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Prologue

Mathematica provides powerful facilities to create and transform structures by composing functions.    These structure 
operators can radically simplify computations that would be tedious to write and read in a procedural programming language 
like C++ or Pascal.   In this  chapter, we'll see how we can turn functional programming to our advantage.  We will motivate 
the use of these functional programming features with examples from mathematics.

Structures

Before we start composing functions, let's examine the structures on which all Mathematica functions operate.  Let's start 
with a vector v  and a simple tree of three layers, m.

v = {1, 2, 3};
m = {1, {21, 22, {231, 232}}, {31, {321, 322}, 33}};

� Structure display functions

There are a few structure display functions that are convenient to use for inspecting some complex structures:  FullForm, 
TreeForm, Short, Shallow.     Whereas  FullForm presents the expression in Mathemaica's standard 
one-dimensional syntax,  TreeForm  draws a crude representation of the structure's expression tree:

FullForm[m]

List[1, List[21, 22, List[231, 232]], List[31, List[321, 322], 33]]

TreeForm[m]

List[1, |                           , |                           ]
        List[21, 22, |             ]  List[31, |             , 33]
                     List[231, 232]            List[321, 322]

In version 2.2, there is a standard package  DiscreteMath`Tree`  which we can use to draw expresison trees:
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Needs["DiscreteMath`Tree`"];
ExprPlot[m]

-Graphics-

Armed with these overviews of structures, we can pick out elements; by convention, the zeroth element of a tree is the Head. 
[Wolfram]

m[[0]]

List

m[[1]]

1

m[[2]]

{21, 22, {231, 232}}

m[[2,1]]

21

m[[2,3]]

{231, 232}

m[[2,3,2]]

232

m[[3]]

{31, {321, 322}, 33}

Many functions in Mathematica can work on one or more levels (layers) of an expression tree.  Levels are typically specified 
by a pair of integers {m,n}.  Often n means  {1,n}, {n} means {n,n}.

m[[{2,3}]]

{{21, 22, {231, 232}}, {31, {321, 322}, 33}}

m[[2, {1,2}]]

{21, 22}
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� A more complex structure

For larger or more complex structures, it's often convenient to abbreviate the representation drawn by TreeForm using 
Short or Shallow.  For example, Plot returns a Graphics[] object

curve = Plot[Sin[1/x], {x, 0.04, 0.4}];

0.1 0.2 0.3 0.4

-1

-0.5

0.5

1

which is actually a list of two lists, most easily seen by

Shallow[TreeForm[curve]]

Graphics[|                , |                 ]
         List[|          ]  List[|           ]
              Skeleton[1]        Skeleton[22]

Since the curve is a one-dimensional graphics object, we know (or suspect) that there's a Line somewhere in its expression.

Position[curve, Line]

{{1, 1, 1, 0}}

The 0 means that  Line appears as the head of part {1,1,1}.  We can verify this by extracting the part at position {1,1,1}

Short[
curve[[1,1,1]]

]

Line[{{0.04, -0.132352}, <<138>>, {0.4, 0.598472}}]

Short[
curve[[1,1,1,1,140]]

]

{0.4, 0.598472}

curve[[1,1,1,1,140,2]]

0.598472
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Functions of Structures

Mathematica's structural transformation operators, such as List, Flatten, Partition,  Transpose, Join, 
First, Rest, and  Drop,  provide much of the power traditionally associated with LISP, but in the context of rich 
mathematical structures, these functions can be even more expressive.  Flatten is probably the most popular structure 
manipulation function in Mathematica after List.  They are all quite simple, so I'll refer the reader to Wolfram for their 
definition, but we'll use them in later examples.   You may also read about these functions in Mathematica's online Function 
Browser.

Functions of Functions

A good way to understand how a higher-order function works is to use undefined identifiers as a dummy arguments.   We use 
this idea to understand how Mathematica's higher-order functions apply a function to a structure.   [Gaylord 61-64]  The 
basic ones are 

Apply, Map, MapAt, Thread, Through, Fold, Nest, FoldList, NestList

The simplest higher order function is  Map,  which applies a function to each element of a list.

Map[ f, v]

{f[1], f[2], f[3]}

We can apply a function to one level of an expression tree

Map[f, m, {3}]

{1, {21, 22, {f[231], f[232]}}, {31, {f[321], f[322]}, 33}}

Note that this spans two branches.   In the next example, we map f repeatedly over the first two levels

Map[f, m, 2]

{f[1], f[{f[21], f[22], f[{231, 232}]}], 
 
  f[{f[31], f[{321, 322}], f[33]}]}

Map[f, m, {2,3}]

{f[1], f[{f[21], f[22], f[{f[231], f[232]}]}], 
 
  f[{f[31], f[{f[321], f[322]}], f[33]}]}

Note that  Map[f, m, {0}]  is different from Apply in that it doesn't replace the head List

Map[f, m, {0}]

f[{1, {21, 22, {231, 232}}, {31, {321, 322}, 33}}]

To apply a function at a specific position.   Let's see what's at position {2,3} of m:

m[[2,3]]

{231, 232}
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We can map a function  f at element {2,3} of m.   Notice the entire structure is returned

MapAt[f, m, {2,3}]

{1, {21, 22, f[{231, 232}]}, {31, {321, 322}, 33}}

How is this useful?   Take the example curve from section [].   Mathematica's built-in Plot function adaptively  estimates 
functions more often where it becomes more oscillatory.  We can extract those points for own purposes using 

curve[[1,1,1,1]]

Other simple functions which may be overlooked on a first reading of the Mathematica reference are Through and 
Thread  Operate, Through, Thread, MapThread, MapIndexed, Scan

� Operate

Operate   is a way to define higher-order functions -- functions on functions.

