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D. Nain, Y. Serita, TML 2004-2005 early Navier-Stokes
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light as ink
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phenomenological approach

continuous ontology
rich complex

corporeal intuition
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challenges
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limit of complex displays

Information + Decisions => 

                                  Cognitive load

3D displays, menus, OO-ontology =>

                       Combinatorial complexity
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observations
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Q. What makes something palpable?

tg2001 sha sponge foam
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kinesthetic intuition

Dense displays, combinatorially 
infeasible

Different strategy:

Leverage body intuition from birth

Shallow semantics

Physical synchrony
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schema-free epiphany
TML CTIA Wireless Fashion Show Atlanta 2004
Designer J. Fantauzza. angle-based granular synthesis, but no specific a priori gesture 11tml
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∴ 
schemas after the fact
latent predisposition
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Q. Embodied epiphany sans training

tg2001 sponge+foam
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∴
everyday human experience

is
embodied

(not cognitive)
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∴
everyday human experience

is continuous

continuously evolving in time

continuous in space
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felt meaning*

“Experiencing is nonnumerical & 
multischematic”

A more precise order not limited to one 
set of patterns and units

Categories may be logically but not 
experientially prior to instances

16
* Gendlin 1997.
   qv. Sha 2002, 2008, Husserl 1919-1938 (1980, 1982, 1989); Maturana & Varela 1980
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responses

phenomenological experiments
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objects  textures

Richest visual fields

texture- vs. object-oriented displays

Visually rich dense displays

dense realtime, responsive graphics are now 
computationally feasible
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apparatus for
phenomenological experiments

Not to create objects, or even events as 
pre-specified sequences of states, but as 
conditions on ranges of events

19



tml

apparatus for
phenomenological experiments

Assumption: No  pre-existing typology 
(categories) of objects of experience 
prior to event.
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refined phenomenological 
research questions
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tmlserver

Media Choreography and 
Show Control (DMX512)
Apple G4 Powermac
Max

Visual Instruments
Apple G4 Powermac
Max/Jitter

Sound Instruments 
Apple G4 Powermac
Max/MSP

Linux on PC i686
NSF Fileserver (Common Code Share)

OSC, NSF

tmlG4soundtmlg4graphics #1 tmlG4oz

199.77.199.229 tmlserver (#1)
199.77.128.180 tmlG4graphics      
199.77.128.182 tmlG4oz      
199.77.128.181 tmlG4sound      

tmlg4graphics #2

Q. How is agency distributed?
 interaction

co-structuration
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Q. When is a movement a gesture?
(intention)

Satinder Gill, 
Cambridge:

prosody, musicality 
and rhythm in 
collective gesture, 
2005-2009.

Craig Dongoski, 
Atlanta 2004.
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specific research medium
calligraphic video

structured light responding to gesture as a
quasi-physical material 
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desiderata, conditions

Real-time = “zero” latency

Dense

Robust

Screen-based delivery
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video texture graphics

Graphics

2D (not 3D) spare cycles

lattice methods vs object

(i.e. continuous ontology)

constant in number of objects !

to limit: each pixel is a manipulable!

C dontemporary hardware architectures
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Prototype: heat equation

Laplace equation:

A scalar-valued field

satisfying the PDE

27

Brief Article

The Author

October 17, 2009

∴

If φ(x, t) : Rn × [0,∞)→ R is a scalar field on spacetime

∂φ

∂t
= $φ (1)

1

Brief Article

The Author

October 17, 2009

∴

If φ(x, t) : Rn × [0,∞)→ R is a scalar field on spacetime

∂φ

∂t
= $φ (1)
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discretization of Laplace PDE

and integration

28

C0,-1

C0,0

C0,1

C-1,0 C1,0

C0,0 -> C'0,0 = 1/4 *  (C-1,0+ C1,0 + C0,-1 + C0,1)

C'0,0
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calligraphic video

fire, smoke, Y. Serita, J. Fantauzza, TML

wave equation; Navier-Stokes equation
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Navier-Stokes

Michael Fortin 2007-2009 (Delphine Nain 2004-2006)
References: J. Stam 1999;  Chorin & Marsden 1998;  

Fedkiw et al 2001; Irving et al. 2006; Kim 2008  

30
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light as fluid

Michael Fortin. Optical flow mapped to density or “wind” in 
Navier-Stokes model.  Parallelized on multi-core CPU, and 
GPU

31
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Navier-Stokes equation 1

Assume: nearly time-independent 
pressure and temporature.

