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I. Introduction: Creating Geometry

Why is it that when two students of differential geometry work together, itÕs more natural to turn to

a blackboard than to a keyboard?    How do we inscribe and work out mathematics with marks on

paper or on a blackboard, and how is this different from typing math in TeX?   Is mathematical

creativity mediated by freehand writing and sketching  in ways that are not captured by traditional

keyboard-and-mouse writing systems?   How do computation or automated symbol manipulation

augment or degrade a writing system for mathematical work?   What forms of writing, computation

and symbolic encoding help or hinder the practices of  inventing new mathematical structures, making

new conjectures, or convincing oneself of the truth of a claim?

I would like to consider these questions in the context of a specific subdomain of geometry.  This is

a proposal to construct a formalism and an experimental computational environment that supports as

well as possible a fragment of differential geometersÕ practice.   I would like to analyze in detail what

geometrical work can or cannot be performed easily in a hybrid medium provided by a generalized

writing system (a so-called  multi-modal  geometrical liveboard) spanning freehand sketches,

mathematical text, symbolic and numeric computation, and manipulable diagrams or graphics.  The

critical part of this project will be informed by insights from literary and performance studies as well as

the mathematical sciences. 

Practically, this work benefits students of differential geometry or topology, people who need to

work with nonlinear or multi-dimensional information, and artists and designers who wish to shape

computational material using freehand sketches.  A technical payoff of this project should be a richer set

of representations of topological and geometric structures that provide good grips for the construction

of a subsequent generation of computational media.

1 This is a preliminary proposal for a research project, part of which may constitute a dissertation.   I
thank experts in central and allied disciplines for advice, criticism and encouragement:  Niklas Damiris, John
Etchemendy, Stefano Franchi, Ron Karidi, Larry Leifer, Tim Lenoir, Rafe Mazzeo, Robert Osserman, Richard
Palais, John Perry, Alice Rayner, Ben Robinson, Brian Rotman, Warren Sack, Brian Smith, Rick Sommer, Pat
Suppes, Barbara Tversky, Tom Wasow, Brian White,  Helga Wild, Terry Winograd. 
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The two major theses of this project are:

I.  Non-textually mediated forms of abstraction are employed by geometers, and can be sustained in a hybrid

graphical, algebraic, numerical writing system. There are some language-like features of graphical,

algebraic or numerical presentations on which humans capitalize when creating and reasoning about

geometry.  Among the most important of language-like practices is the ability to make abstractions from

the signs presented in two or three-dimensional form, and the ability to use these graphical signs to

perform mathematical operations with geometric entities that are more "abstract," and not directly

visualizable.   These abstractions from the graphical signs allow geometers to work with continuous

entities (such as riemannian manifolds), infinite entities (such as function spaces, or minima defined by

a limiting process), and inequalities or comparisons (such as comparisons between a model space and

non positively curved metric spaces ).

II.  A fruitful and efficient way to support a smoothly hybridized computational geometric writing system is to

use high-level encodings of differential geometric structures.   Geometers in the wild move smoothly

between multiple modes of presentation, and I wish to sustain such practice in an integrated

computationally augmented medium.  I claim that the presentation and manipulation of geometry are

better mediated by high level structures close to the forms common in colloquial mathematical writing

and sketching, than by the lower-level structures common to computer graphics and computational

geometry.   I.e..  instead of polygons and related primitive structures with associate algorithms in

traditional procedural languages, I claim that richer multimodal, graphical manipulation systems can be

constructed based on representations of differential geometric entities such as riemannian manifolds

and function spaces.   This should eliminate some of the circumlocutions needed, for example, to

encode arguments appealing to abstractions of visual intuition in "natural language" text; or to

represent geometric operations in low level programming languages or data structures.

The major conceptual work of this project is to interpret the terms used in the two theses in an

appropriate sense, and to justify those interpretations.  This first section lays out the theoretical and

experimental aspects of the project.   Section II describes how this project is interesting from

philosophical, mathematical and computer science perspectives.   Section III gives a brief plan of work.

I provide a few examples in Section IV, and in accompanying animations.   Section V (Appendix) gives

some references and a survey of related work.
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FIGURE 1.  A rudimentary example of a classical  geometrical writing and reasoning system.

Theoretical Aspects of the Project

I would like to study the interplay between the construction of geometric structures and the

constraints of computational media technology, an analysis of mathematical reasoning embodied in

mathematical Òwriting.Ó2  To perform a contemporary study of problems related to the

representation, invention and expression of mathematics, one should study not only the logic of

mathematical knowledge but also how the form and legibility of symbolic media  -- particularly

computational media -- shape mathematical practice and mathematical discourse.  (For a more extended

discussion on writing, performance and modes of mathematical practice, see  [Sha 1998b].)  By

mathematical practice I refer to what humans do as they create and transform algebraic, geometric or

analytic structures, whether they be novices or experts, clients of mathematics, or professional