Operate[p,f[y]]

p[f][y]

It's natural to use  Operate to define a smoothing operator on real integrable functions.   We define the infinitely 
differentiable function h0

Clear[h0];
h0[y_] := h0[y,1];
h0[y_,a_,b_:1] := a Pi^(-1/2) b E^(-(y/a)^2); 

Integrate[ h0[x], {x, -Infinity, Infinity}]

1

Plot[ {h0[x,1], h0[x,2], h0[x,5]}, {x, -5,5}]
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-Graphics-

Clear[Convolve];
Convolve[f_] := Integrate[ h0[x] * f[x - #], {x, -Infinity, Infinity}]&

Smooth[f_,x_] := Operate[ Convolve, f[x] ]
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Smooth[g,z]

          g[x - z]
Integrate[--------, {x, -Infinity, Infinity}]          -------                            
              2
             x
            E
----------------------------------------------------------------------------------------- 
                  Sqrt[Pi]

[Gilbarg & Trudinger, EPDE's Distribution theory]

� MapIndexed

In a sense,  MapIndexed  is a crutch to help a function navigate through a complex expression tree.   Take a simple 
example:

MapIndexed[f, {a,{b1,b2}}]

{f[a, {1}], f[{b1, b2}, {2}]}

The function f, which should be a function of two variables,  is called on each item in the list, and told the index of the item.   
To be concrete, let's define a function  report  that simply prints the second variable, i.e. the index of the part of the 
expression being fed to the function's first variable.

report[_,u_] := (Print[u];u);
report[_,u_] := u

MapIndexed[report, {a,{b1,b2}}]

{1}
{2}

{{1}, {2}}

MapIndexed[report, {a,{b1,b2}}, 2]

{1}
{2, 1}
{2, 2}
{2}

{{1}, {2}}
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� Iterated functions on an interval

One of the loveliest theorems of elementary topology is that every continuous selfmap of 
a closed ball  must have a fixed point.[Milnor p. 14]   In the case of dimension 1, for 
example, 
this means that for any continuous function f : [0,1] -> [0,1], there must be some point x 
in (0,1) such that f[x] = x.
Often, we wish to apply a function repeatedly -- Tn(A) -- for example, on the study of dynamical systems or lattice physics.  

Nest and NestList  are tailored for such purposes.  More precisely, we take a value  f[x], and plug it
as an argument back into f:  f[f[x]].  

We can illustrate the iterates  x, f[x], f2[x], f3[x]  graphically by moving from a point on the graph (x, f[x]) to the point on the 

graph (x,x), like this:
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How would we define a function to produce such a graph?   We would like to start with (x,0), and then draw the the staircase 

of points (x,x), (x, f[x]), (f[x], f[x]), (f[x], f2[x]),  (f2[x], f2[x]),  (f2[x], f3[x]) ,..between y = f[x] and the line

y = x.   Notice that if we simply take the sequence of values without concerning their role as abscissa or ordinate, we see that 

each value is repeated four times, and that the distinct values are simply the iterates {fn[x]}.

� NestList

NestList  accumulates the results of iterating a function  f on an argument  x:

iterates = NestList[f,x,3]

{x, f[x], f[f[x]], f[f[f[x]]]}

We can easily duplicate a list by List, as a pure function, whose elements are repetitions of tha argument:

ps = Flatten[
{#,#,#,#}& /@ iterates
]

{x, x, x, x, f[x], f[x], f[x], f[x], f[f[x]], f[f[x]], f[f[x]], f[f[x]], 
 
  f[f[f[x]]], f[f[f[x]]], f[f[f[x]]], f[f[f[x]]]}
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We need to account for the first point, (x,0), which is special, and drop the last value so that we have an even number of 
values, using the First and Rest and Drop list functions.

ps2 = Join[
{First[ps], 0 }, Rest[Drop[ps, -1]]

]

{x, 0, x, x, x, f[x], f[x], f[x], f[x], f[f[x]], f[f[x]], f[f[x]], 
 
  f[f[x]], f[f[f[x]]], f[f[f[x]]], f[f[f[x]]]}

and finally group the sequence of values into ordered pairs.

Partition[ps2,2]

{{x, 0}, {x, x}, {x, f[x]}, {f[x], f[x]}, {f[x], f[f[x]]}, 
 
  {f[f[x]], f[f[x]]}, {f[f[x]], f[f[f[x]]]}, {f[f[f[x]]], f[f[f[x]]]}}

Finally, we  string together our sequence of points in a  Line Graphics  object and plot it.   Summarizing all these steps in a 
single program, we have:

Clear[Staircase];
Staircase[f_,x0_,steps_] := Module[{iterates,pointlist,g1},

iterates = NestList[f,x0,steps];
pointlist = Flatten[

{#,#,#,#}& /@ iterates
];

pointlist = Join[
{First[pointlist], 0 }, Rest[Drop[pointlist, -1]]

