, we must show it
approaches zero as t →∞. Since is x(t; σ ) is a fixed point of T , we use (5.11) to bound it
by

|x(t; σ )| ≤ Ke−αt |σ |+Kε

∫ t

0
e−α(t−s) |x(s; σ )| ds+Kε

∫ ∞

t

eα(t−s) |x(t; σ )| ds. (5.21)
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v(t)
u(t)

Figure 5.7. Construction of the function ν(t) in (5.23).

We assert that this implies that x → 0 exponentially fast. To show this, we need a general-
ization of Grönwall’s inequality (3.30).

Lemma 5.4 (Generalized Grönwall). Suppose α, M , and L are nonnegative, L < α
/

2,
and there is a nonnegative, bounded, continuous function u : R+→ R+ satisfying

u(t) ≤ e−αtM + L

∫ t

0
e−α(t−s)u(s)ds + L

∫ ∞

t

eα(t−s)u(s)ds; (5.22)

then u(t) ≤ M
β

e−(α−L/β)t , where β = 1− 2L
α
.

Putting aside the proof of the lemma for the moment, note that it applies to the inequality
(5.21) since we know that the fixed point x(t; σ ) is continuous. We set u = |x(t; σ )|,
L = Kε, and M = K |σ |. Then 4Kε

/

α ≤ 1 implies that β = 1 − 2Kε
/

α ≥ 1/2, and
letting c ≡ 2Kε

/

α ≤ 1/2, we have L
β

= α
2

c
1−c
≤ α

2 . So the hypotheses of Lemma 5.4 apply
and give

|x(t; σ )| ≤ 2Ke−αt/2 |σ | ,
implying that x(t; σ )→ 0 exponentially fast.

Proof of Lemma. By assumption u is bounded; therefore, we can define its supremum.
Moreover, the function

v(t) = sup
s>t

u(s) (5.23)

exists and is nonincreasing: v(t) ≤ v(s) if s ≥ t ; see Figure 5.7. Since u is continuous, for
any t there is a T ≥ t such that v(t) = v(T ) and thus from (5.22)

v(t) = u(T ) ≤ e−T αM + L

∫ T

0
e−α(T−s)u(s)ds + L

∫ ∞

0
e−αsu(T + s)ds

≤ e−T αM + L

∫ t

0
e−α(T−s)u(s)ds + L

∫ T

t

e−α(T−s)u(s)ds

+ L

∫ ∞

0
e−αsu(T + s)ds

≤ e−T αM + L

∫ t

0
e−α(T−s)u(s)ds + 2

L

α
v(t),
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where we have used the facts that u(s) ≤ v(t) and u(T + s) ≤ v(T ) = v(t) to approximate
the last two integrals. Rearranging this gives

(

1− 2
L

α

)

eαt v(t) ≤ e−α(T−t)M + L

∫ t

0
e−α(T−t)eαsu(s)ds.

Defining z(t) = βeαt v(t), and noting that e−α(T−t) ≤ 1, we have

z(t) ≤ M + L

β

∫ t

0
z(s)ds.

This is of the form of Grönwall’s lemma (3.30), so that z(t) ≤ MetL/β . Rewriting this in
terms of u(t) ≤ v(t) gives the promised result.

Proof (Part 3). It is relatively easily to see that the solutions x(t; σ ) lie on a Lipschitz graph,
i.e., that the unstable components are Lipschitz functions of σ . To show this, considerπux at
two different σ values, subtract the fixed-point equations x = T (x), and take the projections
onto Eu. Using the fact that πu annihilates σ , we obtain

|πu (x(t; σ1)− x(t; σ2))| ≤ Kε

∫ ∞

t

e(t−s)α |x(s; σ1)− x(s; σ2)| ds. (5.24)

To evaluate this, we must also bound the difference in the integral, which we can do with
the same integral equation:

|x(t; σ1)− x(t; σ2)| ≤ Ke−αt |σ1 − σ2| +Kε

∫ t

0
e−(t−s)α |x(s; σ1)− x(s; σ2)| ds

+Kε

∫ ∞

t

e(t−s)α |x(s; σ1)− x(s; σ2)| ds.

This is of the form (5.22), so the generalized Grönwall inequality yields

|x(t; σ1)− x(t; σ2)| ≤ 2Ke−αt/2|σ1 − σ2|.
Consequently, x(t; σ ) is a Lipschitz function of σ . We can now use this bound in (5.24) to
obtain

|πux(t; σ1)− πux(t; σ2)| ≤
4K2ε

3α
e−αt/2 |σ1 − σ2| ,

giving the promised Lipschitz condition.