mathematicians.3

2 There is a rich literature on the relation between mathematical knowledge and mathematicians'
physical and social experience: writings, utterances, and the like.  Classical sources include Husserl's
phenomenological studies of mathematical experience (eg. Origins of Geometry in Crisis of European
Sciences)  and Lakatos' study of the discourse of mathematical discovery (Proofs and Refutations).   A
contemporary interest in body-based and more narrowly, neural-based, experience and
consciousness is represented by Varela, Thompson and Rosch's  The Embodied Mind.   Connes &
Changeux explore issues directly related to embodied mathematical process in their popular
Conversations on Mind, Matter and Mathematics.
3 One can view this project naturally in the context of what Barwise and Etchemendy call
heterogenous reasoning -- logical inference using multiple modes of representation.  In [Allwein &
Barwise 1996] they lay out the arguments for a study of visual representations as a basis for non-
linguistic reasoning.   Another context is the study of the phenomenology of the practice of
mathematics, expressed in the tension between geometrical "reasoning" and "writing."   Gian-Carlo
RotaÕs Indiscrete Thoughts contains thoughtful essays about the phenomenology of mathematics.  For
a parallel discussion, see Brian Rotman's functional semiotics of mathematical discourse in Ad
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This study will serve dual purposes.  The first is to augment certain modes, perhaps create new

modes,  of mathematical practice.  And the second is to understand writing  as performance rather than

information recording, with a particular focus on the creation and manipulation of ÒcontinuousÓ

structures.     At minimum, this study should produce a computational system -- a geometerÕs

workbench (GW) -- in which we can test some hypotheses about how humans invent, play with, and

reason about geometrical and topological structures.   I will sketch an architecture for such a laboratory

later in this section.   First, let's start with some discussion of the represention of geometrical structures

and the actions that geometers perform with them.

We can distinguish at least four modes of representation: 

¥ Discursive (assertional) representation.   For example, we can write a statement like ÒAn Einstein

metric is a critical point of the scalar curvature integralÓ in "natural" language.4

¥ Algebraic or  symbolic representation.  For example, we can describe a metric as a symmetric

two-form, using some encoding such as g(x,y) : TpM x TpM → R.

¥ Parametrized or numerical representation.  For example, we can compute metric connection

components or solve the differential equations for a Jacobi field in terms of the explicit local coordinates

for a surface.

¥ Graphical representation.  Typically, a visualization that's  "isomorphic" to the structure in

question will not exist, but an interesting issue is how experienced mathematicians generalize correctly

from reduced and abstracted sketches of geometric structures.5   Often, a sketch merely functions as a

mnemonic in a discursive representation, and may not encode anything like a structure or a proof

strategy in a form amenable to algorithms of computer algebra.   But sketches can play crucial roles in

the construction of a proof.   We use graphical representations in roles ranging from those that

iconically aid the memory, and those that illustrate a simple case, to those that explain a proof, and

those that can be formally (mechanically) mapped to a (part of a) logical proof.

LetÕs consider a toy example in order to clarify what these modes of representation could be:

Say that we wish to study geodesics -- length-minimizing curves -- on standard and non-standard tori.

A discursive-symblic representation would be written like this declaration:
Let torus1 be a standard torus:
torus1 = torus[ Sqrt[2],1];

An example of an algebraic representation would be a procedure to define a geodesic as the solution to a

differential equation, here packaged as a function named geodesic[].   Note that in this special case, the

symbolic algebra engine can produce an exact solution to the ODE.
g1 = geodesic[torus1,{Pi/2,0},{0,1},15];

Infinitum.
4 In this context, "natural language" refers to the expressions that would be used in conversation
by human expert and student mathematicians.
5 ND: Need to discuss difference between shape & structure as predicate on geometry or algebra.
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Calculating Christoffel symbols...
               -2 (Sqrt[2] + Cos[u]) Sin[u]
{{{0, 0}, {0, -------------------------------}}, 
              5 + 4 Sqrt[2] Cos[u] + Cos[2 u]
 
        -2 (Sqrt[2] + Cos[u]) Sin[u]
  {{0, -------------------------------}, {(Sqrt[2] + Cos[u]) Sin[u], 0}}}
       5 + 4 Sqrt[2] Cos[u] + Cos[2 u]

The differential equations for the geodesic are:
                                     2
(Sqrt[2] + Cos[u[s]]) Sin[u[s]] v'[s]  + u''[s] == 0
-4 (Sqrt[2] + Cos[u[s]]) Sin[u[s]] u'[s] v'[s]
---------------------------------------------- + v''[s] == 0
    5 + 4 Sqrt[2] Cos[u[s]] + Cos[2 u[s]]
with the initial conditions:
                          Pi
u'[0]= 0, v'[0]= 1, u[0]= --, v[0]= 0
                          2
Solving differential equations using NDSolve...
Solved differential equations.
Preparing plot of geodesic in domain...

Preparing plot of geodesic in surface...

From this ÒalgebraicÓ description  we obtain a graphical representation:

which in the ideal setting would be directly manipulable via gestures. 