];
pointlist = Partition[pointlist,2];
g1 = Plot[{f[x], x}, {x,0,1}, 

PlotRange->{0,1}, 
PlotStyle->{{RGBColor[1,0,0]},{GrayLevel[0.5],Dashing[{0.005,0.01}]}}
];

Show[g1,Graphics[Line[pointlist]]]
]

(See chapter XXX for a description of Mathematica's plotting functions.) Let's try out our  
Staircase  function on a particular automorphism of the unit interval.

f1[x_] := 0.9 Sin[x Pi]

Plot[{f1[x], x}, {x,0,1}, 
PlotRange->{0,1}, 
PlotStyle->{{RGBColor[1,0,0]},{GrayLevel[0.5],Dashing[{0.005,0.01}]}}
];
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Staircase[f1, 0.65,5]
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-Graphics-

à Sounding out logistic map

A  function related to  NestList[f, expr, n] is  FoldList[f, x, {a, b, ...}], which differs mainly in feeding 
a second argument to f[x,_].  The second argument replaces the index n used by NestList, so that

NestList[f, x, n] == FoldList[f[#1]&, x, Range[n]].

NestList[f, x, 3] == FoldList[f[#1]&, x, Range[3]]

True

MathSource has an elegant example of an application of FoldList to sounding out the popular logistic map.

(reprinted from ChaosSound.ma from MathSource.WRI.com.)
Click the speaker icon in the cell bracket to play a sound once.  Click the sound graphic to play the sound in a loop.  Click 
outside the graphic or press any key to stop the loop. To control the volume, use the keys next to the Power key on your 
keyboard (NeXT), or the volume control setting in your Control Panel (Macintosh).
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    Bifurcation diagram of the logistic map

logistic[n_Integer] :=
Module[ {f, t, x},

f = Compile[{x, t}, Evaluate[(3 + t/n) x (1 - x)]];
FoldList[f, 0.223, Range[n]]

]

ListPlay[logistic[8000], SampleRate -> 2000]

(Multi-)Linear Algebra

Through, Thread, Dot, Transpose, Inner, Outer, Scan,Composition, 

� Through

It can be convenient to use Through to evaluate vector-valued functions on a common parameter.  For example, if x and y 
are functions of t, then the vector function {x,y} [t] can be defined as

Through[{x,y}[t]]

{x[t], y[t]}

As an example, take a system of ordinary differential equations, which yields two solutions x[t] and y[t]:

solution = DSolve[ {x'[t] == y[t], y'[t] == x[t],
x[0] == 1, y[0] == 0}, {x,y}, {t}];

We subsitute the solution into {x,y}[t] to get:

Through[{x,y}[t]] /. solution

          t          t
   1     E    -1    E
{{---- + --, ---- + --}}  ---    -   ---    -   
     t   2      t   2
  2 E        2 E
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Let's plot the result.   (We must use Evaluate in order to perform all the substitutions for the actual solutions.)

Plot[
Evaluate[Through[{x,y}[t]] /. solution],
{t, 0, 2}
]
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-Graphics-

� Thread

Thread is dual to the Through  function which we saw earlier.   Whereas Through applies the componenets of a 
vector-valued function to a scalar variable, Thread applies a scalar function to the components of a vector variable.

Thread[f[{x,y}]]

{f[x], f[y]}

Remark: We can simulate this in some cases by declaring a particular  function f to be Listable [cf Wolfram p. ], but  (1) this 
is dangerous, and (2) you must declare this for each function f in advance.

� Inner products

The  Dot  product of two vectors

Dot[ {a,b,c}, {x,y,z}]

a x + b y + c z

is generalized by Inner, replacing  Times  and  Plus  by  functions of your choice: 

Inner[f, {a,b,c}, {x,y,z}, g]

g[f[a, x], f[b, y], f[c, z]]

( In linear algebra, the equivalent of the dot product in general vector spaces is often called the inner product. )   Letting f = 
Times,  and g = Plus, we get the usual Dot product back.
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Inner[Times, {a,b,c}, {x,y,z}, Plus]

a x + b y + c z

� Example: Prime factorization

By replacing the binary operators Times and Plus, we obtain a way to recover integers from their prime factorizations.   
Take for example the test

Inner[Power, {a,b,c}, {x,y,z}, Times]

 x  y  z
a  b  c

Take the prime factorization of 1666

factors = FactorInteger[16184]

{{2, 3}, {7, 1}, {17, 2}}

Apply[f, factors,2]

{f[2, 3], f[7, 1], f[17, 2]}

Times @@ ( Apply[Power, factors, 2])

16184

for example.   We can also recover the original integer using

thread and transpose and lin algebra

{primes, exponents} = Transpose[  FactorInteger[16184]  ]

{{2, 7, 17}, {3, 1, 2}}

Inner[Power, primes, exponents, Times]

16184

As a footnote,  we can also selectively  freeze the evaluation  of the Power function  in order to display the prime factorization:

Inner[ HoldForm[Power[#1,#2]]&, primes, exponents, Times]

 3  1   2
2  7  17

ReleaseHold[%]

16184

� Example: Projecting string vectors

sv = {"a","b", "c"};
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(m3 = IdentityMatrix[3]) // MatrixForm

1   0   0

0   1   0

0   0   1

m3

{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}

n3 = {{1, 0, 1}, {0, 1, 1}, {0, 0, 1}};

Clear[sproduct];
sproduct[n_Integer,s_String] := sproduct[{n,s}];
sproduct[{n_Integer,s_String}] := StringJoin @@ Array[s&, n]

Inner[sproduct, n3, sv, List]

{{a, , c}, {, b, c}, {, , c}}

Inner[sproduct, n3, sv, StringJoin]

{ac, bc, c}

Exercise?   Define a map that will concatenate specified components 
of a string vector.

