
Mathematical Experience and Mathematical Performance

Conventionally, we construe mathematics as knowledge, and the
mathematical sign as representation of knowledge. In this essay I
propose an alternative approach, pairing mathematical practice as
performance with mathematical writing as technology of perfor-
mance. This foregrounds mathematics as a poietic rather than a tau-
tological practice, and to interpret this poietic practice I outline a
materialist phenomenology. I argue that particular attention to dif-
ferential geometers’ practices of diagramming or sketching shapes,
manipulating algebra, estimating analytic functions, or tracing ki-
netic processes offers us a chance to grasp how mathematical signs
function outside speech yet in a thoroughly material way. What
seems fruitful is to treat these practices not as recording or encoding
mathematical entities, but as generating them. In other words, I
treat mathematical writing not as a technology of representation but
as a technology of embodied performance. Moreover, by looking at
differential geometrical writing as a performance practice, I offer
some examples of how finite gestures enact smooth (“infinitely dif-
ferentiable”), “abstract,” “objective,” or infinite entities via finite
traces. By recognizing that geometers exteriorize and materialize
their imagination in common technologies of mathematical writing
such as the backs of envelopes or chalk and chalkboard, we can
avoid the problem of intersubjective communication. Shared and
therefore objective mathematical entities are constituted in the in-
teraction of geometers, their disciplinary logics, and technologies.
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In short, we take a materially mediated, performative approach to
mathematical experience. Materially mediated means, simply and
profoundly, conducting actions in stuff bearing physical attributes like
inertia, resistance, friction, decay, and plasticity, so that our material
actions constitute our experience. This indirect characterization of
materiality in place of physicality leaves open the possibility of non-
physical materials—such as computational media—that also work like
wood, water, or plastic in our phenomenological experience. Avoiding
the dualist cut between matter (physics) and thought (spirit), perhaps
we can retain a materialism that accommodates nonfinite entities, a
key point that honors the working mathematician’s conventional
handling of many infinite entities—whether these be objects (e.g.,
an infinite end of a minimal surface), spaces (e.g., a set of real-valued
functions that has the structure of an infinite-dimensional topolog-
ical vector space), or a process (e.g., taking the limit of an indexed set
of objects where the index is allowed to go to infinity through a con-
tinuous range of values). Throughout this work, mathematical enti-
ties will generally include processes as well as objects or spaces.

So, with respect to the classical philosophy of mathematics, per-
haps the most nonconventional and useful contribution in this
investigation is the consideration of differential geometry not as a
synchronic map of propositional knowledge, but rather as a perfor-
mance practice. I consider how geometers in the wild practice geom-
etry at a relatively fine scale of gesture. Formally, a fundamental dif-
ference between my project and logic’s project is that, whereas logic
treats mathematical proof as its object of study, I treat mathematical
performance. For this purpose, I look for several modes of gestural
performative experience, provisionally: graphic, discursive, alge-
braic, and kinematic, emphasizing the graphic. But in order to pro-
ceed we require a more precise qualification of the sense in which to
understand performance.

On Performance
Marvin Carlson characterized performance by doubling or double-

coding—a differentiation between the subject-as-actor and subject-
as-audience—and a composition of the acting self and the rule or
script that this actor follows, in a setting framed by social conven-
tions distinguishing it from unmarked, everyday activity.1 The sorts
of mathematical performance I consider are those in which a person
is enacting, not a script in a doubled consciousness for a spectator,
but rather a process of creation.
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1. Marvin Carlson, Performance, a Critical Introduction (London: Routledge, 1996).



John Austin’s speech-act theory powerfully contributed the no-
tion of linguistic utterances that have the ability to change the world
materially. An example would be a priest, or a duly appointed officer
of the state, saying “By the power invested in me, I hereby pro-
nounce you husband and wife.” Certain statements, uttered by cer-
tain people under certain circumstances, have the power to cause so-
cial, political, even bodily effects. But what differences or similarities
are there between such an illocutionary utterance and “Let T be the
product of two 2-spheres S1 and S2,” spoken by a geometer during a
workshop?

In his ground-breaking books,2 and in essays such as “Toward a
Semiotics of Mathematics,” Brian Rotman describes mathematics as
being performed by triples of semiotic agents. Following Charles
Sanders Peirce, he proposes a tripartite scheme: a Subject who has ac-
cess to, and only to, the formal Code of mathematics; a Person who
uses the heuristic resources of the discipline; and an Agent who acts
as a mechanical proxy of the Subject.3 I take Rotman’s work as one
of the inspirations for my phenomenological investigation of geom-
etry, but a key difference between his analysis and mine is that I do
not rely on an elaborate semiotic theory of the Reasoning Subject,
focusing instead on fine-grained materiality and gesture. In fact, as
Andrew Pickering suggests, it is not necessary to collapse human
agency either to an epiphenomenon of a deterministic or random
material system, or to the action of a heroic, and ultimately solipsis-
tic, creator of knowledge.4 What seems to be worth investigating
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2. Brian Rotman, Ad Infinitum: The Ghost in Turing’s Machine. Taking God out of Mathe-
matics and Putting the Body Back In: An Essay in Corporeal Semiotics (Stanford: Stanford
University Press, 1993); idem, Mathematics as Sign: Writing, Imagining, Counting (Stan-
ford: Stanford University Press, 2000).

3. This is much too condensed a description, of course. See Brian Rotman’s essay, “To-
ward a Semiotics of Mathematics,” in Mathematics as Sign (above, n. 2), pp. 1–43.

4. It is worth quoting Pickering in full at this point: “First, the precise trajectory and
endpoint of Hamilton’s practice were in no way given in advance. Nothing prior to
that practice determined its course. Hamilton had, in the real time of his mathemati-
cal work, to fix bridgeheads and fillings and to find out in real time just what resist-
ances would emerge relative to intended conceptual alignments—such resistances
again could not be foreseen in advance—and to make whatever accommodations he
could find to them, with the success or failure of such accommodations itself only be-
coming apparent in practice. As in our previous examples, then, conceptual practice
has to be seen as temporally emergent, as do its products. Likewise it is appropriate to
note the posthumanist aspect of conceptual practice as exemplified in Hamilton’s work.
My analysis again entails a decentering of the human subject, though this time toward
disciplinary agency rather than the material agency that has been at issue in earlier dis-
cussions. Here, once more, it is not the case that Hamilton as a human agent disap-
pears from my analysis. I have not sought to reduce him to an “effect” of disciplinary



more carefully is the intricate dance between the human mathe-
matician’s “free” choices and the moves demanded by a “disciplined
conceptual practice,” whether they be “forced moves,” free filling
moves, or unplanned, unforeseen conceptual associations.5

Another difference between this project and Rotman’s is that I ac-
cept at face value the phenomenological and ethnographic observa-
tion that contemporary differential geometers routinely develop rich
intuitions and practices working with infinite and smooth entities.
The existence and incorporation of such phenomenological evi-
dence requires, then, that I work with a nonfinitistic conception of
mathematics and a technology that respects such a nonfinitistic con-
ception. What I do share with Rotman is an interest in sidestepping
appeals to the transcendental in favor of secular practice. But if we
grant that infinity is not equal to the transcendental, then there
might be more than one way to secularize mathematical practice.