Differentiability of the stable set is more difficult to prove. The basic principle we
will use is the following generalization of Theorem 3.4, the contraction-mapping theorem:
if a contraction map depends smoothly on parameters, its fixed points must as well.

Theorem 5.5 (Uniform Contraction Principle). Let X and Y be closed subsets of two
Banach spaces and let T ∈ Ck(X × Y, X), k ≥ 0, be a uniform contraction map.32 Then
there is a unique fixed point, x(y) = T (x(y), y), where x(y) ∈ X is aCk function of y ∈ Y .

32This means that the contraction constant c < 1 is independent of y and that T (x; y) is a uniformly Ck function
of y.
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Delaying the proof of this theorem for the moment, note that it gives the promised
result. It applies to our map T because when g is Ck , the fixed point, x(t; σ ) is also Ck in
both t and σ . It also implies the tangency of Ws to Es , since the Jacobian matrix obtained
from differentiating x with respect to σ at σ = 0 is

Dσx(t; 0) = etAπs+
(∫ t

0
dse(t−s)Aπs −

∫ ∞

t

dse(t−s)Aπu

)

Dg (x(s; 0)) Dσx(s; 0) = etAπs ,

where we have used the facts that x(s; 0) = 0 is the unique fixed point when σ = 0 and
that Dg(0) = 0. Thus, for any v, Dσx(t; 0)v ∈ Es , so that Ws is tangent to Es .

Proof of Theorem 5.5. Let ∥ ∥ denote the norms on both X, and Y . Since T is a uniform
contraction, there is a constant c such that 0 < c < 1 and ∥T (x; y)− T (ξ, y)∥ ≤ c ∥x − ξ∥
for all x, ξ ∈ X, and y ∈ Y . Moreover, the contraction mapping theorem, Theorem 3.4,
implies that for each y there is a unique fixed-point x(y) = T (x(y); y).

Suppose first that T is uniformly C0. We will show that the fixed point, x(y), is
uniformly continuous. The fixed-point equation and triangle inequality imply that for any
h ∈ Y

∥x(y + h)− x(y)∥ = ∥T (x(y + h); y + h)− T (x(y); y)∥

≤∥T (x(y + h); y + h)− T (x(y); y + h)∥

+ ∥T (x(y); y + h)− T (x(y); y)∥

≤ c ∥x(y + h)− x(y)∥+ ∥T (x(y); y + h)− T (x(y); y)∥ .
Since T is uniformly continuous in y,for every ε there is an h such that ∥T (x; y + h) −
T (x, y)∥ ≤ ε; using this value of h, the previous inequality gives

∥x(y + h)− x(y)∥ ≤ ε

1− c

for any ε. This shows that x is uniformly continuous, since c and ε are independent of y.
It is much more difficult to prove smoothness; we will consider only the case k = 1.

Suppose that T is uniformly C1. If the fixed point x(y) = T (x(y); y) were differentiable,
then its derivative would obey the relation

Dyx(y) = DxT (x(y); y)Dyx(y) + DyT (x(y); y). (5.25)

Replace Dyx by a linear operator M : X→ X and think of this equation as a linear system
for an unknown M:

(I −DxT (x(y); y)) M = DyT (x(y); y). (5.26)

This system has a unique solution if the left-hand side is nonsingular.33 This follows since
∥DxT ∥ ≤ c < 1; see Exercise 6. Now we must show that this M(y) is really Dyx. Define

ξ(h) ≡ x(y + h)− x(y) = T (x(y) + ξ, y + h)− T (x(y); y).

33Equation (5.25) can also be thought of as a contraction map on Dyx and so has a unique solution.
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Combining this with (5.26) gives

(I −DxT (x(y); y)) (ξ(h)−M(y)h) = "(ξ, h),

"(ξ, h) ≡ T (x(y) + ξ ; y + h)− T (x(y); y)−DxT (x(y); y)ξ −DyT (x(y); y)h.

If we can show that ∥"∥ → 0 as ∥h∥ → 0, then because I −DxT is nonsingular, we would
have ξ(h)−Mh→ 0, which would imply that x(y) is differentiable with derivative M .

Since T is C1, for any ε there is a δ such that when |h| < δ and |ξ(h)| < δ, we have

∥"(ξ, h)∥ < ε (∥ξ(h)∥+ ∥h∥) . (5.27)

This is not quite good enough since we do not have ξ = O(h) yet. However, this can be
obtained using the definition of ", which implies

ξ(y) = DxT (x(y); y)ξ + DyT (x(y); y)h +".