� Outer product

In the simplest case, the outer product of two vectors is a matrix representing the Cartesian product, or cross product, of the 
two lists.

a = {a1,a2};
b = {b1,b2,b3};
Outer[List, a,b] // ColumnForm

{{a1, b1}, {a1, b2}, {a1, b3}}
{{a2, b1}, {a2, b2}, {a2, b3}}

But we can generalize this to replace the List in the first argument by any function:

Outer[f, a,b]  // ColumnForm

{f[a1, b1], f[a1, b2], f[a1, b3]}
{f[a2, b1], f[a2, b2], f[a2, b3]}

a = {a1,a2, a3};
c = {c1, {c21,c22}};

 The outer product of a singleton {a1} with a list  c  is isomorphic to the list:

Outer[f, {a1}, c]

{{f[a1, c1], {f[a1, c21], f[a1, c22]}}}
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You can think of the outer product of two lists as replacing each element in the first list by that element crossed with a copy 
of the second list.

Outer[f, a, c] // TableForm

            f[a1, c21]
f[a1, c1]   f[a1, c22]

            f[a2, c21]
f[a2, c1]   f[a2, c22]

Note that the outer product is not commutative!    Usually Outer[f, a, c] will not even have the same shape as Outer[f, 
c, a].

Outer[f, c, a] // TableForm

f[c1, a1]    f[c1, a2]    f[c1, a3]

f[c21, a1]   f[c22, a1]
f[c21, a2]   f[c22, a2]
f[c21, a3]   f[c22, a3]

� Example: Multivariate Calculus

Using the Outer, we can easily define a differential operator on functions.

Given a function f :  Rm -> Rn, f(x)  = {f1(x),  f2(x), ..., fn(x)} , where x = {x1, x2, ..., xm},  the linear map best 

approximating it at  x is given by the Hessian of  f's partial derivatives.

δ fi
            ---- (x)

δ xj

D[f[x1,x2],x2]

 (0,1)
f     [x1, x2]

We can succinctly define this operator by

Clear[Hessian];
Hessian[f_,x_]:= Outer[D, f[x],x]

Let's take an example of a function  h: R2 -> R3.

Clear[h];
h[{x1_,x2_}] := {h1[x1,x2],h2[x1,x2],h3[x1,x2]};

( hessh = Hessian[h,{x1,x2}] )  // MatrixForm

  (1,0)             (0,1)
h1     [x1, x2]   h1     [x1, x2]

  (1,0)             (0,1)
h2     [x1, x2]   h2     [x1, x2]

  (1,0)             (0,1)
h3     [x1, x2]   h3     [x1, x2]

troels15.4.nb 14



Dimensions[hessh]

{3, 2}

Transpose[hessh]  . hessh

    (1,0)        2     (1,0)        2
{{h1     [x1, x2]  + h2     [x1, x2]  + 
 
      (1,0)        2    (0,1)           (1,0)
    h3     [x1, x2] , h1     [x1, x2] h1     [x1, x2] + 
 
      (0,1)           (1,0)
    h2     [x1, x2] h2     [x1, x2] + 
 
      (0,1)           (1,0)
    h3     [x1, x2] h3     [x1, x2]}, 
 
     (0,1)           (1,0)
  {h1     [x1, x2] h1     [x1, x2] + 
 
      (0,1)           (1,0)
    h2     [x1, x2] h2     [x1, x2] + 
 
      (0,1)           (1,0)
    h3     [x1, x2] h3     [x1, x2], 
 
     (0,1)        2     (0,1)        2
   h1     [x1, x2]  + h2     [x1, x2]  + 
 
      (0,1)        2
    h3     [x1, x2] }}

Clear[XXJacobian];
XXJacobian[f_,x_]:= Det[ 

Transpose[Hessian[f,x]] . Hessian[f,x]
]

XXJacobian[h,{x1,x2}]

  (0,1)        2   (1,0)        2     (0,1)        2   (1,0)        2
h2     [x1, x2]  h1     [x1, x2]  + h3     [x1, x2]  h1     [x1, x2]  - 
 
      (0,1)           (0,1)           (1,0)           (1,0)
  2 h1     [x1, x2] h2     [x1, x2] h1     [x1, x2] h2     [x1, x2] + 
 
    (0,1)        2   (1,0)        2     (0,1)        2   (1,0)        2
  h1     [x1, x2]  h2     [x1, x2]  + h3     [x1, x2]  h2     [x1, x2]  - 
 
      (0,1)           (0,1)           (1,0)           (1,0)
  2 h1     [x1, x2] h3     [x1, x2] h1     [x1, x2] h3     [x1, x2] - 
 
      (0,1)           (0,1)           (1,0)           (1,0)
  2 h2     [x1, x2] h3     [x1, x2] h2     [x1, x2] h3     [x1, x2] + 
 
    (0,1)        2   (1,0)        2     (0,1)        2   (1,0)        2
  h1     [x1, x2]  h3     [x1, x2]  + h2     [x1, x2]  h3     [x1, x2]

Examples

à Bitmap processing

� RasterArray from bitmap 1 (letterF)

Let's first start with a small RasterArray bitmap defined as  LetterF  in the next closed cell.   (It was created by pasting a 
small chip from the Mathematica icon into the Front End.)