These and other theories’ different contexts provide diverse senses
of performance—but there is always, explicitly or implicitly, a strong
presence of an atomic human subject, of ego. By contrast, I use per-
formance in the fine-grained sense of the ephemeral, momentary,
temporally embedded gesture, and most crucially in the not-to-be-
repeated aspect of intentional and embodied action. As Rotman put
it in his essay on gestural writing:

The gesturo-haptic is a form of writing that exceeds the textual. . . . [Its] im-

portance, value, and strategic or instrumental interest, is not derived from

these meanings [but] in the fact of their taking place, and in the subsequent

psycho-social-corporeal effects (of affect, safety, assurance, threat, etc.) that

they induce and could only induce as a result of having actually occurred, and

having done so in the manner, style, and force (all that constitutes what one

might call their gestural prosody) in which they did.6

Rotman draws a fine distinction between notating movement and
capturing movement: notation is an arbitrary assignment of a sign
to a gesture, and if the assignment is deterministic, then we say it is
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agency, and I do not think that that can sensibly be done. It is rather that the center of
gravity of my account is positioned between Hamilton as a classical human agent and
the disciplines that carried him along. To be more precise, at the center of my account
is the dance of intertwined human and disciplinary agency that traced out the trajec-
tory of Hamilton’s practice” (Andrew Pickering, The Mangle of Practice: Time, Agency,
and Science [Chicago: University of Chicago Press, 1995], pp. 140–141). Emphasis in the
original.

5. Ibid., pp. 115–119.

6. Brian Rotman, “Corporeal or Gesturo-haptic Writing,” Configurations 10 (2002):
434–435.



an encoding; by contrast, capture makes a trace that is physically ho-
mologous to the original gesture. Rotman is right to point out the
distinction between these different ways of relating to movement—
however, both are forms of recording. I would take one step from
Rotman’s recording of motion to emphasize performance over no-
tating as well as capturing, since the latter two actions both connote
recording and playback. Moreover, this does not rely on a theory of
the subject, a theoretical simplification that is justified by appealing
to a field-theoretic version of a monist ontology.7 Much of my at-
tention is directed toward such temporally saturated aspects of non-
ego-centered performance.

This view of mathematics as a performative art/practice impels us
to consider its technologies of mathematical writing.

What’s Missing from Phonetic Language? Writing

The basic question before us is, can we think without using words
(in a language)? The standard way to avoid tautology is to investi-
gate what is, or what characterizes, thinking. But another way is to
enlarge the frame to include at least the union of complexes of phys-
ical, social, and symbolic actions taken by a group of geometers in
pursuing what they recognize as “doing mathematics.” So, when we
say “think,” let us, at least for the purposes of this present investiga-
tion, intend “do” mathematics. Readers familiar with analogous
studies of scientific practice will recognize that I consider the pro-
duction of mathematical knowledge also embedded within the
social-matter field. But this is not strictly a social-constructivist proj-
ect, as will become clear.

L. E. J. Brouwer and Jacques Hadamard both vigorously argued
that there were clearly ways to think mathematics without words. Of
course any musician or artist could report the same, but their testi-
monies have traditionally been suspect in scholarly discourse since
Plato. Geometers, musicians, and artists cannot be relied upon to re-
port their own experiences in ordinary written language, since writ-
ten language is ipso facto not their medium of articulation. It is es-
sential to note here that I am not claiming that there is no medium
of articulation for doing mathematics. Quite the contrary, this essay
presents differential geometrical writing as a medium, albeit non-
verbal, of mathematical articulation. In fact, Hadamard can be criti-
cized for reducing thought to a psychological mystery—an unmedi-
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7. On monism, see David Woodruff Smith’s description of Husserl’s ontology (below,
n. 27). And for an example of a field-theoretic ontology, see Gilles Deleuze and Félix
Guattari, A Thousand Plateaus: Capitalism and Schizophrenia (Minneapolis: University of
Minnesota Press, 1987).



ated process in an inaccessible part of an individual mind. I argue
that the fixed algebraic structures of semiotics and linguistics are in-
adequate for the purposes of describing mathematical articulation in
writing and sketching.

By a linguistic approach to knowledge, I mean the stance that ex-
perience is primarily carried by written (or writable) language; that
the form of articulation of greatest interest is alphabetic writing used
to encode speech, or what Roy Harris called the glottic form of writ-
ten symbols; that speech and the other temporal forms of articula-
tion are of secondary interest, or even to be discounted. The formal
version of the linguistic approach also includes the assumption that
language is paradigmatically that which can be described as having
a complex of a lexicon, morphology, syntax, and grammar, plus some
finite rule system for transformations of the discrete representation.
Coupled with the logical approach to knowledge, we have a version
of the logico-linguistic paradigm, of which software programming
languages are among the most highly evolved results. In chapter 4,
“Postulates of Linguistics,” of A Thousand Plateaus, Gilles Deleuze
and Félix Guattari observe that the abstract machine of language
(i.e., the linguistic model) is both too abstract and not abstract
enough. The linguistic model is not abstract enough because it only
treats linguistic elements as constants across all languages, and fails
to account for nonlinguistic elements, which would require a notion
of “variables of expression” into which we could plug either linguis-
tic or nonlinguistic elements; this further level of abstraction would
allow us to accommodate “forms of content” as well as of expres-
sion.8 It is the generalized linguisticism, an enlargement of alpha-
betic logocentrism including phonocentrism, that is inadequate to
this project.