Using the bounds on DxT and " we obtain

∥ξ(h)∥ ≤ c ∥ξ(h)∥+
∥

∥DyT (x(y); y)h
∥

∥+ ε (∥ξ(h)∥+ ∥h∥) ⇒
∥ξ(h)∥ ≤

∥

∥DyT (x(y); y)h
∥

∥+ ε ∥h∥
1− c − ε ≤ C ∥h∥ ,

providing ε < 1− c. Putting this back into (5.27) gives

∥"(ξ, h)∥ ≤ ε (C + 1) ∥h∥ .

Therefore ∥"∥ → 0 as ∥h∥ → 0.
Showing that x is Ck for k > 1 requires an additional inductive step.

This completes, as well, our rather lengthy proof of Theorem 5.3.

Example: The two-dimensional system

ẋ = 2x + y2,

ẏ = −2y + x2 + y2 (5.28)

has a saddle at the origin with a diagonal Jacobian Df (0, 0) = diag(2,−2). Consequently,
the linear spaces are Eu = span(1, 0)T and Es = span(0, 1)T with the corresponding
projection matrices

πu =
(

1 0
0 0

)

, πs =
(

0 0
0 1

)

.

These exemplify the general property πu + πs = I . Given a point σ = (0, σy) ∈ Es , the
operator (5.17) becomes

T (x) =
(

0
e−2tσy

)

+
( −e2t

∫∞
t

e−2sy2(s)ds

e−2t
∫ t

0 e2s
(

x2(s) + y2(s)
)

ds

)

.

According to Theorem 5.3, we can begin with any function in Vδ providing δ is small enough.
The crucial estimate is that |g(x)| < ε |x|, for |x| < δ. For the example, |g(x)| ≤

√
2δ2,

so we may set δ = ε/
√

2. Since Df (0, 0) is diagonal with |λ| = 2, we may set K = 1 and
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α = 2 so the requirements (5.19) become

ε <
1
2

and δ <
1

2
√

2
.

Beginning with the initial guess (x0(t), y0(t)) = (0, 0), clearly in Vδ , the first two iterates
of T are

(

x1

y1

)

= T (x0, y0) =
(

0
e−2tσy

)

,

(

x2

y2

)

= T (x1, y1) =

⎛

⎝

− 1
6e−4tσ 2

y

e−2tσy + 1
2e−2t

(

1− e−2t
)

σ 2
y

⎞

⎠ .

Note that the approximate solutions do indeed limit to the origin as t → ∞. To obtain a
picture of the stable manifold, it is sufficient to plot the curve as a function of the initial point
at any value of t , say, for example, at t = 0. In this case we have a parametric representation
of the approximate stable manifold:

Ws
loc(0, 0) ≈

{

(x2(y), y) ; x2(y) = −1
6
y2, |y| <

1
2
δ

}

.

The next iterate gives an improved curve x(y)

x3(y) = −1
6
y2
(

1 + 1
4
y + 1

240
y2
)

. (5.29)

A plot of this curve, along with some representative trajectories, is shown in Figure 5.8.
Note that the approximate manifold fails to capture the behavior near the spiral focus at
(−0.931, 1.364).

5.5 Global Stable Manifolds
The stable manifold theorem implies that there is a neighborhood of a hyperbolic equilibrium
for which the local stable manifold, Ws

loc, is a smooth submanifold of Rn with the same
dimension as the stable subspace, Es . On the other hand, the global stable set consists of all
points that eventually limit on the equilibrium in forward time. As Lemma 5.1 implies, Ws

is an invariant set: if z ∈ Ws(x∗), then so are all the points on its orbit, ϕt (z). Moreover,
since every point on Ws(x∗) must eventually stay in an arbitrarily small neighborhood x∗,
the forward orbit of every point in Ws must eventually land in Ws

loc. Consequently, if we
extend the local stable manifold by allowing each point to flow backward, we obtain the
global stable set:

Ws =
{

ϕt (x) : x ∈ Ws
loc, t ∈ R

}

.

Since Ws
loc is smooth, and the orbits are smooth functions of time, the extension of Ws

loc

for any finite value of t is as smooth as the vector field. However, it is not obvious that the
set Ws defined for all t is quite so nice. The question that we seek to answer here is, how
“nice” is Ws?
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Figure 5.8. Phase portrait of (5.28) and its approximate stable manifold (5.29).

To discuss the structure of Ws , we briefly pause to consider several properties of
maps from one space to another. Our goal is to define the concept of “embedding,” which
is, loosely speaking, what we think of when we imagine a smooth surface.

Mathematically, a relation of the form g : M → N that maps one space into another
defines a surface—we say g is a map. So that it is possible for g to be one-to-one, we will
require that m = dim(M) ≤ n = dim(N).