We import a bitmap of the letter "F" 

Picture Error

There is a problem with 
the picture in this Cell, 

and it could not be 
displayed.
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The next cell is closed to hide the ugly array.  Execute it to enter the bitmap as  LetterF.

Show[LetterF]

-Graphics-

We explore the structure of this 7 x 9 matrix.

Shallow[
TreeForm[LetterF],6

]

Graphics[|                                                       ]
         List[|                                                 ]
              RasterArray[|                 , |                ]
                          List[|           ]  List[|          ]
                               Skeleton[12]        Skeleton[2]

From Wolfram, we know that Mathematica stores bitmaps as RasterArray of RGBColor's, so let's see where it appears 
in the structure:

Position[LetterF, RasterArray]

{{1, 1, 0}}

Since the head  RasterArray appears at position{1,1,0}, we know that the bitmap itself must be in position {1,1,1}:

Short[
LetterF[[1,1,1]]

]

{{RGBColor[0.2863, 0., 0.], <<9>>, RGBColor[0.5725, 0., 0.]}, <<11>>}

LetterF[[1,1,1]] [[1,1]]

RGBColor[0.2863, 0., 0.]

Dimensions[LetterF[[1,1,1]]]

{12, 11}

troels15.4.nb 16



Show[
GraphicsArray[

{{LetterF}, 
{MapAt[Transpose,LetterF,{1,1,1}] , MapAt[Reverse,LetterF,{1,1,1}] }
}

]
];

� RasterArray from a bitmap 2

Here's the original bitmap pasted into the Mathematica Notebook Front End.

Picture Error

There is a problem with 
the picture in this Cell, 

and it could not be 
displayed.

Using Graph | Convert to InputForm, we transform the bitmap into a Graphics object  named bitmap2.
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First we get a rough view of the structure using TreeForm.   Since the raster image has many points, we use Shallow to 
abbreviate the report.

Shallow[TreeForm[bitmap2],6]

Graphics[|                                                       , 
         List[|                                                 ]
              RasterArray[|                 , |                ]
                          List[|           ]  List[|          ]
                               Skeleton[71]        Skeleton[2]
 
  |                                                                   ]
  List[|                         , |                                 ]
       Rule[AspectRatio, 0.78889]  Rule[PlotRange, |                ]
                                                   List[|          ]
                                                        Skeleton[2]

Dimensions[
bitmap2[[1,1,1]]

]

{71, 90}

Let's apply the same operator to bitmap2 that we applied to LetterF

Show[
GraphicsArray[

{{bitmap2}, 
{MapAt[Transpose,bitmap2,{1,1,1}] , MapAt[Reverse,bitmap2,{1,1,1}] }
}

]
];
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� Define functions which acts on points

Clear[red];
red[RGBColor[r_,g_,b_]] := RGBColor[r,0,0];
Attributes[red] := {Listable};
Clear[redlevel];
redlevel[RGBColor[r_,g_,b_]] := GrayLevel[r];
Attributes[redlevel] := {Listable};

Clear[green];
green[RGBColor[r_,g_,b_]] := RGBColor[0,g,0];
Attributes[green] := {Listable};
Clear[greenlevel];
greenlevel[RGBColor[r_,g_,b_]] := GrayLevel[g];
Attributes[greenlevel] := {Listable}

Clear[blue];
blue[RGBColor[r_,g_,b_]] := RGBColor[0,0,b];
Attributes[blue] := {Listable};

Clear[bluelevel];
bluelevel[RGBColor[r_,g_,b_]] := GrayLevel[b];
Attributes[bluelevel] := {Listable};

Clear[gray];
gray[RGBColor[r_,g_,b_],maxc_] := GrayLevel[Sqrt[r+g+b/maxc]];
Attributes[gray] := {Listable};
Clear[ceil];
ceil[RGBColor[r_,g_,b_],curmax_] := Module[{newc},

newc = r^2+b^2+g^2;
If[ curmax < newc , curmax = newc , curmax];

];
Attributes[ceil] := {Listable}

Clear[rot];
rot[RGBColor[r_,g_,b_]] := RGBColor[g,b,r];
Attributes[rot] := {Listable};
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� Try functions as color separation and rotation

Show[GraphicsArray[{
{bitmap2},
{MapAt[ red, bitmap2, {1,1,1}], MapAt[ green, bitmap2, {1,1,1}]},
{MapAt[ blue, bitmap2, {1,1,1}], MapAt[ bluelevel, bitmap2, {1,1,1}]},
{gr = MapAt[ rot, bitmap2, {1,1,1}], MapAt[ rot, gr, {1,1,1}]}
}]

]

à Ergodic maps

A transformation T from a topological space to itself is called ergodic  if for any two subsets A and B of non-zero measure, 

there is an n such that the image Tn(A)  meets B.   This is one way to formalize the notion of thorough mixing.

It's amusing to try to find ergodic self-maps of subsets of R2.   In the discrete case of a bitmap, this typically degenerates to 

permuting the pixels in a rectangular arra, but often, each point in the bitmap is represented not by a single scalar but by some 
more complicated structure (eg.g a 3-vector ofred, green and blue  color components)..   The approach we'll take is to define 
a permutation on the position indices of the RasterArray, which is simply a permutation of an integer matrix.   Then we'll use 
the permuted matrix to select the bitmap. 