Of course, in order to produce such graphics, the algebraic representations will be coverted at some

stage to numerical representations.   Here the numerical solution to the geodesic ODE is plotted in a

parametrization domain of the torus.  
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Ideally, manipulating (Òre-writingÓ) elements in one representation should modify all the other

representations.   For sufficiently focussed domains, useful models may be found.   In any case, it must

be as easy as possible to move back and forth between modes of representation.

While one can now automatically generate a manipulable graphic representation from a symbolic

representation of a geometric object as in the example of finding geodesics on torus, the reverse is quite

difficult, even for simple geometric objects.   That is, it is difficult or impossible in most current general-

purpose visualization systems (eg. AVS, SGI Explorer, Geomview [Gunn1]) to modify an algebraic or

symbolic structure via direct manipulation of a graphical representative.6   For example, itÕs easy to

compute and plot a  surface  as a graph of some function f, but difficult to select by gesture a sub-

domain U of the surface in a graphical interface and perform some geometric analysis with its pre-

image f-1(U).  Why is this the case?   Setting aside computer graphics, one fundamental obstruction is

the lack of mathematically sophisticated yet efficient formal representations, encodings, of geometric

objects in a model shared by graphical and symbolic computation systems.   (IÕll indicate what I mean

by these systems in the description of the GW's architecture.)  A principal technical goal of this project is to

define such a set of representations.7

One of the strengths of a writing system that spans multiple modalities is that we can supplement

one representation by information from another.   For example, computing global information about a

manifold, such as its genus or closed geodesics may be algebraically and numerically infeasible, in

which case we turn to the discursive representation for help in drawing conclusions.  As another

example, solving the ordinary differential equations for a surface may simplified if we can prove some

6 Geometer's Sketchpad does let one modify an algebraic-symbolic representation via gestures,
but only in a restricted domain of classical plane geometry.
7 For notes on a formalization of such representations and their relations, see [Sha 1998a].
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fact about the symmetries of that surface, then have the system automatically use this fact in its

algebraic or numerical computation.   So we come to the following  key questions: WhatÕs an adequate

way to represent continuous and other non-discrete geometrical structures?   WhatÕs an adequate way

for humans to manipulate such geometrical entities in a multi-modal writing system?

Although the problems of adequately representing mathematical structures and theorems are

interesting in their own right, this project aims to accommodate not only descriptions but actions as

well.   Indeed, I believe that merely illustrating known facts or well-understood structures would not

warrant an ambitious project.   The GW is not to be just an illustration system (such systems exist)  but a

computational writing  system, where writing is taken in a generalized, multi-modal sense --  discursive,

algebraic-logical, numeric, graphic.    What is an adequate form for the fragment of geometersÕ research

practice, of writing and discourse, that can be computably represented?  The formalism should sustain

not only logical assertions, but also constructions, calculus of variations, and function estimates (i.e.

inequalities).8

One aim here is to see whether novel semiotic elements may be needed to support standard

practices of geometers and analysts,  and if so, what they might be.  Representing mathematical action

poses different problems from representing mathematical knowledge.  My approach, like that of many

mathematicians (see eg., S. Feferman, J. Christy, K. Devlin), leaves mathematical understanding along

with agency and interpretation in the human.9   Instead of a project to formalize or automate

8 This is the old distinction between "knowledge-that" and "knowledge-how"  -- heuristics.
9 Feferman expresses what I believe is the Reasonable Mathematician's opinion on this issue:

[I]t would be ridiculous to think that anything like such a search through
proofs takes place in the activity of working mathematicians. How it is that they
actually arrive at proof is through a marvelous combination of heuristic
reasoning, insight and inspiration (building, of course, on prior knowledge and
experience) for which there are no general rules, though some patterns have been
discerned by Polya and others: there is no formula for mathematical success. It is
only when one finally arrives at a proof that one can check (mechanically, in
principle, but not in practice) that it does indeed establish the theorem in
question.

...
 So on the face of it, mathematical thought as it is actually produced is not
mechanical; I agree with Penrose that in this respect, understanding is essential,
and it is just this aspect of actual mathematical thought that machines cannot
share with us. [review of Penrose's Shadows of the Mind, 1994 italics original]

In a more radical analysis, Rotman proposes a functional semiotics of mathematics which is centered
on the embodied processes of the construction of signs and of  interpretation.  He predicates his
analysis on locating agency not in disembodied symbols  but in some ratiocinating being.   To these
two positions on embodied cognition, we contrast Newell and Simon's Physical Symbol Systems
Hypothesis which formalizes the attitude taken by classical artificial intelligence researchers who
would create "automated reasoning systems."
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understanding, this is a project to study how the emerging hybrid writing systems (as defined above)

augment and constrain the construction of geometric phenomena and statements about them.  As such

it is a companion, or a prologue, to any project on formally modeling mathematical reasoning.    Since

the general problem is difficult, it makes sense to ground the study in some well-established, rich

domain of mathematical theory and practice.