Example:Consider the mapg : S1 → R2 defined byg(θ) = (x(θ), y(θ)) = (2 cos θ, sin θ).
This is a mapping of a circle represented by the points θ ∈ [0, 2π) into R2 represented
by points (x, y). Geometrically, the map describes an ellipse. Alternatively, the map
g(θ) = (sin(2θ), sin θ) describes a figure eight; see Figure 5.9. Both are maps of the circle
into the plane, but the latter map is not one-to-one.

Both maps in the example are locally smooth in the sense that each component of
g is a C1 function. The Jacobian derivative of the map g, at a point x ∈ M , Dg(x), is
a matrix of dimension n × m; it takes a vector v of dimension m and gives a new vector
w = Dg(x)v attached to the point g(x) ∈ N .34 Indeed, this vector is tangent to the surface
g(M), and the range of Dg(x) corresponds to the tangent plane to the surface. If the rank
of Dg(x) is m for all x, then the tangent planes are everywhere m-dimensional. Both maps
in the first example have this property: since the derivative is a nonzero vector for all θ ,
rank(Dg(θ)) = 1.

34Actually, Dg(x), is a map from the tangent space of M to the tangent space of N . Thus, Dg(x)v is a tangent
vector, a point in the tangent space T Ng(x). If N = Rn, then we can identify the tangent space with Rn.
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Figure 5.9. Two maps of the circle into the plane.

Figure 5.10. Immersion (5.30) into R3.

Example: The map g : R2 → R3 defined by

g(s, t) = (cos t − s, sin s − t, 2 sin t) (5.30)

gives the surface shown in Figure 5.10. Its two tangent vectors are the columns of
Dg, v1 = (− sin t,−1, 2 cos t)T and v2 = (−1, cos s, 0)T . Since v1 × v2 ̸= 0, these
vectors are never parallel and they define a two-dimensional plane tangent to the surface
for each (s, t).

A map with this property is an

◃ immersion: A C1 map g : M → N is an immersion if rank(Dg) = dim(M).

An immersion is locally a smooth surface.
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Figure 5.11. Singular map (5.31).

Example: Consider the map g : R1 → R2 given by

g(t) = (1 + cos(2t), cos t) . (5.31)

The rank of Dg(t) = −(2 sin(2t), sin t) is 1 except where it vanishes, i.e., when t = nπ .
The curve (5.31) has a cusp at these points, as shown in Figure 5.11. Consequently, it fails
to be an immersion.

The global stable manifold is easily seen to be an immersion:

Lemma 5.6. Let f be a C1 vector field on Rn with hyperbolic equilibrium at the origin
having a k-dimensional stable space Es . Then Ws(0) is a k-dimensional immersion.

Proof. Let the local stable manifold be defined by the map g: g : Es → Rn where
g(σ ) = x(0; σ ). The stable manifold theorem implies that Ws is an immersion since it
defines a smooth Lipschitz graph over Es . Hence, the rank of Dg is k. Each neighborhood
of the global stable manifold can be obtained by flowing a region on Ws

loc backward in time
for some fixed time. Thus for any neighborhood of Ws , we can consider the set of points
defined by the map h(σ ) = ϕt (g(σ )). This is smooth since ϕ is a smooth function of its
arguments according to Theorem 3.15. Moreover, the derivative of this map is

Dh = Dϕt (g(σ ))Dg(σ ),

which has rank k since the matrix$ = Dϕt solves the linearized differential equation (4.50)
with initial condition $(0) = I and therefore is a nonsingular matrix.

Even though an immersion is smooth, it may cross itself. For example, the figure-
eight curve in Figure 5.9, though an immersion, is not one-to-one since both θ = 0 and π
are mapped to the origin. Even if we eliminate this problem by requiring that an immersion
be one-to-one, there can be problems, as follows.
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Figure 5.12. The topologist’s sine curve.

Example: Consider the immersion g : R → T2 given by g(t) = (t mod 1, νt mod 1),
where ν is irrational. This is smooth and one-to-one but gives a dense line on the torus (see
§7.1)—not what one would think of as a submanifold.

Example: The topologist’s sine curve is the map g : R+ → R2 defined by g(t) =
(

1
/

t, sin t
)

. This curve is an immersion since Dg ̸= 0 and is one-to-one. However, as
t → 0, the curve has infinitely many oscillations and accumulates upon the interval [−1, 1]
on the y-axis, as can be seen in Figure 5.12.

We will see later that the global stable manifold can have this accumulation problem: indeed,
this is one of the indications of chaos. A map that does not have this pathology is called a

◃ proper map: A map g : M → N is proper if the preimage of every compact
set in N is compact in M .