To illustrate the idea, we first practice with a simple array mm:

(mm = {{a1, a2, a3}, {b1, b2, b3}} ) // ColumnForm

{a1, a2, a3}
{b1, b2, b3}
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Its indices are given by applying the function report which we defined abovd () to justlevel 2 of the array  called mm.

(ijm = MapIndexed[ report, mm, {2}]) // ColumnForm

{{1, 1}, {1, 2}, {1, 3}}
{{2, 1}, {2, 2}, {2, 3}}

(ijm = Array[List, Dimensions[ mm] ] ) // ColumnForm

{{1, 1}, {1, 2}, {1, 3}}
{{2, 1}, {2, 2}, {2, 3}}

ijm == %85

True

Here's a simple permutation that exchanges rows.

Reverse[ijm]  // ColumnForm

{{2, 1}, {2, 2}, {2, 3}}
{{1, 1}, {1, 2}, {1, 3}}

If we "evaluate"  mm  on this permuted array of indices, we'll get the same permutation of mm's elements.

(Apply[mm[[#1,#2]]&, Reverse[ijm], {2}] ) // ColumnForm

{b1, b2, b3}
{a1, a2, a3}

Of course, we could have simply Reverse'd  mm, but this method allows us to manipulate much more complex structures via 
this indirection.  Let's try apply this indexed permutation idea to a bitmap.   We use  ReplacePart,and Apply, in 
addition to our own permutation T.

Recall the butmap we first used:

Show[LetterF]

-Graphics-

which contains bitmap information in an RasterArray:

Position[LetterF, RasterArray]

{{1, 1, 0}}
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We can apply our permutation directly to this array in place using the  ReplacePart  operator.   Here's an example of how 
ReplacePart works, placing  dummy  where the array of RGBColor's.

The selection operator is defined as 

Short[TreeForm[
ReplacePart[LetterF, dummy, rasterPosition]
],5

]

Graphics[
 
   |                                                                     , 
   List[|                                                               ]
        RasterArray[dummy, |                                           ]
                           List[|           , |                       ]
                                List[0., 0.]  List[1., |             ]
                                                       Rational[7, 9]
 
  |                                                       ]
  List[|                           , |                   ]
       Rule[AspectRatio, Automatic]  Rule[PlotRange, All]

Let's collect these ideas into a single program.   This way, we need only define functions on R^2, and use them to manipulate 
the complicated representation of an image in situ.   This way, we can re-use the display settings from the original graphic.

We define a bitmap mixer which uses a function of two variables (permutor) to permute an array of indexes into a 
two-dimensional bitmap.   Since the bitmap 
is just a structure, we can extract one point out of it by "applying" it to a single index
(i,j).   Indeed we can effectively permute it by "applying" it to the entire array.

Clear[RegionMix];
RegionMix[original_Graphics, permutor_, steps_:1] :=  
Module[{ij,rg,ijs,bitmap,bmaps,T,xij},

bitmap = original[[1,1,1]];
ij = Array[List, Take[Dimensions[bitmap], 2] ];
ijs = NestList[permutor, ij, steps]; (* permute indexes *)
T[xij_] := Apply[bitmap[[#1,#2]]&, xij, {2}]; (* T "evaluates" bitmap on indexes 

xij *)
bmaps = T /@ ijs;
Show[ReplacePart[original, #, {1,1,1}]]& /@ bmaps (* use original's Graphics 

options *)
]

The last step in the function  RegionMix   just displays the bitmaps.  By re-inserting each
in place of the bitmap in the original Graphics  object  r, we show the bitmaps using the
original's Graphics display settings.

� The Baker's Map

The baker's map [Petersen]  mimics the folding and kneading actions of preparing dough. 
In one dimension the baker's map folds a given interval in half, then stretches it back to its original length.   In higher 
dimensions, one iterates this in each dimension.   We can represent this graphically like this:  
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We define a discrete form of the map on a matrix of {i,j} indexes. 

Clear[FoldMatrix];
FoldMatrix[ij_List] := Module[{height, halfheight, m},

height = Length[ij];
halfheight = Quotient[height,2];
m = MapAt[Reverse,

Partition[ij,halfheight],
{2}];

m = Flatten[
Transpose[m],1

];
If[EvenQ[height], m, Join[m,{Last[m]} ]  ]

]

(mmm = DiagonalMatrix[Range[4]] ) // MatrixForm

1   0   0   0

0   2   0   0

0   0   3   0

0   0   0   4

FoldMatrix[mmm]  // MatrixForm

1   0   0   0

0   0   0   4

0   2   0   0

0   0   3   0

Note  that we've defined  FoldMatrix  so that  itworks on higher-dimensional arrays, too.
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( m2 = Outer[List, mmm, {a,b}])  // MatrixForm