For the purposes of my study, I need to rely on a conception of
writing that is more expansive than the categories of text typically
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8. “If the abstraction is taken further, one necessarily reaches a level where the pseudo-
constants of language are superseded by variables of expression internal to enunciation
itself; these variables of expression are then no longer separable from the variables of
content. . . . If the external pragmatics of nonlinguistic factors must be taken into considera-
tion, it is because linguistics itself is inseparable from an internal pragmatics involving its own
factors. It is not enough to take into account the signified, or even the referent, because
the very notions of signification and reference are bound up with a supposedly au-
tonomous and constant structure. There is no use constructing a semantics, or even
recognizing a certain validity to pragmatics, if they are still pretreated by a phonologi-
cal or syntactical machine. For a true abstract machine pertains to an assemblage in its
entirety: it is defined as the diagram of that assemblage. It is not language based but di-
agrammatic and super-linear” (Deleuze and Guattari, Thousand Plateaus [above, n. 7],
p. 91; emphasis added).



produced and registered by literary practice. Other notions of writ-
ing are available. Roy Harris characterizes the typical concept of writ-
ing as telementationalist: as a technology for recording a writer’s
thoughts in a nonvolatile medium, transporting this nonvolatile
recording to a remote reader, and decoding the meaning by the re-
ceiver.9 One formal limit of such a telementationalist model of com-
munication is Claude Shannon’s information theory, based on an
abstraction of cable communication. Such a theory has severe diffi-
culties when we try to use it to understand complex distributed hu-
man activities because it ignores the material media—how signs are
made, by hand or keyboard, makes a difference in their signification
and value; it is subject to the inadequacies of what Michael Reddy
called the conduit metaphor;10 it ignores nonlocal field effects; it ig-
nores the power of synchronization; and it ignores the integra-
tionalist (Harris’s term) or coordinative (Anatol Holt’s term) func-
tions of writing. To elaborate, the last four points are related to one
another by what I call a field-theoretic notion of human organized
activity—that is, a notion that is inspired by a continuous distribu-
tion of values over a continuous entity (like a smooth manifold) and
does not depend a priori on a discrete structure like a graph.11 A
field-theoretic structure admits more readily concepts such as non-
local (integral) measures, and sidesteps questions like piecewise arc
connectivity and complexity, which are often artifacts of the theo-
retical structures imposed on a phenomenon such as organized hu-
man activity. Anatol Holt’s answer to his own question: “What are
computers for?” was framed in terms of the coordination of human
activity.12 But the coordination—or better put, the organization—of
human activity includes not only schematic or topical relations but
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9. Roy Harris, Signs of Writing (London/New York: Routledge, 1995).

10. Michael J. Reddy, in “The Conduit Metaphor: A Case of Frame Conflict in Our Lan-
guage about Language,” in Metaphor and Thought, ed. Andrew Ortony (Cambridge:
Cambridge University Press, 1979), pp. 284–324, describes this metaphor as the conceit
that “language transfers human thought and feelings.” Of course, a further problem is
that a sender or receiver may not be well defined, as in the case of radio. This is one of
Derrida’s points in “Signature Event Context”: Jacques Derrida, “Signature Event Con-
text,” in idem, Margins of Philosophy, trans. Alan Bass (Chicago: University of Chicago
Press, 1982), pp. 307–330, where he dissects the Shannon structure: Sender → message
→ Receiver, by replacing each of the three terms in turn by a paradigmatic blank.

11. This central notion figures more prominently when we critique the discretization
problems associated with all graphical and numerical approximations to smooth geo-
metric entities. It is also explored in work in preparation with Niklas Damiris and Helga
Wild.

12. Anatol W. Holt, Organized Activity and Its Support by Computer (Dordrecht/Boston:
Kluwer, 1997). Also personal communication, 1998.



temporal relations as well, so the degree and quality of synchronicity
are most relevant. Graph structures only become more complex with
the a posteriori addition of temporal information, but patterns over
continuous manifolds can be described using the rich and supple no-
tions of time-varying fields. I will not pursue this further at this point
for two reasons: first, I wish to defer introducing more mathematical
concepts; and second, the social-scientific problem of determining
what observables can be empirically measured to parameterize
topologies or field theories, though of key importance, lies outside
the scope of this essay. And it is not necessary to solve this measure-
ment problem in order to derive the streamlining benefits of this
conceptual approach to mathematical performance.

Computer languages, despite their simpler formal ontology and
explicit operational role in animating machines, are no less problem-
atic than human languages with respect to questions of material em-
bodiment and mathematical performance. Indeed, we see the purest
consequences of a logico-linguistic conception of human languaging
behavior in the design of formal languages for programming com-
puters. The effective senescence of artificial languages like LISP and
FORTRAN and their associate programming environments marks 
the displacement of several theoretically significant programming-
language paradigms in many domains of software engineering.13

One indicator of such a displacement is the trend over the past
decade in the classification and retrieval of text from natural-
language techniques to statistical techniques that work only on for-
mal (nonsemantic) differences in the text data.14 Another indicator
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13. This phenomenon of language death deserves study to see whether and how it indi-
cates a shift of the epistemic spectrum among software systems engineers and designers.

14. Natural-language techniques would, for example, try to parse and interpret parts of
grammar, and to semantically define equivalence classes in the lexicon; such tech-
niques would of course be sensitive to the language and subject of the corpus. “Purely”
statistical techniques would treat the texts as strings of ASCII or Unicode characters,
and have the advantage of working uniformly across languages and subjects. Naturally,
fusions are attempted. See Douglass R. Cutting, David Karger, and Jan Pedersen, “Con-
stant Interaction-Time Scatter/Gather Browsing of Very Large Document Collections,”
in Proceedings of the Sixteenth Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (New York: ACM Press, 1993), pp. 126–135; Julio
Gilarranz, Julio Gonzalo, and Felisa Verdejo, “Language-Independent Text Retrieval
with the EuroWorldNet Multilingual Semantic Database,” in Second Workshop on Multi-
linguality in the Software Industry: The AI Contribution, IJCAI-97, ed. C. D. Spyropoulos
(San Francisco: Morgan Kaufmann, 1997), pp. 9–16; Yiming Yang and Jan O. Pedersen,
“A Comparative Study on Feature Selection in Text Categorization,” in Proceedings of
ICML-97, 14th International Conference on Machine Learning, ed. Douglas H. Fisher (San
Francisco: Morgan Kaufmann, 1997), pp. 412–420.



is the role played by object-oriented programming languages and de-
sign. Taligent, for example, the company founded by IBM and Apple
in 1992, represented one limit of software architecture based on the
object-oriented programming paradigm. And in the narrow context
of geometrical computation, one of the most ambitious attempts to
incorporate such a computational paradigm was Charles Gunn et
al.’s Oorange, which incorporated 3-D graphics, numerical integra-
tion, generalized animation on arbitrary real parameters, and an el-
egant, powerful, object-oriented scripting language. None of these
computational tools to “do” mathematics were broadly adopted be-
yond the doorsteps of their inventors.

We see from these examples that the fixed elements of semiotics
and linguistics, logical schemata and rigorously precise symbolic al-
gebraic systems, are inadequate to the purpose of mathematical ar-
ticulation by writing and sketching. So we leave computational sys-
tems predicated on such linguistic schemata, and turn also from
recording to poiesis.

A Conversation between Two Differential Geometers in the Wild

In order to provide some concrete examples of differential geo-
metric practice, I present an edited transcript of a conversation be-
tween two differential geometers in vivo, talking about constant
mean curvature (CMC) surfaces and minimal surfaces, which have
been the subject of significant contemporary research activity in the
area between geometry and analysis. Speaker A is more familiar with
CMC surfaces:

A: Remember last time we know now that M0,3 surfaces, constant
mean curvature surfaces with three ends, have a planar symmetry . . .