Differential geometry, along with geometric measure theory, geometric analysis and their

applications is a good candidate domain for this study.   Like mathematical practice in general, there

tends to be less ambiguity in the language of differential geometry than in everyday ordinary language;

that is differential geometers are more likely to agree on the use-meaning of a geometrical sign than

users of more general language.   Many central problems and intuitions of differential geometry are

intertwined with physics, and as such it is a reflection upon  how humans come by their geometric

intuitions.   Perhaps the most important reason why differential geometry could supply good

applications for a GW is the following:   Constituting theories about extension, approximation,

variation, and curvature, but abstracted beyond merely a theory of the visual, differential geometry

provides a strong  "boundary object" [Leigh Star] -- a  source of counter-examples --  to mimetic

representations and simple mimetic theories of geometric cognition.    A glance at contemporary

differential geometric research reveals that the geometrical is not simply a description of the visual.    It

concerns essentially non-discrete structures and uses non-constructive arguments, which challenge

conventional logical models and computer representations.   Many deep geometric intuitions bear no

mimetic resemblance to shapes or processes in our nominally Euclidean perceptual space.   And yet,

geometers and topologists do use graphical representations to work out proofs.   And experts make

sketches that capture the essence of true generalizations.    For example, certain arguments of classical

general relativity are performed with spacetime diagrams. (FIGURE 2)   Many topological and

geometrical results in this genre depend  crucially on arguments that are carried out ÒinÓ the diagram.
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FIGURE 2. Hawking and Ellis: Finkelstein spacetime diagram of gravitational collapse (p. 309)

and coalescence of two black holes (p  322).  Relativists using these geometrical techniques argue proofs

though such diagrams.

A more modern example is the video of the eversion of a sphere which explains key elements of SmaleÕs

proof of the sphere eversion theorem.   (Inside Out Video from A.K.Peters)   In both cases, the graphical

representations are clearly not mimetic of visual phenomena from everyday life.    Moreover, the

representations can be precisely described in other modes as well -- in discursive form, and in some

instances in symbolic (eg. equational) form or even as numerical simulations.

Of course, not all geometric structures and arguments are equally faithfully encoded in all of these

modes.   Diagrams can be merely tokens that syntactically function rather like an identifier or a Chinese

character.10   I claim that a multi-modal writing systemÕs usability will depend to a large extent on

how smoothly the human can shift between writing and reasoning in one mode to another.   But the

responsibility for correct heuristics -- what operation do I perform next? -- rests on the human, not on

some inference engine.

Since a central aim of this project is to design and build models for a fragment of geometry and

10 For example, to the expert geometer,    
E

M
π

   

  is a token denoting  Òa fibre bundle E over a base

manifold M.Ó   This token bears a graphical residue of its origin as a Òworking diagramÓ of such
geometric structures.
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analysis sufficiently rich to support Òreally-existingÓ mathematical discourse, the success of these

models will be measured in part by their usability by experts and novices in the chosen domain.   We

can measure the success of such a project by seeing (1) to what extent experts and novices find useful

ways of creating or learning about geometrical theories, and (2) what new insights we can learn about

geometrical reasoning.

The specific application will be chosen based on mathematical interest, appropriateness and

tractability for this study.  Possible specializations include: surfaces of finite total curvature; currents a

la Fleming, White; geometry of Lie groups; harmonic maps of surfaces.   Let me propose a few scenarios

which, if they can be supported, could be sufficient tests of a GW.   They should illuminate some of the

meta-mathematical issues that this project aims to understand.

First scenario:  Define a surface as the boundary of a geodesic ball in an abstractly defined manifold

(eg, a Lie group).  Specialize to case in which we can look at a cross section with a R2.  Vary the metric

algebraically, and move the center around in the cross-section by a gesture.   Inspect the surface.

The second scenario (FIGURE 3):  Define --in  mathematical English -- a continuous family {Σt} of

complete hypersurfaces as level-sets of a smooth function f: M -> R, where M is a Riemannian manifold

of unspecified dimension and metric; Σt = f-1(t).   Specialize to a particular situation, say M = R3, and

f(x) = |x1|2 + |x2|2 - |x3|2, and call for a graphic picture over a range 1/2 ² t ² 2.  Then by a gesture

specify a compact domain in M meeting  f-1(1) = Σ1, and declare a normal vector field, parametrized by

a freehand plot.   Say: perturb the surface Σ1  by this vector field.   Then evaluate an integral quantity

over the perturbed patch.   In order to be more than "mere hand-waving," the gestures must

deterministically modify algebraic or discursive representations of the geometry.

         

FIGURE 3. Define a foliation by level sets of f(x).  Define compact set (shaded) by gesture. Perturb a leaf

by a compactly-supported vector field, defined by gesture.