1 a   0 a   0 a   0 a
1 b   0 b   0 b   0 b

0 a   2 a   0 a   0 a
0 b   2 b   0 b   0 b

0 a   0 a   3 a   0 a
0 b   0 b   3 b   0 b

0 a   0 a   0 a   4 a
0 b   0 b   0 b   4 b

FoldMatrix [ m2]  // MatrixForm

1 a   0 a   0 a   0 a
1 b   0 b   0 b   0 b

0 a   0 a   0 a   4 a
0 b   0 b   0 b   4 b

0 a   2 a   0 a   0 a
0 b   2 b   0 b   0 b

0 a   0 a   3 a   0 a
0 b   0 b   3 b   0 b

Now, the 2D baker's map folds the rectangle in half and stretches it out to its original size in each dimension by turn.  This is 
simply represented by a composition of the FoldMatrix  and Transpose functions, using Mathematica's   Comp  operator:

baker = Composition[Transpose, FoldMatrix, Transpose, FoldMatrix ];

baker[m0]

Transpose[FoldMatrix[Transpose[FoldMatrix[m0]]]]

(baker[mmm] ) //MatrixForm

1   0   0   0

0   4   0   0

0   0   2   0

0   0   0   3

baker[m2] // MatrixForm

1 a   0 a   0 a   0 a
1 b   0 b   0 b   0 b

0 a   4 a   0 a   0 a
0 b   4 b   0 b   0 b

0 a   0 a   2 a   0 a
0 b   0 b   2 b   0 b

0 a   0 a   0 a   3 a
0 b   0 b   0 b   3 b
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RegionMix[LetterF, baker, 3]

{-Graphics-, -Graphics-, -Graphics-, -Graphics-}

Now let's apply this baker  map to the bitmap2 we used above:

RegionMix[bitmap2, baker, 5]
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� Exercise:  Irrational slide on a torus

Now let's define a map that slides points along lines of a fixed irrational slope.   To make the map into a self-map of a 
rectangle, we identify the edges of a rectangle as usual to make a torus.  (Why should the slope by irrational?   What happens 
if the slope is k/m  where k and m are integers?)
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Clear[Round1];
Round1[x_] := If[(t = Round[x])==0, 1, t];
SetAttributes[Round1,Listable];

Clear[T];
T[{x_,y_},theta_:Sqrt[2]] := T[{x,y},theta,{10,10}];
T[{x_,y_},theta_, {xspan_, yspan_}] := Round1[N[Mod[

{ x + Cos[theta], y + Sin[theta]}, {xspan,yspan }
]]];

Clear[Ts];
Ts[{x_,y_},modulus_,slope_] := Ts[{x,y},modulus,slope,{10,10}];
Ts[{x_,y_},modulus_, slope_, {xspan_, yspan_}] := Mod[

N[{x + modulus, y + modulus slope}], {xspan,yspan}
];

We define the rectangle of indices from the dimensions of the bitmap:

( LetterFindices = Array[List, Dimensions[LetterF[[1,1,1]]]  ]) // ColumnForm

{{1, 1}, {1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}, {1, 7}, {1, 8}, 
 
  {1, 9}}
{{2, 1}, {2, 2}, {2, 3}, {2, 4}, {2, 5}, {2, 6}, {2, 7}, {2, 8}, 
 
  {2, 9}}
{{3, 1}, {3, 2}, {3, 3}, {3, 4}, {3, 5}, {3, 6}, {3, 7}, {3, 8}, 
 
  {3, 9}}
{{4, 1}, {4, 2}, {4, 3}, {4, 4}, {4, 5}, {4, 6}, {4, 7}, {4, 8}, 
 
  {4, 9}}
{{5, 1}, {5, 2}, {5, 3}, {5, 4}, {5, 5}, {5, 6}, {5, 7}, {5, 8}, 
 
  {5, 9}}
{{6, 1}, {6, 2}, {6, 3}, {6, 4}, {6, 5}, {6, 6}, {6, 7}, {6, 8}, 
 
  {6, 9}}
{{7, 1}, {7, 2}, {7, 3}, {7, 4}, {7, 5}, {7, 6}, {7, 7}, {7, 8}, 
 
  {7, 9}}

Dimensions[LetterFindices]

{7, 9, 2}

LetterFSize = Take[Dimensions[LetterFindices],2]

{7, 9}

In other words, a 7 by 9 array of two-dimensional indices.  Now we can customize our irrational slide map to the dimensions 
of this bitmap:

Clear[TE];
TE[i_,j_,bitmapSize_] := Ts[{i,j},5,1/Sqrt[2], bitmapSize];

TA and TE are the maps that we actually use to permute the indices.   
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Clear[TA1];
TA1[i_,j_] := TE[i,j, LetterFSize];
Apply[TA1, LetterFindices, {2}] // ColumnForm