B: Wait can we see how that goes again?

(A picks up chalk and goes to board. See Fig. 1.)

A: Okay, so we’re looking at complete, finite total curvature sur-
faces in R3, with constant mean curvature. (Fig. 2. Both people im-
plicitly notice and know that these ends go out to infinity.) In general 
we don’t care about the topology inside a compact set (A circles fin-
ger around a region in the middle. See Fig. 3.), but for this classifica-
tion, we can assume that the surface is genus 0, without loss of gen-
erality. (A erases the “holes” in the middle. See Fig. 4.) Now, the balanc-
ing formula tells us that the three ends must all lie in the same
plane.

B: Wait. You mean that these ends have some sort of axis?
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A: Right, what you do is to integrate the co-normal around a loop
around each end and add up the integrals (see Fig. 5). Basically it’s
Stokes’s theorem. (A writes out integral formula expressing the balancing
condition. The balancing formula is an analytic relay result proved using
purely analytic methods, but later given a pseudo-physical interpretation
in terms of flux of fields across membranes:15
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15. Karsten Grosse-Brauckmann, Robert B. Kusner, and John M. Sullivan, “Triundu-
loids: Embedded Constant Mean Curvature Surfaces with Three Ends and Genus Zero,”
Journal für die reine und angewandte Mathematik (Crelle’s Journal ) 564 (2003): 35–61.

Figure 1. A rudimentary example of a classical geometrical writing and reasoning system.

where ni are the asymptotic neck-sizes of the i-th end, and a
_

i is the i-th
end’s axis vector.)

B: I remember R told me a physical intuition for this. Like if you
cap off the ends, you measure the force as a pressure difference
across the cap. If the surface is in equilibrium you get the balancing
formula.

n

Σni (2π – ni) a
_

i ≡ 0,
i=1
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Figure 2. Three-ended CMC surface, positive genus.

Figure 3. Removing a compact region.
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Figure 4. CMC surface simplified “without loss of generality.”

Figure 5. Normals along a loop as it travels out to infinity along an end.



A: Yes that sounds right. You get a weighted sum of the axes vec-
tors. Anyway. The balancing condition tells you that the three axes
of the ends have to lie in the same plane. Now you argue that there’s
a plane of symmetry.

B: The plane containing the axes. (B waves hand flat over the
board.)

A: Right. Here’s where we use the Alexandrov reflection argument.
So you know that the only compact genus 0 surface is the sphere. So
here’s the theorem:

(A writes the theorem out.) Theorem (Alexandrov). If S is a compact,
genus 0 surface of constant mean curvature in R3, then it must be a
sphere. So the way that he proved it was to slice the surface with a
plane, then reflect across the plane. (Fig. 6.) We slide the plane and
keep reflecting across it until the first point of contact. Where the
surface first touches itself on the inside. (A taps finger at the point of
inner tangency. See Fig. 7.) And here’s where we use the Maximum
Principle. So the Maximum Principle says that . . . let’s see . . .

(A and B detour into a discussion of partial differential equations, an
analytic theory, about the behavior of solutions to second-order elliptic
equations, modeled after ∆u = 0.)

Remarkably, the two geometers can work anexactly with geometrical
entities that cannot be “drawn” because they are infinite in extent,
transformations that cannot be graphed because they are elements
in spaces that are not merely infinite in cardinality but infinite-
dimensional, and entities that are infinite limits. Moreover, these
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Figure 6. Reflection across a line.



geometrical entities’ “infinite” aspects play an essential and material
role in how they may or may not be manipulated. Yet these two
ordinary, fleshy, human mathematicians play their differential-
geometrical game with all degrees of evolving intuition and felt
logic.16

Exteriorization Into Mathematical Machinery, Quasi-Universals,
and Objectivity

I take as my starting point the anthropological observation that fi-
nite, mortal, fleshy mathematicians collectively share their experi-
ence of mathematics over long spans of time. This is not only an
ethnographic observation but a phenomenological one as well. We
can marvel at what gives mathematics its extraordinary stability
across individual experience, but there is no need to account for this
stability by an origin of intuition such as occupied Edmund Husserl
in his essay “Origin of Geometry.” In fact, by appealing to materially
mediated experience, I can set aside as well Husserl’s Cartesian in-
vestigation, with its overtones of idealism. Mathematical thought is
exteriorized into its technologies (notation, algebraic methods, com-
puter simulations) as well as its social practices (tacit conventions of
how much detail is needed in a publicly accepted proof, accepted pro-
cedures for establishing and maintaining truth in a mathematical ar-
gument, the coding of visual argument into mathematicians’ English,
and so forth).

Norton Wise, in a lecture about the projection of British steam
technology into eighteenth-century Germany, observed that physi-
cal concepts like the conservation of energy arise as universals out of

146 Configurations

16. I am indebted to Rafe Mazzeo and Karsten Grosse-Brauckmann for very generously
sharing some of their research and process.

Figure 7. Reflection across a line with first internal tangency.



the repeated embeddings of a set of material technologies and asso-
ciated knowledges and expertises into different cultural contexts.17

As technicians built laboratory apparatuses that supported the phys-
ical experiments, they simultaneously built up the conditions for
creating symbolic and practical contexts that made sense of quasi-
universal notions like heat (or the diffusion model). Bruno Latour,
Timothy Lenoir, Andrew Pickering, and many others in Science
Studies have followed in detail how complexes of scientific knowl-
edge, physical instruments, laboratory practices, and social relations
coconstruct each other in a socio-material setting. It is fruitful to
think of mathematics emerging as quasi-universals out of a similar
long material circulation. What gives mathematics its peculiarly sup-
ple quasi-universality relative to laboratory science, however, is the fact
that mathematics is simultaneously concept and technology, simul-
taneously poiesis and techne—both the generation of concepts and
the means to articulate and actualize these concepts as material, ma-
chinic assemblages.18 We might say this of language in general, but
that degree of generalization loses traction on our investigation of
the phenomenology of differential geometrical practice. Mathemati-
cal writing can operate in a characteristic way via what mathemati-
cians call, somewhat ironically, mathematical machinery.

Let me give two examples of such machinery: Newton’s method
for finding roots, and the Maximum Principle as it is used in study-
ing the motion of hypersurfaces under mean curvature flow, or con-
stant mean curvature surfaces as in the example dialogue.

Taking the elementary example first, consider Newton’s method
for finding the zeroes of a function (see Fig. 8).19 Start with an initial
guess, x0, for a zero of f [x]. Then take the tangent line to f(x) at x0

and see where it crosses the x-axis at a point that we will call <a,0>.
F′(x) is the slope of the function f(x) at x0:
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17. Norton Wise, “Architecture of Steam” (lecture delivered at Stanford University, May
1999).