It should be clear that I do not want to build "tools" special to these situations, but a more general

system in which a mathematician can easily construct for himself or herself special structures and

operations in multiple modes -- discursive, algebraic, graphical, etc.  To support these applications,
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geometric models need to be constructed in multiple types of representation.11    For example,  a

geodesic ball will be representable in an invariant, coordinate-free form, or in a specific dimension and

coordinate system, or as a set of numerical solutions to a system of ODEÕs, or in a graphical form (eg.

via an immersion or via pullback under the coordinate functions to a domain in R3 or R2).   The models

need also some descriptions of more elementary notions, so one challenge will be to identify a minimal

hierarchy of descriptions that will suffice.  The basic models should include elementary set theory, point

set topology, basic Riemannian geometry, and will draw upon existing work.

More specifically, here's a rough sketch of some relevant notions, to give a flavor of what is needed.

ItÕs important to note that symbolic systems already exist in the literature for certain specialized

domains, though it is not easy to transfer results from one system or representation12 to another.  Keep

in mind that we do not require  or expect automated inference in these domains, though partial systems

would be welcome.

¥ Point-set topology:  cover, compactness, continuity, map, domain, range, inverse,

homeomorphism, homotopy, limit;

¥ Measure theory: Lebesgue, Hausdorff measure, density, integral;

¥ Analysis: smoothness and analyticity of map, diffeomorphism; approximation; function spaces,

inequalities from analysis;

¥ Algebra: certain algebraic structures associated to the geometric model, such as differential forms,

the tensor algebra ( J. LeeÕs Ricci) along with basic symmetries (Bianchi I,II, etc.); Lie algebra, if

necessary (eg. G. Baumann's Baecklund and Lie).

¥ Geometry: manifold, atlas, metric, exponential map, (tangent, normal) bundles; area, curvatures,

variations of geometric quantities, geodesic, Jacobi field, flows (geodesic, mean curvature, etc.)13

It remains to be seen what is the minimal model we will need to encode in order to do geometry in the

chosen specialization.14

Experimental Aspects of the Project

The experimental part of the study will be the construction of a computational writing system or

liveboard.  But this research is concerned with geometric models and issues of representation and

11 ND: Need to distinguish between sense modalities and modes of presentation.
12 ND:  Need to make consistent use of terms like semantic system, symbolic system, representation,
presentation, forms, structure, notation.
13 Geometric measure theory provides another useful set of notions (polyhedral chains,  mass and
flat norms, currents, approximation).  We'll defer a description of the encodings for these notions.
14 ND:  The deep problem of how come these rich math structures correspond to physical phenomena is the
inverse of how the set of Òwriting representationsÓ in XWÕs sense emerge genetically form a continuous field-
medium.
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discourse practice, not with the engineering of software systems.   Thus I intend to assemble a software

framework using existing software systems to the greatest degree possible, in which I can instantiate

and manipulate the representations.  This environment would (1) allow direct manipulation of

graphical structures, (2) provide notation and functions for algebraic (pattern-based) as well as

numerical computation, (3) tie into an existing body of mathematical/computational literature --

mathematical notebooks, packages and texts.  A key feature of this environment is that the geometric

structures can be associated with non-visual, but encodable differential or algebraic structures.   This

has the added advantage that the experimental apparatus -- the computational writing space --  can be

widely replicated.

At the coarsest scale, the architecture could have a tetrahedral structure comprising a direct

manipulation environment, a symbolic algebra engine, a numerics packages, and a knowledge

secretary.  (See FIGURE 4.)

Manipulation
Environment

Sketch
Information Mural
Oorange
Mathematica 3.0
Geomview
Live

Knowledge
Secretary

Analytica
Custom packages

Symbolic
Algebra
Engine

Mathematica
Maple

Numerics
Engine

Matlab
IMSL
NAG

FIGURE  4.  Architecture of geometric workspace --  component categories in bold, and possible

instances in light face. (See the Proposal for an Intelligent Geometric Blackboard 1994)

The manipulation environment will be a hybrid between a live, structured 2D expression (TeX-like)

editor and a 3D graphical manipulation system, likely to be some combination of Live3D, Geomview,

the Mathematica 3 Notebook Front End, or C. Gunn and U. PinkallÕs Oorange. [Gunn et al.]  The

symbolic computation engine may be Mathematica 3 or Maple.  Numerical computations can be

performed in Matlab.   The knowledge maintenance system can be some specialized system such as

Analytica [Zhao & Clarke], or an extension of a general system such as Hyperproof.
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Algebraic, numerical and visualization tools abound, so their creation will not be my main

ambition, although I expect to contribute to the design of some next-generation tools.    Fairly robust

examples of these components already exist and will make the construction of such a laboratory a

feasible task.  For the 1992  Workshop at MSRI on Visualizing Geometric Structures, I constructed a

prototype system using  Geomview, Mathematica and MathView (an experimental 3D viewer), in

which one could create polyhedral chains and transform them under sequences of deformations of the

ambient 3-space.  For example, this gave an easy way to play with, in a very concrete, graphic fashion,

the action of a one-parameter subgroup of the group of Mobius transformations.   This prototype GW

required a Silicon Graphics computer at the time, but within a few years, equivalent software facilities

should be available on commodity computers.   Direct manipulation systems may be based on work

from many sources (eg. CSLI, Computer Science Department, Center For Design Research, CMU, Xerox

PARC, MIT, SGI). 