A vector-valued field

Physical assumption 1: No sources or 
sinks, i.e. divergence free:

32

Brief Article

The Author

October 17, 2009

velocity field v : Rn → Rn

1

Brief Article

The Author

October 17, 2009

∇ · v = 0 (1)

Our second physical assumption is that the momentum is conserved. Let ρ be the density, p the
scalar pressure, ν be the viscosity coefficient, f the external force. Newton’s Second Law states
that force is the rate of change over time of momentum:

1
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Navier-Stokes equation 2

Physical assumption 2: Conservation of momentum

33

Brief Article

The Author

October 17, 2009

∇ · v = 0 (1)

Our second physical assumption is that the momentum is conserved.

ρ = density

p = scalar pressure

ν = viscosity coefficient

f = external force

Newton’s Second Law states that force is the rate of change over time of momentum:

F =
d(mv)

dt
(2)

Applying the chain rule for the total change of a function u(v(x, t)) of velocity field v which is in
turn a function of position and time, one can show that the total derivative of u is given by:

D[u] =
∂u
∂t

+ (v ·∇)u (3)

Equation ?? defines the material derivative of u, which yields the physical change of some material
field u that is carried along by the velocity field v with respect to time. We can write the total
force acting on an infinitesimal fluid element as:

1
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Newton’s Second Law: force is the 
time rate of change of momentum:
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Navier-Stokes equation 3

For some field u[v(x,t)] which is a 
function of the velocity field v, the total 
“material derivative” is 

34

ratuses3 in which we can conduct studies of how humans imag-
ine, create, and perceive dynamical "objects" from fields that are
effectively continuous in time and space. Working with continuous
fields of video permits us to construct experiments in which objects
can be formed by improvised manipulation and allowed to return to
general substrates. The manipulations must be as free as possible
of class-based tools or menu structures (else they would imply pre-
existing logical, functional, or geometric categories). The video
texture substrate may not appear uniform at all, but it is continuous
in space and time. Now, rather than use arbitrary dynamical sys-
tems to animate the responsive video, we choose to study the struc-
ture of corporeal-kinesthetic-visual intuition4 via improvised ma-
nipulations of media that leverage corporeal-kinesthetic-visual ex-
perience of continuous matter commonly encountered from child-
hood.

3. COMPUTATIONAL PHYSICS
We describe three computational models of physical material

that we have implemented for real-time video processing. These
lattice models are based on the Laplace heat equation, the Navier-
Stokes equation for turbulent fluids, and Ginzburg-Landau equation
for magnetic domains. Most of these were implemented on conven-
tional machine architectures. These three models cover a range of
physicality that provided some sense of the phenomenal richness
required and the limits of perception.

Over the past four years, we have successfully built a suite of
real-time, array operators on video streams for each of these PDE’s.
Each PDE operator treats a frame of video as initial data and gen-
erates a new stream of arrays as short time evolution solutions of
the corresponding PDE intercalated into the incoming video. The
numerical simulation is intercalated in between frames of incom-
ing video, balancing computational complexity, computation grid
size, video resolution, and video i/o bandwidth. Put another way,
each incoming frame of video is used to set instantaneous ’initial’
conditions that re-trigger the evolution of the PDE.

In the following three sections, we present the models proceed-
ing from the simplest to the most sophisticated material model. In
each section we present the model in compact physics language.
Then we describe the computational implementation of these mod-
els for real-time video, in enough detail so that experimental appa-
ratus may be evaluated.