18. Recall the discussion of materiality in the earlier section on logicism.

19. In fact, in courses for which I prepared Mathematica laboratories, this is how I ex-
plicitly presented some derivations and proofs of methods in calculus and differential
equations: I showed how a result, such as Newton’s method, was constructed, the con-
struction itself constituting a proof of validity of the method; and next I wrote this
construction as a procedure in Mathematica, which then could be reexecuted as a func-
tion as a component for subsequent work.

f ′(x0) =
f ′(x0) – 0 

x0 – a     
.



Solve for a, where the approximating line intersects the x-axis:
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20. Jacques Hadamard, The Mathematician’s Mind: The Psychology of Invention in the
Mathematical Field (Princeton: Princeton University Press, 1945), p. 60.

Figure 8. Newton’s method for finding roots.

a = x0 – 
f (x0)

f ′(x0) 
.

Newton’s method for approximating the zero of f near x = a is the
following: Let x1 = a be the next guess for the zero of f(x). We then
derive a recursive formula for successive guesses at the zero of f(x):

xn + 1 = xn – f [xn] f ′[xn]

that we can encapsulate and apply to all sorts of functions, or gener-
alize to other maps on other types of spaces.

Jacques Hadamard argued that this sort of procedure is absolutely
typical in mathematics. The encapsulation of a mathematical argu-
ment or truth-maintaining procedure into a semiotic form, such as a
theorem or formula, that could be easily shared with other mathe-
maticians, he called a Relay-Result.20 A theoretically coherent set of
relay-results with satisfiability conditions, or procedures systematiz-
ing actions that can be taken with respect to a set of concepts with
provable consequences, is sometimes called “machinery” by mathe-
maticians. This term conjures the composability, inevitability or



forced logic, and autonomous, hands-free operation of a set of mathe-
matical operations.

Another example, more pertinent to our case studies in the field
of differential geometry, is the use of the Maximum Principle in
minimal surface theory and the study of flow by mean-curvature.
One of the fundamental theorems in the qualitative analysis of so-
lutions of a partial differential equation is the following: Let u be a
smooth, real-valued function from a bounded domain W in Rn. Let
M be a linear elliptic differential operator defined on a region W by

M(u) ≡ xDi(u)bi + cux + aijxDij(u).

Theorem. (Gilbarg-Trudinger 3.1) Suppose M[u] ≥ 0 on the domain
W. Then the maximum value of u is achieved on the boundary.

This theorem and its proof make sense in the domain of real
analysis and analysis of partial differential equations. It is established
using intuitions and computations from analysis, with no differen-
tial geometry. However, this conceptual tool from a substantial ma-
chinery—the theory of elliptic partial differential equations—is used
over and over in the study of minimal surfaces, but in an essentially
visual-kinetic mode. (See Fig. 7.)

In another field and context, differential geometers studying how
surfaces evolve under flow by mean curvature first show that two
such surfaces satisfy the same elliptic inequality, like M[u1] ≥ 0 and
M[u2] ≥ 0. Then, using the real-analytic21 fact that M is a linear oper-
ator, we have M(u2 – u1) ≥ 0. But by the geometric fact that the sur-
face graphed by u2 is always below the surface graphed by u1, we de-
rive the analytic fact that u2 – u1 ≤ 0.

These examples show how a mathematical process like root-
finding, or a theorem like the Maximum Principle, can be packaged
in such a way that it can be reliably used by other mathematicians—
either directly by matching hypotheses and applying the conclu-
sion, or, even more interestingly, in a systematic but analogical way
to a new situation. The Maximum Principle is established by meth-
ods from real analysis—the existence and regularity theory of partial
differential equations, which characteristically uses the notions of
calculus, of estimating integral quantities by applying inequalities to
sums of Sobolev norms of functions. But its application is strongly
geometrical, and even visual. (See Fig. 9.)
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21. Real Analysis is a branch of mathematics concerned with the behavior of functions
with domain and range in the real number line. It includes the measure theory of sets and
the theory of integration. In a precise sense, the space of functions on the real number line
is of infinite dimension, and most of these functions are not compatible. (See n. 34 below.)



In all cases, satisfiability conditions limit and guide the opera-
tional, not merely descriptive, application of techniques and relay-
results, and so here we exceed text, the semiotic, and inscription.

Objectivity and the Technology of Nonglottic Writing

By a technology of writing I mean a conventionalized system of
inscription devices, systems of gestural practices and techniques ori-
ented primarily around the production and reception of marks.22 A
technology of writing includes not only the physical instruments
but also the practices and historical disciplinary orthography associ-

150 Configurations

22. Although my project is focused on visual marks, these marks do not have to be vis-
ual. As Harris points out (Signs of Writing [above, n. 9]), it is misleading to split an in-
vestigation of writing systems a priori along perceptual modalities. Notice that pro-
duction and reception make no commitments to the notion of transport, so this is not
a telementationalist theory.

Figure 9. The Dirichlet problem.



ated with this technology. As an example of this interrelation be-
tween devices and habits, consider TeX. The rise of TeX’s prevalence
as the standard typesetting system for mathematical texts changed
the nature of email-mediated mathematical conversations. We saw
earlier some of the inadequacies of telementationalist notions of
writing, based on writing as a means of human communication.
What are some features of writing that are useful if we want to expand
the notion coherently to cover mathematicians’ informal sketches
and improvisatory algebraic and function-analytic calculations?

For my study of the technologies of mathematical writing, the
most fruitful touchstone has been the chalk and blackboard. Keep-
ing in mind how mathematicians have traditionally used chalk-
boards in their creative and collaborative work, I schematically list a
few aspects of writing technologies that appear most salient for this
investigation. Writing technologies supporting geometrical explo-
ration involve nonlinguistic as well as linguistic objects; are based
upon noncommunicative as well as communicative aspects of lan-
guage practice; include gestures and other bodily moves coordinated
with the written; give material form to abstract entities; are embed-
ded in social practices; enable the gradual and collaborative refine-
ment of notions; and generate “social” objects—objects that are held
by and mediate between more than one group of people.23

This last point leads us to consider mathematical objects as being
humanly constructed, yet objective entities: things that do not be-
long to any one person, that can be shared and do not fluctuate
across cultural positions. In other words, they are aperspectival. This
is similar to Paul Ernest’s concept of mathematical knowledge as ob-
jective beliefs, but with some important differences. In his book, So-
cial Constructivism as a Philosophy of Mathematics, Ernest states that

[t]he social is constituted by individuals together with their shared forms of

life. And because of this shared feature, with all of its complexity and human-

constituting properties, it cannot be reduced to individuals alone. Thus the

objective knowledge which rests in the social is based on shared language use,

rules, and understandings, embedded in shared forms of life. . . . [the seeming]

necessity . . . of logical and mathematical truth . . . (understood in a fallibilist
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23. I am indebted to Helga Wild for discussing these qualities in cogent terms. Many
scholars have investigated social objects in related contexts: for example, Latour, bor-
rowing from Michel Serres’s quasi-objects (Bruno Latour, We Have Never Been Modern
[Cambridge, Mass.: Harvard University Press, 1993], p. 51); Susan Leigh Star’s bound-
ary objects (Susan Leigh Star and James Griesemer, “Institutional Ecology, ‘Transla-
tions,’ and Boundary Objects: Amateurs and Professionals in Berkeley’s Museum of Ver-
tebrate Zoology, 1907–1939,” in The Science Studies Reader, ed. Mario Biagiolo [London:
Routledge, 1999], pp. 505–524).



sense) rests on linguistic conventions, rules, and accepted social practices, as

Wittgenstein proposes.24

However, Ernest follows David Bloor in construing mathematics as
knowledge, and knowledge as beliefs, whereas I am viewing mathe-
matics as performance practice. So under such a view, I do not have
to give an essentialist account of “mathematical truth,” which
Ernest binds too hastily with logical truth.