In the course of building and evaluating that prototype it became clear that more flexible and

powerful formalisms for describing and operating on geometric structures were needed.   How best to

represent and encode sufficiently general geometric structures will be an important part of the research

project.   One approach may be based on clearly distinguishing mathematically meaningful definitions

of geometric structures from corresponding graphical encodings in 2D or 3D rendering systems.

It is important to underline that I am not proposing to build a theorem prover, nor is this  a

proposal to simulate mathematical reasoning even in a weak sense, although we might take advantage

of existing knowledge maintenance systems.15    Such work may be quite useful, if we forego the

demand for a fully automatic inferencing mechanism.

II. The Interdisciplinary Interest

This study should be interesting from three perspectives, that of the philosopher, the mathematician

and the computer scientist.

The philosopher's interest

Studying how expert and student mathematicians construct and communicate  knowledge about

geometry or topology should yield insights about other forms of nonverbal human experience,

experience that is not mediated by natural, textual language.  Here I would like to distinguish between

creative reasoning and communicating, emphasizing the former.    There are several ways to get into the

head of a reasoning being: by interviewing subjects in controlled circumstances (psychology), by

studying the marks and interpretations that he/she makes (literary studies), and by reasoning over the

15 Ken Haase (MIT), E. Clarke (CMU) and many others.
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evidence provided by these and allied studies (philosophy).

In this project, we begin with the study of how expert and novice mathematicians perform

geometrical work in multiple modes of representation.   But this becomes interesting as an investigation

in the philosophy of mathematics, a study of mathematical experience, the discovery or construction of

mathematical knowledge in geometry and analysis.   How is non-textually mediated cognition or

communication based on geometry or topology (ie. schematics, diagrams, algebra) possible?  More

specifically, I am interested in the delicate interplay between graphically(visually)-derived intuitions

and geometric reasoning, and their coupling via algebraic and computational models.  The aim here is

to come up with a theory that doesnÕt pre-suppose naively mimetic representation.   I propose to study

the phenomenological and logical problems raised using  multi-modal writing systems to manipulate

structures or processes that a priori may be non-compact, or non-denumerable.  This reinforces the

choice of differential geometry or topology rather than Euclidean or projective geometry as the object of

study.    Let me elaborate this point.  To study conjectures about generalized writing and what it

affords, it is useful to study a broader range of discourse practices, with a larger range of systems of

registering those practices.   Although they may be easier to evaluate, theories about graphics or

geometrical intuition based on Euclidean geometry risk being incomplete or distorted by a restricted

notion of geometry and an identification of the visual with the geometric.   If we wish to study a

relatively deep fragment of human discourse and reasoning not mediated by natural language text, we

can take advantage of differential geometry's abundance of rich, "non-literary" discourse practices.16

By relaxing the restriction to the primitive geometric objects (eg. oriented polygons and spheres) and

operations (eg. affine maps) found in computer-aided diagramming systems and other computer

graphics applications, we may arrive at a more powerful description of non-literary media and

expression.

This project, then, can be seen to have a more general relevance in philosophy.  This provides some

insight into how we work with symbolic structures, and may provide even some experimentally

grounded understanding of how, or whether, the mode of manipulation of symbolic structure

constrains and shapes the concepts that are inscribed in those structures.17

16 The project should include more precise characterizations of  "reasoning" and "discourse," and
more precise distinctions among "linguistic," "literary," "graphical" and "diagrammatic" modes of
representation.
17 One relevant question is the relationship between representation and referent, which is denied
by Husserl, according to Andr� Orianne [introduction to LevinasÕ Theory of Intuition in HusserlÕs
Phenomenology].   PeirceÕs notion of an indexical sign, may be an appropriate way to understand the
GCLÕs multimodal manipulable representations.
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The mathematician's interest

I believe there can be a carefully moderated path between an uncritical adoption of computer

software and an equally naive restriction of computer usage to TeX and email.  Both attitudes can arise

from unreasonable notions of computation or an overly restricted notion of writing.  Keith Devlin

compares using modern software to driving automobiles, and argues that, just as driving a car is a

fundamentally different activity from Òwalking faster,Ó  using complex computer systems like Matlab or

Mathematica and Geomview requires new norms of use.  But DevlinÕs suggestive automotive metaphor

overlooks an essential feature of computational media: that they are reflexive, time-varying symbolic

systems.   The computer makes possible numerical simulations, algebraic models, and graphical and

textual representations that can modify themselves over time.  If all one desired were illustrations of

mathematical objects or arguments, then Òpre-fabricatedÓ illustrations or video recordings would

suffice.18

Another metaphor common among software designers and users alike is the notion of software as a

Òtoolkit.Ó    But a toolkit with a fixed set of primitive objects and functions does not suit the

mathematiciansÕ style.   Freely inventing new structures and operations is integral to mathematical

practice.   This is why I characterize the GW as a generalized writing domain rather than a set of tools.