{{6., 4.53553}, {6., 5.53553}, {6., 6.53553}, {6., 7.53553}, 
 
  {6., 8.53553}, {6., 0.535534}, {6., 1.53553}, {6., 2.53553}, 
 
  {6., 3.53553}}
{{0., 4.53553}, {0., 5.53553}, {0., 6.53553}, {0., 7.53553}, 
 
  {0., 8.53553}, {0., 0.535534}, {0., 1.53553}, {0., 2.53553}, 
 
  {0., 3.53553}}
{{1., 4.53553}, {1., 5.53553}, {1., 6.53553}, {1., 7.53553}, 
 
  {1., 8.53553}, {1., 0.535534}, {1., 1.53553}, {1., 2.53553}, 
 
  {1., 3.53553}}
{{2., 4.53553}, {2., 5.53553}, {2., 6.53553}, {2., 7.53553}, 
 
  {2., 8.53553}, {2., 0.535534}, {2., 1.53553}, {2., 2.53553}, 
 
  {2., 3.53553}}
{{3., 4.53553}, {3., 5.53553}, {3., 6.53553}, {3., 7.53553}, 
 
  {3., 8.53553}, {3., 0.535534}, {3., 1.53553}, {3., 2.53553}, 
 
  {3., 3.53553}}
{{4., 4.53553}, {4., 5.53553}, {4., 6.53553}, {4., 7.53553}, 
 
  {4., 8.53553}, {4., 0.535534}, {4., 1.53553}, {4., 2.53553}, 
 
  {4., 3.53553}}
{{5., 4.53553}, {5., 5.53553}, {5., 6.53553}, {5., 7.53553}, 
 
  {5., 8.53553}, {5., 0.535534}, {5., 1.53553}, {5., 2.53553}, 
 
  {5., 3.53553}}
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NestList[ RegionMix[#,TE]&, LetterF, 4];

Now let's apply this to a real bitmap  bitmap2:

bitmap2indices = Array[List, Dimensions[bitmap2[[1,1,1]]]  ];
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bitmap2Size = Take[Dimensions[bitmap2indices],2]

{71, 90}

Clear[TA2];
TA2[i_,j_] := TE[i,j,bitmap2Size];

Let's just doublecheck that  this is not the identity map.

TA2[1,1]

{6, 5}

Date[]

{1995, 10, 2, 1, 25, 29}

b2shifts = NestList[ RegionMix[#,TA2]&, bitmap2, 6];

Date[]

{1995, 10, 2, 2, 14, 21}
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Notes

à Further reading

Gaylord, ,Wellin.  

Gilbarg, Trudinger.   Partial Differential Equations.  

John Milnor.  Topology From the Differentiable Viewpoint.

Karl Petersen, Ergodic Theory

S. Wolfram, Third Edition

à Index

SortIndex["PASTE-INDEX_HERE"] // ColumnForm
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SortIndex["TreeForm...1,3,16,18,22
FullForm...1
Plot...3,5,8,11,18
Shallow...3,16,18
Position...3,16,22
Short...3,16,22
Map...4-5,23
MapAt...5,17,19-20
Operate...5-6
MapIndexed...6,21
NestList...7-9
FoldList...9-10
Through...10-11
Thread...11
Dot...11
Inner...11-13
Apply...4,7,10,12,21-22,27
DSolve...10
ReleaseHold...12
HoldForm...12
MatrixForm...13-14,23-25
IdentityMatrix...13
Array...13,22
List...13
StringJoin...13
Outer...13-14
ExprPlot...2
Integrate...5-6
Evaluate...10-11
Module...8,10,19,22-23
Partition...8,23
First...8
Rest...8
Drop...8
Join...8
TableForm...14
Flatten...7
Dimensions...15-16,18,21-22,27
Transpose...12,15,17,19,23-24
Det...15
RasterArray...15-16,18,22
GraphicsArray...17,19-20
RGBColor...8,15,18-20
ColumnForm...13,21,27
Reverse...17,19,21,23
ReplacePart...22
Composition...24"] // ColumnForm
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Apply...4,7,10,12,21-22,27
Array...13,22
ColumnForm...13,21,27
Composition...24
Det...15
Dimensions...15-16,18,21-22,27
Dot...11
Drop...8
DSolve...10
Evaluate...10-11
ExprPlot...2
First...8
Flatten...7
FoldList...9-10
FullForm...1
GraphicsArray...17,19-20
HoldForm...12
IdentityMatrix...13
Inner...11-13
Integrate...5-6
Join...8
List...13
MapAt...5,17,19-20
MapIndexed...6,21
Map...4-5,23
MatrixForm...13-14,23-25
Module...8,10,19,22-23
NestList...7-9
Operate...5-6
Outer...13-14
Partition...8,23
Plot...3,5,8,11,18
Position...3,16,22
RasterArray...15-16,18,22
ReleaseHold...12
ReplacePart...22
Rest...8
Reverse...17,19,21,23
RGBColor...8,15,18-20
Shallow...3,16,18
Short...3,16,22
StringJoin...13
TableForm...14
Thread...11
Through...10-11
Transpose...12,15,17,19,23-24
TreeForm...1,3,16,18,22
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StringReplace[#,"."->"\t"]& /@ %81

Apply 4,7,10,12,21-22,27
Array 13,22
ColumnForm 13,21,27
Composition 24
Det 15
Dimensions 15-16,18,21-22,27
Dot 11
Drop 8
DSolve 10
Evaluate 10-11
ExprPlot 2
First 8
Flatten 7
FoldList 9-10
FullForm 1
GraphicsArray 17,19-20
HoldForm 12
IdentityMatrix 13
Inner 11-13
Integrate 5-6
Join 8
List 13
MapAt 5,17,19-20
MapIndexed 6,21
Map 4-5,23
MatrixForm 13-14,23-25
Module 8,10,19,22-23
NestList 7-9
Operate 5-6
Outer 13-14
Partition 8,23
Plot 3,5,8,11,18
Position 3,16,22
RasterArray 15-16,18,22
ReleaseHold 12
ReplacePart 22
Rest 8
Reverse 17,19,21,23
RGBColor 8,15,18-20
Shallow 3,16,18
Short 3,16,22
StringJoin 13
TableForm 14
Thread 11
Through 10-11
Transpose 12,15,17,19,23-24
TreeForm 1,3,16,18,22
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