Another difference is that Ernest uses the model of “warranting
conversations” among mathematicians—characterizing, for example,
mathematicians in their work as basically switching between con-
structing “mathematical knowledge claims” and participating in the
“social process of criticism and warranting of others’ mathematical
knowledge claims.”25 However, a mathematician does much more
than invent conjecture: a mathematician performs some algebraic
calculation, doodles, balances one function’s rate of growth against
another, pattern matches against inequalities, and, on a more syn-
thetic level of performance practice, writes out proofs. The model of
social conversations (whether intra- or interindividual) does not ac-
count for the algebraic, analytic, or logical forces of mathematical ar-
gument. And finally, Ernest follows Bloor’s theoretical stance: “ob-
jectivity is social”—a stance that, as Latour argued, naturalizes the
social category as ideologically as realists naturalize quarks.26 What I
am arguing, and what Ernest was trying to arrive at, I believe, is that
although mathematical entities are constructed by humans in social
contingent contexts, the constructions are actually invariant across
subjective, contingent contexts. The social is objective. So how can
we resolve social contingency with invariance?

Materialized Phenomenology

This work is critically concerned with the material activities of
knowledge-production performed in “real time,” based on the as-
sumption that the manner and the material quality of practice
strongly affect the kinds of knowledge that get produced. This phe-
nomenological approach regards mathematics as a most human art
because it is so free of constraints by any putatively exterior, entirely
nonhuman and consequently transcendental Nature. And yet, al-

152 Configurations

24. Paul Ernest, Social Constructivism as a Philosophy of Mathematics, SUNY Series in Sci-
ence, Technology, and Society (Albany: State University of New York Press, 1998), p. 146.

25. Ibid., p. 149.

26. David Bloor, Knowledge and Social Imagery (London/Boston: Routledge and Kegan
Paul, 1976), p. 229, as cited in Ernest, Social Constructivism, p. 145; Latour, We Have
Never Been Modern (above, n. 23).



though its entities are among the most highly crafted of symbolic ar-
tifacts, the most artificial, I do not claim that mathematics is imma-
terial. It is important to understand that Husserl’s notion of the
essence (eidos) of x includes the way that x is known or experienced;
the mode of its conceptual perception is inextricable from its
essence. This is key to seeing that Husserl’s phenomenology is not an
idealist theory but a material one.

This discussion requires an extended notion of materiality, in-
spired by what David W. Smith calls Husserl’s many-aspect monism.27

What does this mean? In Smith’s “unionist” (single world) version 
of Husserl’s ontology, there are material and formal categories. Mate-
rial categories describe things in terms of particularities, of situated-
ness and localizability. Formal categories, on the other hand, describe
forms that apply across matter, objects, or domains of contingency.28

Leibniz’s mathesis universalis notwithstanding, however, it would be a
mistake to identify mathematics as a set of formal categories. Indeed,
my project is quite the opposite. In Husserl’s ontology, material
things can be perceived only “from one side,” perceived always from
a perspective. This perspectivalism is a very useful phenomenologi-
cal criterion to distinguish “material”29 from immanent things like
experiences and logics, which become known as part of the stream
of consciousness, and not from any perspective. Whereas material
things are objects of perspectival apperception, immanent things are
objects of “eidetic intuition”: they are encountered in their essence.

What about mathematical entities? At first, one might think that
mathematical entities are “purely formal.” But take any mathemati-
cal entity—such as curvature as studied in Riemannian geometry, for
example. Curvature is encountered by a geometer from many di-
verse, phenomenologically inequivalent, perspectives. From the per-
spective of Cartan’s method of exterior differential forms, the curva-
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27. I use David Woodruff Smith’s characterization of Husserl’s ontology as a monist,
many-aspect continuum rather than idealist ontology. Smith himself later proposed
what he called a unionist ontology, in which there is only one world, a significant re-
vision from the singular substance of the monisms of Spinoza and Husserl. See David
Woodruff Smith, “Mind and Body,” in The Cambridge Companion to Husserl (Cambridge:
Cambridge University Press, 1995), pp. 323–393; idem, “Intentionality Naturalized?” in
Naturalizing Phenomenology: Issues in Contemporary Phenomenology and Cognitive Science, ed.
Jean Petitot (Stanford: Stanford University Press, 1999), pp. 83–110.

28. I set aside the question of whether the distinction between formal and material cat-
egories is substantive or analytic. It is enough for my purposes, following Smith (“Inten-
tionality Naturalized?”), to array mathematical entities across the cross-product of formal
with material categories in order to see how they can be both technic and poietic.

29. What Husserl called the “transcendental,” somewhat at variance with the modern
colloquial sense of the term.



ture can be viewed as a 2-form Ω that can be related to the connec-
tion, considered as a 2-form, by the equation

dω = Ω + 
2
–1 [ω,ω].30

But from the perspective of, say, a geometric analyst interested in
partial differential equations associated with curvature, curvature is
viewed as a tensor with components given in terms of the Christof-
fel symbols Γi

jk (components of the connection) by the equation

Ri
jkl = (Γi

lj),k – (Γi
kj), l + Σ

m
Γm

lj Γi
km – Γm

kj Γi
lm.

These differences are not only formal but substantive: the effort in-
volved in coming to terms with one or another “perspectival ap-
proach” depends very much on individual habits and circumstances;
the kinds of actions that one can take with one approach may not be
available with the other; the kinds of questions or truths that are
compactly and intelligibly stated in component notation may not
be expressible in Cartanian notation, and vice versa. Nonetheless, it
is also true that a mathematical entity, or a family of entities, once it
has been well explored and used by a mathematician, can come to
exist in the imagination in a nonperspectival eidetic intuition.

This may be one way to understand what mathematicians mean
when they characterize something “well understood” as “trivial.”
Mathematicians often have the experience that something well un-
derstood, typically after a very large amount of perspectival labor, is
effortlessly evident and immanent to the imagination, and therefore
appears trivial. So, under the richer and more precise ontology made
available by a monist—or better, a unionist—phenomenology, we
see that mathematical entities can be both material and formal as
products of social, and therefore objective, manipulation.