Example:The topologist’s sine curve of Figure 5.12 is not proper because any neighborhood
of the origin in R2 has a preimage consisting of infinitely many intervals of t in (0,∞).

We finally arrive at the ultimate definition of a “nice” map:

◃ embedding: A map g : M → N is an embedding if it is a one-to-one, proper
immersion.

Of our examples above, only the ellipse and the map (5.30) are embeddings. However, any
finite piece of Ws is an embedding, as follows from the next theorem.

Theorem 5.7. If g : M → N is a C1, one-to-one immersion, and both M and N are
compact then it is automatically proper.

Proof. Consider a compact subset U ⊂ N . Since U is closed, its complement is open.
Since g is continuous, the preimage of any open set is open, and thus the preimage of U is
the complement of an open set. Therefore, g−1(U) is closed and must be compact since it
is a subset of the compact set M . So g is proper.
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5.6 Center Manifolds
Linear systems are classified according to their generalized eigenspaces, Es , Eu, and Ec.
The most important distinction was made between hyperbolic systems, where Ec is empty,
and nonhyperbolic systems. We now begin our study of the behavior of a system with a non-
hyperbolic fixed point—that is, for cases where Ec is not empty. This study will continue in
Chapter 6 for the planar case and also will be a major focus of bifurcation theory in Chapter 8.

In the nonhyperbolic case it is still possible to construct stable and unstable manifolds
at the fixed point for the hyperbolic directions. Moreover, the nonhyperbolic part of the
dynamics can be reduced to a system of ODEs with the same dimension as the center
subspace of the linear system. This is based on the following generalization of the stable
manifold theorem.

Theorem 5.8 (Center Manifold). Suppose that f is a Ck vector field, k ≥ 1, with a fixed
point at the origin. Let the eigenspaces ofDf (0) = A be writtenEu⊕Ec⊕Es . Then there
is a neighborhood of the origin in which there existCk invariant manifolds: the local stable
manifold,Ws

loc, tangent to Es , on which |x(t)|→ 0 as t →∞, the local unstable manifold
Wu

loc, tangent to Eu, on which |x(t)| → 0 as t → −∞, and a local center manifold Wc,
tangent to Ec.

The proof of this theorem is more complicated than the stable manifold theorem; see
(Carr 1981; Chicone 1999; Chow and Hale 1982; Hirsch, Pugh, and Shub 1977).

Note that this theorem does not state that the manifolds are unique, nor does it say
that the manifolds are the only sets that have the proper asymptotic behavior. This is to be
contrasted with the stable-manifold theorem for hyperbolic equilibria, which asserts that the
local stable and unstable manifolds are unique and that they generate the global manifolds.

Example: Consider the skew-product system

ẋ = x2,

ẏ = −y.
(5.32)

Here, the linearization of the equilibrium at the origin has eigenvalues λ = 0 and −1, so
the stable space Es is the y-axis and the center space Ec is the x-axis. It is clear that the
local stable manifold is the y-axis, since this is tangent to Es and every point on the y-axis
limits to the origin. We are tempted to say that Wc

loc is the x-axis, and this is certainly an
acceptable center manifold: it is clearly an invariant set and is tangent to Ec. However, if
we solve the equation for the phase curves, by dividing the y equation by the x equation,
we obtain

dy

dx
= − y

x2
⇒ y(x) = cex−1

.

When x < 0, each of these curves is asymptotic to the origin and is tangent to the x-axis
(in fact, the function y(x) has all derivatives zero at x = 0−). So we could define a center
manifold by

Wc
loc(0, 0) =

{

(x, y) : y =
[

cex−1
x < 0

0 x ≥ 0

}

(5.33)
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Figure 5.13. Phase portrait of (5.32).

for any value of c. There is a one-parameter family of possible center manifolds; see Figure
5.13! This example shows that the center manifold is not unique.

The example also has another pathology: though the local stable manifold is the
y-axis, the global stable set—namely, the set of points that are asymptotic to the origin—is
the left half-plane Ws(0, 0) = {(x, y) : x ≤ 0}. Similarly, the global unstable set is the
positive x-axis Wu(0, 0) = {(x, 0) : x > 0} since this set is asymptotic to the origin as
t →−∞.

In the example, the center manifold was not unique; nevertheless, every choice of c

in (5.33) gives a curve with the same power series expression, namely, y(x) = 0 + 0x +
0x2 + · · · . Consequently, as far as the power series is concerned, there is a unique center
manifold, the x-axis. Indeed, whenever f is C∞, there is a unique power series expression
for a center manifold.