3.1 Introduction to Lattice Methods: Heat
Simulating the diffusion of heat through a homogeneous medium

provides the canonical and simplest physical model for a lattice
computation. This initial data is integrated by our real-time im-
plementations of these simulations in between frames of video, so
these effects are realized and experienced concurrently with the ac-
tivity of the performer or participant. If φ(x, t) : Rn× [0,∞)→R is
a scalar field on spacetime

∂φ
∂ t

=#φ (1)

This partial differential equation, known as the Laplace equation,
can be approximated on a discrete rectangular lattice using finite
differencing, and numerically integrated using a relaxation method.
Where Ci, j is the value of the (i, j)-th cell, the method in essence is
given by (Figure 3):
3We interpret apparatus in Karen Barad’s richer sense of a hybrid
of matter, expectation and theory. See chapter 4 of Barad [2].
4Such experiments are an empirical approach to Husserlian studies
of intuition and experience. See Husserl [12].

C0,-1

C0,0

C0,1

C-1,0 C1,0

C0,0 -> C'0,0 = 1/4 *  (C-1,0+ C1,0 + C0,-1 + C0,1)

C'0,0

Figure 3: The center cell’s value is replaced by the average of
its neighboring cells’ values.

Ci, j →
1
4
(Ci−1, j +Ci+1, j +Ci, j−1 +Ci, j+1) (2)

3.2 Matter Intuition: Navier-Stokes Model of
Fluids

More recent results are based on the Navier-Stokes equation (See
Chorin and Marsden [3]). A fluid whose pressure and temperature
are nearly constant can be characterized by a velocity field v : Rn→
Rn and scalar pressure field p : Rn → R, where n = 2 or 3. We can
characterize the assumption that the fluid conserves mass by the
condition that there are no sources or sinks in the velocity field. By
Stokes theorem, this is equivalent to the condition that the velocity
field is divergence-free:

∇ · v = 0 (3)

Our second physical assumption is that the momentum is con-
served. Let ρ be the density, p the scalar pressure, ν be the viscos-
ity coefficient, f the external force. Newton’s Second Law states
that force is the rate of change over time of momentum:

F =
d(mv)

dt
(4)

Applying the chain rule for the total change of a function u(v(x, t))
of velocity field v which is in turn a function of position and time,
one can show that the total derivative of u is given by:

D[u] =
∂u
∂ t

+(v · ∇)u (5)

Equation 5 defines the material derivative of u, which yields the
physical change of some material field u that is carried along by the
velocity field v with respect to time. We can write the total force
acting on an infinitesimal fluid element as:

∂ (ρv)
∂ t

+(v · ∇)(ρv) = ∇p+ν#(ρv)+ρf (6)

Solving for the time derivative of the velocity field, we obtain the
Navier-Stokes equation (Chorin and Marsden [3]):

∂v
∂ t

=−(v · ∇)v− 1
ρ

∇p+ν#v+ f (7)

(There are many versions of this equation in the literature.) For
the densities, we just deal with the first term, known as the advec-
tion equation. This moves the densities according to the velocity
field. (Stam [23] includes a diffusion term for the fluid itself. We
do not implement it.)

So total force acting on a fluid element is:
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More recent results are based on the Navier-Stokes equation (See
Chorin and Marsden [3]). A fluid whose pressure and temperature
are nearly constant can be characterized by a velocity field v : Rn→
Rn and scalar pressure field p : Rn → R, where n = 2 or 3. We can
characterize the assumption that the fluid conserves mass by the
condition that there are no sources or sinks in the velocity field. By
Stokes theorem, this is equivalent to the condition that the velocity
field is divergence-free:

∇ · v = 0 (3)

Our second physical assumption is that the momentum is con-
served. Let ρ be the density, p the scalar pressure, ν be the viscos-
ity coefficient, f the external force. Newton’s Second Law states
that force is the rate of change over time of momentum:

F =
d(mv)

dt
(4)

Applying the chain rule for the total change of a function u(v(x, t))
of velocity field v which is in turn a function of position and time,
one can show that the total derivative of u is given by:

D[u] =
∂u
∂ t

+(v · ∇)u (5)

Equation 5 defines the material derivative of u, which yields the
physical change of some material field u that is carried along by the
velocity field v with respect to time. We can write the total force
acting on an infinitesimal fluid element as:

∂ (ρv)
∂ t

+(v · ∇)(ρv) = ∇p+ν#(ρv)+ρf (6)

Solving for the time derivative of the velocity field, we obtain the
Navier-Stokes equation (Chorin and Marsden [3]):

∂v
∂ t

=−(v · ∇)v− 1
ρ

∇p+ν#v+ f (7)

(There are many versions of this equation in the literature.) For
the densities, we just deal with the first term, known as the advec-
tion equation. This moves the densities according to the velocity
field. (Stam [23] includes a diffusion term for the fluid itself. We
do not implement it.)
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Navier-Stokes equation 4

Solving for time-derivative of velocity v:

35
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existing logical, functional, or geometric categories). The video
texture substrate may not appear uniform at all, but it is continuous
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tems to animate the responsive video, we choose to study the struc-
ture of corporeal-kinesthetic-visual intuition4 via improvised ma-
nipulations of media that leverage corporeal-kinesthetic-visual ex-
perience of continuous matter commonly encountered from child-
hood.
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Simulating the diffusion of heat through a homogeneous medium
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computation. This initial data is integrated by our real-time im-
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these effects are realized and experienced concurrently with the ac-
tivity of the performer or participant. If φ(x, t) : Rn× [0,∞)→R is
a scalar field on spacetime
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=#φ (1)

This partial differential equation, known as the Laplace equation,
can be approximated on a discrete rectangular lattice using finite
differencing, and numerically integrated using a relaxation method.
Where Ci, j is the value of the (i, j)-th cell, the method in essence is
given by (Figure 3):
3We interpret apparatus in Karen Barad’s richer sense of a hybrid
of matter, expectation and theory. See chapter 4 of Barad [2].
4Such experiments are an empirical approach to Husserlian studies
of intuition and experience. See Husserl [12].
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1
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3.2 Matter Intuition: Navier-Stokes Model of
Fluids

More recent results are based on the Navier-Stokes equation (See
Chorin and Marsden [3]). A fluid whose pressure and temperature
are nearly constant can be characterized by a velocity field v : Rn→
Rn and scalar pressure field p : Rn → R, where n = 2 or 3. We can
characterize the assumption that the fluid conserves mass by the
condition that there are no sources or sinks in the velocity field. By
Stokes theorem, this is equivalent to the condition that the velocity
field is divergence-free:

∇ · v = 0 (3)

Our second physical assumption is that the momentum is con-
served. Let ρ be the density, p the scalar pressure, ν be the viscos-
ity coefficient, f the external force. Newton’s Second Law states
that force is the rate of change over time of momentum:

F =
d(mv)

dt
(4)

Applying the chain rule for the total change of a function u(v(x, t))
of velocity field v which is in turn a function of position and time,
one can show that the total derivative of u is given by:

D[u] =
∂u
∂ t

+(v · ∇)u (5)

Equation 5 defines the material derivative of u, which yields the
physical change of some material field u that is carried along by the
velocity field v with respect to time. We can write the total force
acting on an infinitesimal fluid element as:

∂ (ρv)
∂ t

+(v · ∇)(ρv) = ∇p+ν#(ρv)+ρf (6)

Solving for the time derivative of the velocity field, we obtain the
Navier-Stokes equation (Chorin and Marsden [3]):

∂v
∂ t

=−(v · ∇)v− 1
ρ

∇p+ν#v+ f (7)

(There are many versions of this equation in the literature.) For
the densities, we just deal with the first term, known as the advec-
tion equation. This moves the densities according to the velocity
field. (Stam [23] includes a diffusion term for the fluid itself. We
do not implement it.)