Rotman’s suggestion, that mathematical writing provides the
shared material medium—technology—that constitutes the intersub-
jectivity of mathematics, guides us in describing this alinguistic tech-
nology as a technology of what Pickering calls disciplinary agency.31
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30. This is the fundamental structure equation for Riemannian manifolds in Cartan’s
formulation. See Shoshichi Kobayashi and Katsumi Nomizu, Foundations of Differential
Geometry, 2 vols. (New York: Wiley, 1996), vol. 1, p. 78.

31. “If mathematical writing is seen as not secondary or posterior to privately engen-
dered intuition, but as constitutive of and folded into the mathematical meaning at-
tached to such a notion, what was private and intrapersonal is revealed as already in-
tersubjective and public” (Brian Rotman, “Thinking Dia-Grams: Mathematics and
Writing,” in Biagioli, Science Studies Reader [above, n. 23], pp. 430–441).



We have approached mathematics as performance under a suit-
ably unmarked sense of everyday skilled practice. This practice con-
sists substantially in making mathematical signs as material traces. If
we recognize that the ontology of mathematical entities is the on-
tology of mathematical signs, it follows that mathematical entities
are not transcendental but material. And concretely considering dif-
ferential geometrical writing as performance, we see particularly
clear instances of writing in which substance and form have no cat-
egorical separation, and with which the human can write, create,
and perform secular, material infinities.

Appendix

Since this essay significantly departs from some philosophical ap-
proaches to mathematics, it may be useful to briefly project it
against two alternative views of mathematics: L. E. J. Brouwer’s intu-
itionism, and George Lakoff’s metaphor theory.

Intuitionism
Brouwer provided one critique of formalist mathematics from 

the perspective of a working mathematician, arguing against the ex-
tensibility by purely logical procedure beyond the scope of phenom-
enal experience. In his essay “The Unreliability of Logical Prin-
ciples,” he first grounds science as concerned with “repetition in
time of sequences in time,” implying that these are sequences of the
form

a11, a12, a13 . . .
a21, a22, a23 . . .
. . .

whose limits are “ideas.”32 In that passage, he does not explicitly say
what his sequences consist of, but his model is that of a sequence of
thoughts arising in response to perceptions. According to Brouwer,
the reliability of identifications of ideas as limits of such prolonga-
tions must derive from perception, and so they are reliable only so
long as the mathematical extensions or derivations in the system of
entities do not go beyond “the perceptions that make the mathe-
matical system understandable.”33 He seems to think of a mathe-
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32. L. E. J. Brouwer, “The Unreliability of Logical Principles,” in idem, Collected Works,
vol. 1, Philosophy and Foundations of Mathematics, ed. A. Heyting (New York: American
Elsevier, 1975), p. 107.

33. Ibid., p. 107.



matical system as sequences of entities. But it seems that here is a
case where Brouwer the philosopher mimicked too closely Brouwer
the mathematician, and elevated a notion from real analysis34—
convergent sequences (sequential compactness)—to a model of
mathematical thought. There are many mysteries entangled in this
conception of mathematical thought, but let me remark on one of
the most striking problems.

The notion of ideas as limits assumes that we think very simply in
a linear chain of statements, progressing from one to the next in a
unidimensional manner—but there is little neurological or psycho-
logical evidence that we in fact do this. Negatively speaking, we can
question the presuppositions of a putative cognitive psychology ex-
periment that would observe linearity, because any linearity is more
an artifact of the measurement schemas employed than anything in
the wet chemistry of our thoughts. In Gesture and Speech, André
Leroi-Gourhan traced the reduction of writing (hand-drawn sketches
and images) over preliterate time to a phonetic transcription of
speech, which as a consequence reduced what had been a rich ges-
tural space to a unidimensional semiotic system.35 Referring to Leroi-
Gourhan’s philosophized anthropology, Jacques Derrida argued that
with the “traditional concept of [unidimensional] time, an entire or-
ganization of the world and of language” was bound up with the
“linearity of the symbol.”36 But positively, a phenomenological in-
spection of experience reveals that our consciousness is much more
a tissue of shifting moves of assertion, belief, doubt, hope, and so
forth. The mathematician Gian-Carlo Rota described this activity in
phenomenological terms:

A subtle form of reductionism may be at work when “evidence” is regarded as

an instantaneous process reminiscent of a light bulb being lit. . . . Husserl’s de-

scription of [the process of acquiring evidence] brings out the complexity of

the phenomenon. . . . The gradual discovery of an item beckoning for evi-

dence fragments into a temporality of its own. The imperfection, the lack of

certainty, the insecurity of evidence are described by Husserl as features of all

evidence whatsoever.37

156 Configurations

34. On real analysis, see, for example, Halsey L. Royden, Real Analysis, 3rd ed. (New
York/London: Macmillan, 1988); or Yitzhak Katznelson, An Introduction to Harmonic
Analysis, 3rd ed. (Cambridge/New York: Cambridge University Press, 2004).

35. André Leroi-Gourhan, Gesture and Speech (Cambridge, Mass.: MIT Press, 1993).

36. Jacques Derrida, Of Grammatology, trans. Gayatri Chakravorty Spivak (Baltimore:
Johns Hopkins University Press, 1976), p. 85.

37. Gian-Carlo Rota, “Kant and Husserl,” in Indiscrete Thoughts, ed. Fabrizio Palombi
(Boston: Birkhauser, 1997), pp. 170–171.



So the view of consciousness that pins it to a unidimensional axis of
time, against which we can unambiguously index and order a se-
quence of concepts, is too simplistic.38

But the principal criticism one can make of Brouwer’s intuition-
ism is that he places an unwarranted emphasis on purely cognitive
acts. Despite his acknowledgment of the significance of perceptual
phenomena grounding logic, he nonetheless worked within a dual-
ist metaphysics of epistemology, a sharp duality between the exter-
nal world and the internal mind of the mathematical subject. Given
such a dualism, it is not surprising that he was led to adopt cate-
chrestically a metaphor from real analysis to account for mathe-
matical thinking, and to amputate much of mathematical (thought)
experience in order to remain within reach of finite corporeal expe-
rience. I choose to replace the limited scope of Brouwer’s “phenom-
enal experience” in my work with a materially mediated, performa-
tive approach to experience.