Currently,  a typical hour in a mathematician's exploratory work is spent doing some thinking, a bit of

writing or doodling or calculation, then some more thinking.  This finely structured dance between

reflection  and gesture does not mesh well with large computational tools such as TeX, Matlab, and a C

compiler.19

A seamless algebraic, geometric, numeric, graphical and logical system should provide a richer

writing medium that yields new practices in mathematical research.    The ease and fidelity of

translating between  representations in a computational environment is often undervalued in the

evaluation of how well it augments exploratory, creative work.   But with increasing sophistication

comes the realization that model-translation issues lie among those crucial to the construction of a

system that can serve as an exploratory environment rather than merely a system for illustrating or

recording previously derived results.   Moreover, much of the strength of a system with multiple modes

of representations comes from making it possible for the human to fluidly switch between marks that

can be manipulated by an ÒautomaticÓ algorithm, and marks that can be interpreted only by humans.

Examples are the description of a curve as the orbit under a group action, and the space of metrics on a

two-torus modulo conformal equivalence.   In each case, we may profitably use a schematic rather than

18 And such use of computer technology would hardly justify its cost.
19 Much mathematical work is "purely mental," and thus does not need any external material
medium at all.  But to the extent that some mathematical work is mediated by material instruments
(hand gestures, paper, chalk, computer), the question is what qualities of a computer medium are
fundamentally different and useful compared to other material media.
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textual narrative to represent this.    But under some circumstances, it may be quite useful to compute

analogously defined orbits by numerical means.

But, setting aside historical contingency, mathematicians face limits on the flexibility and usefulness

of computational media which stem from several fundamental assumptions commonly found in

computer systems, notably:

¥ a reliance on a fixed set of primitive primitives (the ÒPoint2D, Point3DÓ problem);

¥ the computational assumption that sets and operations are finite;

¥ overly explicit representations;

¥ restriction of structures to finite-dimensional vector spaces or graphs.

I will choose some structures or theories that traditionally have no high-level computational

representation, and see what limits their expressibility.   Examples include complete (unbounded)

surfaces, inequalities in analysis, limiting sequences of maps and gluing constructions that preserve

specific geometric properties.

There are a few precedents and related work that I discuss in the Appendix.20   For numeric

computation, there is the  general purpose matrix computation system -- Matlab, and special

applications like K. Brakke's Evolver [Brakke] for curvature-dependent relaxations of surfaces, to name

but two of many examples.   IBM/NAG's AXIOM is a notably powerful algebraic system.  Geometric

and topological visualization systems include Banchoff's animations of curves and surfaces; Thurston

and the Geometry Center's visualization of hyperbolic manifolds; Hoffman and GANG's minimal

surface visualization system (VPL, MESH), Pinkall's Oorange system for computing and visualizing

surfaces; Palais' surface plotting software.   However, to date these have not been integrated in any

coherent, flexible, multi-modal environment.  One limitation is that most either depend on special

properties of geometric structures (eg. minimal surfacesÕ Weierstrass representation or quaternion

algebra), or use only a low-level model of graphics objects (eg. polygons in an explicit coordinate

system).   This issue of low-level models leads us to the computer science interest in the GW.

20 See Sha94 and WWW slides for list of related software.   See the Appendix for an extended
discussion of extant mathematical software and their limitations that the GWL addresses.
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The computer scientist's interest

This study should yield new structures or high-level languages for dealing with geometric (not just

graphical) objects at a layer of description thatÕs convenient for humans as well as algorithms.   I have

no quibble with graphics data structures and algorithms which are designed for computational

efficiency.   Indeed, the GW will rely heavily on efficient algorithms for manipulating low-level

representations.   But one technical aim of this project is to fill a gap between, say, the category of

oriented polygons and the category of chalk marks, or between TeX and manipulable 3D graphics.

Given encodings of geometry in algebraic, logical and graphical domains, we can explore the problems

of reasoning and translating between multiple representations, in, for example, the conceptual

framework laid out by [Barker-Plummer and Greaves].

The first version of the GW will rely upon modifications of existing visualization/manipulation

technology, though in a second generation, the "liveboard" interface should take advantage of

contemporary gesture-recognition systems21.   A practical consequence of this work should be the

design of a next-generation writing system, where writing is broadened to include geometric sketches.

Current gesture-recognition systems and 3D interfaces map user-gestures back to primitive structures

like point in space-time, or oriented polyhedron, that are appropriate for machine representations of

computer graphics, but are too low-level to be mathematically useful.

One technical challenge in interface design is the ÒinverseÓ problem of modifying

algebraic/structural representations via graphical (Ò3DÓ or Ò2.5 DÓ) interfaces.  The GW version of this

problem seems more tractable than the broader problem of computer vision (to isolate and recognize

arbitrary objects in a photographic or video image)22.   Supplementing the techniques of

computational geometry and computer graphics, we can disambiguate graphical or gestural input using

high level algebraic or logical models.   For example, if one picks and drags a curve that is defined as an

immersion in a surface, the dragging can be interpreted as a tangential  perturbation and be constrained

to the surface.   

