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1 Context

The semantics of computer graphics descriptive systems and programming
languages can now begin to support entities and operations meaningful to
domains such as theater and di�erential geometry. In the domain of perfor-
mance and theater, one can begin to design high-level "director languages"
to de�ne the motions or behaviors of interacting 3D sprites. Such languages
build on models of appearance and behavior abstracted from the highly
evolved history of human performance (choreography, staging, mime, etc.).
Highly evolved models of manifolds and more general geometric and topo-
logical structures also exist in the domain of mathematics and theoretical
physics, but to date, interactive 3D visualization systems have not found wide
use in the mathematical or theoretical physics communities. Within the �eld
of di�erential geometry, perhaps the best known visualization system is the
Geometry Center's geomview ([3], [6]), which has been coupled to a variety
of numerical research applications, and to general algebraic systems. What
geomview lacks in graphics sophistication is o�set by its accommodation of
structures and operators meaningful to working geometers. The next step is
to couple such systems to 2D and 3D direct manipulation environments.
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2 an approach toward a geometric workspace

We seek 3D interfaces, or for that matter, any geometric workspace at all
which approaches the suggestiveness of freehand chalkboard but couples to
algebraic subsystems. Broadly, there are two ways to enrich 3D interfaces
to make them more useful for geometers and topologists: by making "idiot-
savant" manipulables with just enough physics to permit topological opera-
tions such as those described in section (3.3.2), and by linking manipulables
to computational engines such as symbolic algebra systems, numerical anal-
ysis systems, and knowledge representation databases tuned to geometric
information.

The general goal is not verisimilitude, or a mathematical equivalent of
photorealism, which is generally not a strategic objective, but 
exibility,
expressiveness, and easy de�nition in terms familiar to geometers, topologists
or allied researchers, as the following examples may illustrate.

One of my goals is the synthesis of symbolic algebra languages and nu-
merical analysis tools into 3D interfaces, with converse feedback from 3D
manipulation to algebraic representations of geometric structures.

3 applications

3.1 optical geometry

3.1.1 visualizing optics in non-
at spacetimes

What are the dynamics of test particles near a singularity? What would
one see in the neighborhood of a singularity? This general relativistic grand-
child of one of Einstein's early questions is distinct from the problem of
drawing geodesics or lightcones in a (general) spacetime. The physics and
phenomenology of optical geometry have been worked out since 1986 [1] so
it should be possible to immerse students and researchers inside relativistic
virtual spaces in order to design experiments such as those which would be
used to test recent work (at Stanford) by Robert Wagoner and a student on
shock oscillations near black holes.
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3.1.2 properties of geodesics in spaces of (variable) negative or
positive curvature

William Thurston and colleagues have produced visualizations of what one
would see inside hyperbolic 3-space, a metric of constant negative curvature.
(See the video NotKnot [2].) Building 3D interfaces for optics in space-forms
could serve as a warmup for the previous challenge.

3.2 quantum cosmology

3.2.1 visualizing evolution of spacetimes in dimensions 1-4

In addition to the visualization of geodesics and optical geometry of classi-
cal relativity, in
ationary cosmologies present additional challenges. Andre
Linde's superposition of both classical quantum and stochastic processes [4]
generate highly non-uniform geometries and even arbitrarily complex topo-
logical types. 1

3.3 topology

3.3.1 nonmetric properties of shapes

Often, the particular graphical properties of a rendered object, such as tex-
ture, intrinsic color, re
ectance, are much less important to the mathe-
matical researcher or physicist than certain general geometric or topologi-
cal attributes. One example comes from the isoperimetric inequality which
is typically illustrated by drawing a pinched 3 manifold M shaped like a
pinched, two-holed torus. One would like to knead such a solid, make vari-
ous codimension-1 slices �, so that

Mn� =M0 [M1(1)

and read o� the volumes to compute, for example, the ratio

� [�] �
j�j

min(jM0j; jM1j)
:(2)

1The evolution equation for the metric is reminiscent of an inverse heat equation, which

leads to exponential blowups in the super-universe. q.v. Linde
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as a function of �: (If dim(A) = n; jAj represents its n-volume.) inf� � [�]
plays a central role in the isoperimetric inequality and analysis on manifolds.