Mathematics As Metaphor
One of the more popular recent interpretations of mathematical

work is that mathematics is primarily metaphorical. George Lakoff
and Rafael Núñez are the principal proponents of this theory. Lakoff
proposes a useful term: “conceptual blend,” which names a very
common process where mathematicians adjoin properties to see if
interesting new classes of objects are created—but it is predicated on
what I think is too limited a reduction of all mathematical relations
to metaphorical ones. In Philosophy in the Flesh, Lakoff and Mark
Johnson characterize metaphor as “conceptual cross-domain map-
ping.”39 But for them, metaphorical thought is ultimately grounded
in “non-metaphorical,” “direct physical experience”;40 it is concep-
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38. See Husserl’s description of “manifold” intensive mental processes, in Edmund
Husserl, Ideas Pertaining to a Pure Phenomenology and to a Phenomenological Philosophy:
First Book, General Introduction to a Pure Phenomenology [1913], trans. F. Kersten (Dor-
drech: Kluwer, 1982). Husserl usefully distinguishes between phenomenological and
cosmic time (p. 192), and describes “one endless stream of mental processes” (p. 194).
The streaming aspect is also useful, but I would not constrain my conception of con-
sciousness, even in the case of mathematical creative reasoning, to a single thread. The
study of time would take us very far afield, but see Edmund Husserl, The Phenomenol-
ogy of Internal Time-Consciousness [1928] (Bloomington: Indiana University Press, 1964);
William H. Newton-Smith, The Structure of Time (London/Boston: Routledge and Kegan
Paul, 1980); Paul Horwich, Asymmetries in Time: Problems in the Philosophy of Science
(Cambridge, Mass.: MIT Press, 1987).

39. George Lakoff and Mark Johnson, Philosophy in the Flesh: The Embodied Mind and Its
Challenge to Western Thought (New York: Basic Books, 1999), p. v-12.

40. Ibid., p. v-2.



tual; it is used to reason within a categorical way—mapping infer-
ences from one conceptual domain to another conceptual domain.
“Each metaphorical idiom comes with a conventional mental image
and knowledge about the image. A conventional metaphorical map-
ping maps the source domain knowledge onto target domain knowl-
edge.”41 For Lakoff, metaphor is a structural homomorphism be-
tween two semiotic spaces. But this notion of metaphor seems rather
sparse compared to how it is deployed in literary and philosophical
discourse.42

Such a framework raises a great many problems whose complete
discussion would take us too far afield, so I will note only a few. In try-
ing to give their theory a comfortable grounding in physical reality,
Lakoff and Johnson state: “All basic sensorimotor concepts are literal.
Cup (the object you drink from) is literal. Grasp (the action of hold-
ing) is literal.”43 Since Michel Foucault, however, anthropologists and
archaeologists and philosophers of knowledge have become much
more careful about naturalizing concepts in such a carefree manner.
What constitutes a chair varies so much according to cultural and
historical contingencies that it hardly seems like a safe thing to which
to anchor a metaphoric superstructure. A more egregious and funda-
mental problem is Lakoff and Johnson’s conflation between “concept
of X” and X, where X is a putative physical object. Even if we use
their characterization of metaphors as conceptual mappings, it is not
at all clear what they mean by their “non-metaphorical concepts”
when the putative grounding concepts themselves include culturally
conditioned concepts like “cup” and “blond.” They tautologically
claim that primary metaphors that add sensorimotor inferential
structure to nonmetaphorical concepts “are realized in our brains
physically and are mostly beyond our control. They are a consequence
of our brains, our bodies, and the world we inhabit.”44 Finally, this
theory assigns metaphor to reasoning, and confines reasoning to the
brain (neurology), ignoring the exteriorization of thought into tools,
artifacts, and technologies outside the reasoning organism.

What is the problem with the interpretation of mathematical
practice as metaphorical thought? There is a logical and even alge-
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41. Ibid., p. v-11.

42. See Sheldon Sacks, On Metaphor (Chicago: University of Chicago Press, 1979); An-
drew Ortony, Metaphor and Thought, 2nd ed. (1979; Cambridge: Cambridge University
Press, 1993).

43. Lakoff and Johnson, Philosophy in the Flesh (above, n. 39), p. 58. Emphasis in original.

44. Ibid., pp. 58–59. Emphasis in original.



braic force to mathematical argument that does not strictly parallel
metaphor, and does not reduce to Lakoff and Johnson’s metaphori-
cal mapping logic. A simple example of where metaphorical paral-
lelism conflicts with mathematical constraint is the Jordan curve
theorem: A simple closed curve in the plane partitions the plane into
two connected components. The analogue of this is not true in
higher dimensions (the famous counterexample being Alexander’s
horned sphere). The example is a little too simple because it does not
exhibit enough structure to illustrate my argument in full, but I wish
to keep the mathematical demands light. Introducing the notion of
“disciplinary agency,” Andrew Pickering has described an alternative
to reductionist physicalism and reductionist social conventionalism,
as well as essentially semiotic approaches such as Lakoff and Núñez’s
metaphor theory.45 Although his book, Mangle of Practice, is primarily
concerned with laboratory physics, he devotes one chapter to W. R.
Hamilton’s construction of quaternions. In this well-known bit of cre-
ative mathematical construction, Hamilton worked with and strug-
gled against constraints presented by the algebra over 1, i, j, k defined
by these initially unknown relations which he invented:

i2 = j2 = k2 = –1;

ij = k = –ji;

jk = i = –kj;

ki = j = –ik.

An example from differential geometry is that of the exponential
map from a tangent space to a manifold. Analogical metaphor will
not suffice to transport the concept of exponential map over to the
category where matrix groups are viewed as continuous manifolds.
The tangent space of SL(Rn) at the identity is the space of trace-zero
matrices. The algebraic structure is not predictable, and does not fol-
low at all automatically from the properties of the real numbers.
New proofs and concepts are needed, since it is not clear a priori
how to make sense of, for example,

∞

Σ Mk

k=1 k!  
,

where M is a matrix instead of a real number.
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45. Pickering, Mangle of Practice (above, n. 4).



Lastly, Lakoff’s term “basic” in “basic metaphor” is an unfortunate
choice, to my mind. Although he claims that this merely means ba-
sic as in human-scale, it is no less reductionistic, and no more accu-
rate, than the claim that there are atomic logical entities in mathe-
matics. Moreover, while the notion of human-scale may make sense
in a physicalist theory such as Lakoff’s metaphor theory, it is not at
all clear what “basic” or “human-sized” means when we speak of
mathematical entities and operations.46 Once again, this reduces the
force of mathematical interdependencies—the “logic” of mathemat-
ics, or what Pickering would call the disciplinary agency of mathe-
matics—solely to human agency, which would land us squarely back
in the “paradox” of the intersubjectivity of mathematics: how could
the experiences of individual human mathematicians possibly sum
to objective mathematics?
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46. George Lakoff and Rafael E. Núñez, Where Mathematics Comes From: How the Em-
bodied Mind Brings Mathematics into Being (New York: Basic Books, 2000). See also
George Lakoff, Women, Fire, and Dangerous Things: What Categories Reveal about the Mind
(Chicago: University of Chicago Press, 1987).