For the densities, we just deal with the first 
term, known as the advection equation.  
This moves the densities according to the 
velocity field.
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(scalar) density = luminosity input video
rendering is colored by input video

Navier-Stokes 1
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tmlM. Fortin self-deforming

Navier-Stokes 2
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color = heat, viscosity, heat tests

Navier-Stokes 3
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color = heat, viscosity, heat tests

Navier-Stokes 3
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tmloptical flow = velocity field (Fortin, Sutton, Drolet TML)

Navier-Stokes 4
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implementation

Michael Fortin 

Three hardware platforms:

Apple Power G5 4-core CPU

NVidia GPU

Sony-IBM CELL (PS3)

41



tml

software environment

Max/MSP/Jitter

lingua franca

high expressive, don’t waste time coding, 
get to run experiments

Extend in C, C++, Objective-C, etc.
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Ising model

Q. Is magnetic spin field palpable ?
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Ising Model
magnetic domains

spin up or down of a magnetic 
domain

J > 0 encodes energy favoring 
aligned spins

H encodes external field on 
magnetic domain

44
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Generalization of Ising model 
from discrete range  {0,1}  to 
continuous range 

in which vortices form as 

Ginsburg-Landau spin glass

media applications from MIT Media Lab (H. Ishii and J. Maeda), our approach is quite distinct.
We are motivated by the question, what could make sound or image as palpable as a physical
medium like corn starch or rubber sheet? Our response is not simply to create allegorical repre-
sentations of such material in a visual medium, but to actually adapt equations of state and the
differential equations that model physical materials. We aim to create structured light that can
be parameterized in real-time by live activity as measured by a variety of sensing techniques, most
simply by live video camera, and re-synthesized with the plastic and dynamical qualities of various
physical materials.

2.8.1 Heat Equation and Wave Equation

The first examples were of the heat and wave equations (i.e. diffusion and hyperbolic PDE’s),
computed on a lattice whose values are filled by, and composited into frames of video. This initial
data is integrated by our real-time implementations of these simulations in between frames of video,
so these effects are seen in real-time, in concert with the activity of the performer or participant.
More recent results are based on Navier-Stokes equation ([11], [12]):

ρ
Dv

Dt
= ∇ · P + ρf (29)

for fluid dynamics, where ρ is the fluid density, v is the velocity vector, f is the force acting on a
unit volume, and P is the stress tensor, the forces acting on a fluid particle. Here the derivative is
the co-moving derivative due to the fluid flow:

D

Dt
=

∂

∂t
+ v ·∇ (30)

We have extended this work now to magnetic domains and are considering Ising spin models in
order to traverse and study the limits of embodied intuition.

2.8.2 Ising Model and Ginsburg-Landau Equation

http://www.mathematik.hu-berlin.de/ sba/c16/

Another, and quite different physical model is the Ising model for magnetic domains and its gen-
eralization from discrete range {0, 1} to continuous range S1, the Ginsburg-Landau model.

ιuε
t + ∆uε =

1
ε2

(|uε|2 − 1)uε (31)

in which vortices form as ε→ 0.
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Ising video operator Yannick Assogba, 2006
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applications:
movement arts & architecture

re-embed in more richly meaningful contexts 
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movement arts & 

responsive environments
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theatrical systems
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Ouija: entrainment

Ouija Experiment on Collective Gesture in Responsive Media 
Spaces, June-July 2007. Designed by Sha + Montanaro. SY Cho, 
dancers; T Sutton (sound), JS Rousseau (video), et al. TML 50tml
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composite gesture: body movement + live painting + realtime video
June-July 2007 Hexagram Blackbox

Ouija: Calligraphy
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Ouija: Calligraphy

52
composite gesture: body movement, live painting, realtime video

June-July 2007 Hexagram Blackbox
tml
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Frankenstein’s Ghosts
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Frankenstein’s Ghosts

Reprocessed instruments. Blackbox Dec 2008. 
* Paul Bendzsa, Milan Gervais, * Pam Reimer, * Liselyn Adam; (* Blue Riders), + dancer Leal Stellick 54
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architecture &

responsive environments
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lattice-field works gracefully with lots of people
Navier-Stokes & Wave     Blackbox Inaugural May 2006
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Cosmicomics Elektra July 2007
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canadian centre for architecture

dmx animated led light panels
nuit blanche 20th anniversary 2009
morgan sutherland, navid navab, timi sutton 58
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cca shaughnessy house 2009
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topologicalmedialab.net

credits
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Fire is the ravisher of all things.  Heraclitus