3.3.2 visualizing homotopies, knot moves, and related operations
in topology

Many topological arguments, for example in the classi�cation of 3 manifolds,
depend on some dynamic operations ranging from crossing links in knots
to excision of n-cells, glueing in simplicial complexes and continuous defor-
mations { homotopies. A set of virtual "ropes" and "patches" which could
support at least these standard moves in topology of knots and 3 manifolds
would be extremely useful and a boon to students of topology. A spectac-
ular example of such dynamic topology is the Geometry Center's video of
an eversion of a 2-sphere, an illustration of a theorem by Stephen Smale.
However, one could appreciate the eversion much more readily if one could
interactively drop tracer dyes on one side of selected oriented patches of the
sphere as it distorts.

3.4 riemannian geometry

Quite a few problems in geometry and physics concern global integrals over
manifolds of quantities such as area, scalar curvature, Ricci curvature, and
other norms of the curvature form and fundamental forms. To date, there has
been little point in illustrating such problems using 3D visualization systems,
but the theory has evolved to the point where 3D systems may prove useful.

3.4.1 variations by total curvature

Yet another global geometric quantity, and arguably the most natural "phys-
ical" quantity after total area to study, is the square norm of the mean cur-
vature. Let � be an immersion of a surfaceM into R3, H the mean curvature
vector on �[M], *1 the area 2-form induced by �, and de�ne the total mean
curvature functional W by

W [�] =
Z
M

jHj2 � 1(3)

The functional W is conjectured to be minimized among all surfaces of
genus > 0 by the stereographic projection of the Cli�ord torus in S3: This
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simply stated problem has generated a rich �eld of work suitable for 3 and
4-dimensional interfaces. (see below)

3.4.2 problems associated with visualizing structures in dimen-
sions 4,6,7,8 which are critical dimensions in much deep,
exciting theory in geometry and physics

One of the most basic problems with most 2D and 3D graphics systems is
that they are designed to faithfully render structures of dimension less than
or equal to 3. Some interesting work with translucent projections [5] have
attempted to render 4D structures, but the problem remains that it is rather
cumbersome from the point of view of a "naive" mathematician to de�ne
a custom immersion of an n-D manifold into a 3-dimensional space, even
in cases where there exist highly-developed mathematical idioms describing
some standard structures, such as covering spaces, vector bundles, or even
a�ne projections of Hausdor� recti�able sets. Such idioms can serve as
interfaces for indirect manipulation of higher-dimensional geometry.

4 author's work

The common needs that thread these applications together include a descrip-
tion of graphical structures which can encode algebraic structures comprehen-
sible to geometers and topologists, a set of 3D renderings and manipulation
primitives which express mappings (gestures) characteristic of di�erential
geometry and topology, and a language to match, with syntax close to the
syntax of working mathematicians or physicists.

My own interest bifurcates into two categories: (1) the study of variational
problems arising from total (mean) curvature, which lie in the intersection of
riemannian geometry, geometric measure theory, nonlinear partial di�erential
equations, and global analysis; (2) the visualization and manipulation of
geometric and topological structures.

I've created simulations which transform a set of nonlinear pde's in Math-
ematica to a surface rendered via a variety of systems, including MathView,
geomview and Renderman. The pde's include variational equations for 
ow
by gradient of area, curve 
ow induced by mean curvature on a surface of
revolution, perturbation by total mean curvature, and Linde's superposition
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of stochastic and quantum 
ow of a scalar �eld on 2-D spacetimes.
Some more particulars: in the case of the Willmore problem [7], the 
ow

is by the gradient of an integral quantity de�ned on a compact surface M in
a �xed ambient space, (R3 or S3). The variational problem is complicated
by the fact that the functional is invariant under conformal maps of the am-
bient space. It would be convenient to have a set of operators, with which
one could easily de�ne and apply nonlinear geometric transforms to ambient
spaces or submanifolds. In a prototype �rst presented at MSRI's Visualizing
Geometric and Topological Structures workshop [5], I tried to demonstrate
how useful it was to "drive" a 3D visualization system (geomview) directly
from a symbolic algebra system (Mathematica). The setup, however, left
much to be desired. For example, it would be quite useful to be able to
run a glove over surfaces generated by the evolution scheme to seek umbilic
points because such points ought to remain umbilic under conformal maps.
Although one could always write special-purpose functions to detect such
points for these particular surfaces, the moral is that we need 3D presen-
tations which carry enough algebraic and di�erentiable structure to make
low-level coding unnecessary. Furthermore, it would be quite useful to de�ne
compactly supported functions directly on the manipulable. What's impor-
tant is not the precise parametrization of the support domain but the fact
that it is compact, and that it contains or excludes certain geometrically
interesting features.
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