This series can be easily determined by looking for functions corresponding to a
graph that is tangent to Ec and demanding that the resulting surfaces are invariant. It is
most convenient to do this by preparing the system so that the linear matrix breaks into
blocks corresponding to the stable, unstable, and center subspaces. To do this, write the
system as ξ̇ = Aξ + g(ξ), where g = o(ξ) represents the nonlinear terms. As we saw
in §2.6, the matrix P of generalized eigenvectors transforms A to block diagonal form:
P−1AP = J , where

J =

⎛

⎝

C 0 0
0 S 0
0 0 U

⎞

⎠ .

Here, C, S, and U are square matrices representing the center, stable, and unstable dynamics;
they are diagonal only if A is semisimple. Then we define new coordinates η = P−1ξ , so
that

η̇= P−1Aξ + P−1g(ξ) = P−1APη + P−1g(Pη)

= Jη + P−1g(Pη).
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Figure 5.14. Stable, unstable, and center manifolds.

Now set η = (x, y, z), where dim(x) = dim(Ec), dim(y) = dim(Es), and dim(z) =
dim(Eu). In terms of the three subsets of variables, the ODEs now take the form

ẋ = Cx + F(x, y, z),

ẏ = Sy + G(x, y, z),

ż = Uz + H(x, y, z).
(5.34)

Since the local center manifold Wc is a graph over Ec, we can define it using two maps
g : Ec → Eu,and h : Ec → Eu, so that on Wc we have y = g(x) and z = h(x) (see
Figure 5.14), that is,

Wc = {(x, g(x), h(x))} .

The manifold begins at the origin, thus both h(0) = g(0) = 0; moreover, the manifold
must be tangent to Ec, so Dh(0) = Dg(0) = 0. Finally, Wc must be invariant, so that if
(x, y, z) ∈ Wc, then so is ϕt (x, y, z). This means that the vector field (ẋ, ẏ, ż) must be
in the tangent space of Wc. To compute this we insist that the flow lies on Wc, so that
y(t) = g(x(t)) and z(t) = h(x(t)). Consequently, the derivatives of these functions must
also match:

ẏ = Dg(x)ẋ, ż = Dh(x)ẋ.

Putting this into (5.34) gives a system of PDEs that can be used to determine g and h:

Sg(x) + G(x, g(x), h(x)) = Dg(x) (Cx + F(x, g(x), h(x))) ,

Uh(x) + H(x, g(x), h(x)) = Dh(x) (Cx + F(x, g(x), h(x))) .
(5.35)

These PDEs can be solved order by order for the power series of h and g—see the examples
below.

The dynamics on the center manifold are given by the equation for x upon restricting
y and z to the manifold:

ẋ = Cx + F(x, h(x), g(x)). (5.36)
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That this equation describes the local dynamics on Wc follows from a generalization of the
Hartman–Grobman theorem of §4.8.

Theorem 5.9 (Nonhyperbolic Hartman–Grobman). Suppose (5.34) is a C1 vector field
with fixed point at the origin, that all the eigenvalues of C have zero real part, that S is a
contracting andU is an expanding hyperbolic matrix, and that F, G, H = o(x, y, z). Then
there is a neighborhood N of the origin such that Wc

loc = {(x, h(x), g(x)) : x ∈ Ec} ∩ N

and the dynamics in N is topologically conjugate to the system

ẋ = Cx + F(x, h(x), g(x)),

ẏ = Sy,

ż = Uz.
(5.37)

Thus, the topological type of a nonhyperbolic fixed point is determined by the flow on the
center manifold.

We now give several examples of the formal solution of the PDEs (5.35) order by
order in the power series for the functions g and h.

Example:A two-dimensional system with a single zero eigenvalue has the block diagonal
form

J =
(

0 0
0 λ

)

.

Here the center matrix is the 1× 1 matrix C = (0), and (taking λ > 0) the unstable matrix
is U = (λ). Therefore, the linear spaces are Ec = span(1, 0)T and Eu = span(0, 1)T . For
example, consider the C∞ system

ẋ = x2 − z2,

ż = λz + x2.
(5.38)

Following the general theory, we suppose that the local center manifold is Wc
loc(0, 0) =

{(x, h(x)) : x ∈ R}, where h(0) = Dh(0) = 0. Thus, the power series for h has the form
h(x) = αx2 + βx3 + · · · . Putting this into (5.35) gives

λ
(

αx2 + βx3 + · · ·
)

+ x2 =
(

2αx + 3βx2 + · · ·
)

(

x2 −
(

αx2 + βx3 + · · ·
)2
)

.

The lowest degree terms in this equation are quadratic and require that λα + 1 = 0. This
determines α. The cubic terms give the equation λβ = 2α, which determines β. After some
algebra we find that

h(x) = −x2

λ
− 2

x3

λ2
− 6

x4

λ3
− 22

x5

λ4
− 96

x6

λ5
+ · · · .

The resulting curve z = h(x) is shown in Figure 5.15. This result can be inserted into the
differential equation for x, (5.38), to give the center manifold dynamics

ẋ = x2 − x4

λ2
− 4

x5

λ3
− 16

x6

λ4
· · · . (5.39)
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Figure 5.15. Center and unstable manifolds for (5.38) through sixth order for λ = 2.

This implies that ẋ > 0 when x is nonzero and small, which shows that on the center
manifold the point x = 0 is “semistable”; see Figure 5.16.

The unstable manifold can be similarly found. If we let x = g(z) = αz2 + βz3 + · · ·
and substitute this into the equation ẋ = Dg(z)ż, we obtain (after some algebra)

g(z) = − z2

2λ
+ z4

16λ2
+ z5

20λ4
− z6

96λ5
+ · · · .

The curve x = g(z) is shown in Figure 5.15.
According to Theorem 5.9, we have shown that (5.38) is conjugate to the system

ẋ = x2 − x4

λ2
+ · · · ,

ż = z.

If we compare the dynamics that we have found with a numerical solution of (5.38), see
Figure 5.17, we see that the center and unstable manifolds prominently appear—note that
the motion near the origin for decreasing t appears to rapidly compress along the unstable
manifold (as e−t ) and then move more slowly along the center manifold toward the origin.

The system (5.38) has two additional fixed points, a saddle at (λ,−λ) and a spiral
sink at (−λ, λ). The phase plane shows that the right branch of the center manifold appears
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Figure 5.16. The vector field (5.39) as a function of x on the local center manifold
for λ = 2.

to coincide with the stable manifold of the saddle. The spiral sink traps the bottom branch
of Wu(0).

Example: Consider the three-dimensional system

ẋ1 = −x2 + x1y,

ẋ2 = x1 + x2y,

ẏ = −y − x2
1 − x2

2 + y2,
Df (0) =

⎛

⎝

0 −1 0
1 0 0
0 0 −1

⎞

⎠ . (5.40)

Here, Df is already in the normal form, and we can immediately see that Ec = {(x1, x2, 0)}
and Es = {(0, 0, y)}. Again, look for solutions that are tangent to the center space, so that
Wc = {(x1, x2, h(x1, x2))}. As before, assume a power series for h(x) = αx2

1 + βx1x2 +
γ x2

2 + · · · . Requiring that y = h(x) is an invariant manifold, (5.35), gives

ẏ = Dh(x)ẋ = ∂h

∂x1
ẋ1 + ∂h

∂x2
ẋ2,

−αx2
1 − βx1x2 − γ x2

2 − x2
1 − x2

2 + · · · = (2αx1 + βx2 + · · ·) (−x2 + · · ·)

+ (βx1 + 2γ x2 + · · ·) (x1 + · · ·)
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Figure 5.17. Phase plane of (5.38) for λ = 2.

to quadratic order. Collecting the terms in x2
1 , x

2
2 , and x1x2 gives three equations for the

three unknowns α,β, and γ . These can be written as a single linear system:
⎛

⎝

−1 −1 0
0 1 −1
2 −1 −2

⎞

⎠

⎛

⎝

α

β

γ

⎞

⎠ =

⎛

⎝

1
1
0

⎞

⎠ .

This matrix is guaranteed to be nonsingular by the center manifold theorem, and indeed we
find that is the case. The solution is α = γ = −1 and β = 0, so y = −x2

2 − x2
2 + · · · .

Substituting this back into the original equations for (x1, x2) gives the dynamics on the
center manifold:

ẋ1 = −x2 − x3
1 − x1x

2
2 ,

ẋ2 = x1 − x2x
2
1 − x3

2 ,
(5.41)

up to terms of cubic order. The dynamics of (5.41) is nontrivial, and to study it we must use
some additional tricks—we will develop these in the next chapter (see §6.3). We will find
that (5.41) has the dynamics of a spiral focus. This implies, according to Theorem 5.9, that
the origin of (5.40) is asymptotically stable.

5.7 Exercises
1. Find all the homoclinic and heteroclinic orbits for the Hamiltonian

H(x, y) = 1
2
(y2 + x2)− x4.

What are the stable Ws and unstable Wu sets for each of the three equilibria?
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2. Consider the system (5.6) with Hamiltonian (5.3).

(a) Find the equilibria. You should verify that p = (x∗, 1/2ax∗4) is an equilibrium
when x∗ = 0 or is a root of the polynomial q(x) = −4 + 12ax + a2x6. Show
that when a ̸= 0, q has exactly two real roots and hence that there are three
equilibria.

(b) Show that the origin is saddle. Find its eigenvalues and eigenvectors.

(c) Set a = 1, and find the new equilibria numerically. Show that that one is a
stable focus and the other an unstable focus.

(d) Investigate, using phase plane software, the dynamics of this system. What are
the stable and unstable sets of each equilibrium?

3. Like the Lorenz model (1.33), the Busse–Heikes model describes three spatial modes
in a convecting fluid, but in this case the fluid is rotating (Toral, San Miguel, and
Gallego 2000). In one limit the model becomes

ẋ = x (1− x − (1 + δ)y − (1− δ)z) ,

ẏ = y (1− y − (1 + δ)z− (1− δ)x) ,

ż = z (1− z− (1 + δ)x − (1− δ)y) ,
(5.42)

where δ > 0, and (x, y, z) represent nonnegative mode amplitudes.

(a) Find all the equilibria and characterize their stability types as a function of δ.
(Hint: There are eight equilibria: the origin, three solutions with one nonzero
amplitude, three solutions with two nonzero amplitudes, and one with all three
nonzero.)

(b) Show that the quantity R = x + y + z obeys a simple self-contained equation
and that if R(0) ̸= 0, then R(t)→ 1 as t →∞.

(c) Assume that R = 1 and reduce (5.42) to a set of two equations for (x, y). Show
that these equations are Hamiltonian with H = δxy(1− x − y).

(d) Give a complete discussion of the dynamics of this model in the positive octant.

4. Using the integral (5.13), find the unique bounded solution to the forced system

ẋ = −x,

ẏ = y + sin(t)

for an initial condition σ = (xo, 0)T ∈ Es .

5. Show that any bounded fixed point x ∈ C0(R+, U) of the operator T defined by (5.17)
is a C1 solution of the differential equation (5.10). (Hint: Differentiate x = T (x)

with respect to t , remembering to differentiate with respect to all the places that t

enters on the right-hand side.)

6. Show that if L : X → X is a linear operator on a Banach space, and ∥L∥ ≤ c < 1,
then the operator I − L is invertible. (Hint: Consider the formal series expansion
(I − L)−1 = ∑∞

k=0 Lk .)
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7. Here, you will show that the stable manifold theorem implies an equivalent unstable
manifold theorem.

(a) First, let x̂(τ ) = x(−τ ) in (5.10) and obtain the ODE for x̂. This will give an
equation similar to (5.10) but with A→ −A. Now, show that stable manifold
theorem for the new equation implies the existence of a Lipschitz graph Wu

over Eu.

(b) Transform back to t = −τ , and obtain the explicit operator T equivalent to
(5.17) for the unstable manifold. Take care to keep track of all the minus signs!

8. Consider the system on R2 given by

ẋ = −x + y2,

ẏ = 2y + xy.

(a) Find Es and Eu for the fixed point (0, 0).

(b) Construct successive approximations (xi(t), yi(t)), i = 1, 2, to the stable
manifold Ws(0, 0) by applying the operator T , (5.17), to the initial guess
(xo(t), yo(t)) = (0, 0).

(c) Compare the approximations in (b) with a power series expansions for the stable
and unstable manifolds using the techniques of §5.6.

(d) Using your favorite software, plot the functions you constructed and some nu-
merical solutions of the differential equations. Compare the manifolds that you
compute with the solutions.

9. Consider the system
ẋ = x3 − 2xy,

ẏ = −y + x2.

(a) Find the first few terms in the power series expansion for the stable and center
manifolds of the origin.

(b) Study the reduced dynamics on the center manifold. Classify the equilibrium.

(c) Compare your analytical expression with numerical orbits generated by your
favorite software package.

10. The three-dimensional system

ẋ = y + 2z + (x + z)2 + xy − y2,

ẏ = (x + z)2,

ż = −2z− (x + z)2 + y2

(5.43)

has a nonhyperbolic equilibrium at the origin.
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(a) Find a linear transformation to write (5.43) in the form (5.34).

(b) Find the quadratic approximation for Wc(0, 0, 0).

(c) Obtain the reduced dynamics (5.36) on Wc and use your favorite software pack-
age to study it. Is the origin stable or unstable?

11. Consider your adopted system of quadratic differential equations (recall §1.7 and
Exercise 1.10) for the chaotic values of the reduced parameters. Use the techniques of
this chapter to study the stable, unstable, and center manifolds of one of the equilibria.