The practical goal, of course, is to design rich, seamless workspaces for mathematical work in more

Òreal-lifeÓ situations.   This seamlessness is valued by designers of human-computer interfaces, but is

not feasible unless we restrict attention to practices where the scope and meaning are circumscribed

sufficiently narrowly.

Ideas from differential geometry are beginning to find applications in computer graphics (see eg.

Grimm & Hughes, Tomasi), but they are generally aimed at representing visual structures in Euclidean

spacetime.   Generalized geometric structures can achieve greater encoding, transmission and

computational efficiencies by factoring some of the representational baggage into different models.   For

21 Eg. Landay et alÕs AGATE (derived from GARNET) at CMU, among others.
22 See review by D. Mumford, AMS Bulletin, ____ 1996.
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example, by providing a unified encoding of intrinsic geometry (eg. Point, as opposed to Point-In-A-

Plane-Specified-By-This-Normal), a computational system can defer much storage and computation

until the place and time that it is needed.
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III. Schedule of work

It's common to demonstrate the power and utility of a new method by recovering known but

interesting results, and then proceed to demonstrate new applications.   The strategy will be to define a

parsimonious model for a fragment of geometry that is rich enough for sub domain of mathematical

practice in which hybrid techniques have been used fruitfully.   We will study if and how the hybrid

method yields the known results more handily.   When we have constructed a system in which one can

work in a novel way in a known sub-domain of geometry, we can then apply the GW to domains in

which new results may be obtained.

One mathematical domain of recent interest is the study of the evolution of geometric quantities

such as area or an integral of curvature, ranging from Sethian-Osher's simulations, Evan-Spruck's

analytical justification, the geometric measure theory (Federer, Fleming, Almgren, Brakke) and PDE

theory which provides existence and regularity of elliptic equations (Simon), and the recent extensions

by White and Ilmanen.   We will demonstrate how an investigation of these evolution problems can be

investigated more easily in a coherent, hybrid computational environment.

A domain in which new experimental results may be useful is the study of constant mean curvature

surfaces making use of explicit constructions  (Lawson, Kapouleas), discrete constructions (Oberknapp,

Grosse-Brauckmann, Polthier), global properties of embedded cmc surfaces (Korevaar, Kusner), and

studies of the moduli space of complete cmc surfaces via analytic techniques (Mazzeo, Pollack, Pacard).

Experimental techniques by Oberknapp and Grosse-Brauckmann may be transplanted from their

original setting in the Grape system, to our more general framework.

Briefly, here are the main steps in this project.

¥ Survey literature on formal representations of mathematical objects and theories related to

geometric manipulation and reasoning.

¥ Choose a mathematically significant problem, domain and characteristic structures or methods.

¥ Design symbolic models for geometric and graphic objects.  Attach numerical

simulations/graphical renderings as needed.

¥ Couple symbolic and numeric engines to interface via shared models

¥ Evaluate by testing with professionals and students, perhaps adjunct to a course on differential

geometry.

IÕve completed a preliminary cycle of this work, and am now preparing the ground for the project.

IV. Examples
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Here are some primitive examples, constructed to illustrate some of the distinctions and problems

in the proposal.   They are not meant to illustrate what geometry in a good GW should look like.

(Other examples exist in the form of Live3D manipulables, QuickTime movies, and some structures

encoded in Mathematica.)

Example 1, geodesics on torus

(See Body of manuscript.)

Example 2, lumpy torus

The same apparatus helps explore geodesics on a lumpy torus:

¥ Algebraic/symbolic representation

torus2 = 88H9 + H2 + Cos@3 vDL Cos@uDL Cos@vD,
H9 + H2 + Cos@3 vDL Cos@uDL Sin@vD,
H2 + Cos@3 vDL Sin@uD<,
8u, 0, 2 p<, 8v, 0, 2 p<<

¥ Graphical representation:

(This is an imperfect snapshot from a manipulable Live3D object.) 

But, lacking a more general encoding and model of Riemannian geometry, we cannot explore many

surfaces of interest in this way.

Example 3, Minimal surfaces

A third example is the Weierstrass representation of a minimal surface via integrals of complex

functions
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fHf_, g_. z_L := :
1

2
f I1 - g2 M,

1

2
ä f Ig2 + 1M, f g>

W Hf_, g_, w_L := ReJà
0

w
fH f , g, zL âzN

which we can use to explore specific examples:

scherk[x_,y_] = W[4/(1-#^4)&, #&, w] /. {w -> x + I y}

Here are frames from a movie of a transformation of a minimal surface through a smooth family of

isometries.   Given the structural representation, it is easy to perform the same ÒrotationÓ on any

minimal surface.
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Example 4, Einstein equation

[Another example is the derivation of the Einstein equation as the Euler-Lagrange equation of the

integral of scalar curvature, using  a tensor computation system.]

Example 5, Geometry of Lie groups

[Convexity of nilpotent ball (example from R. Karidi):

Given the structure equations for a basis of left-invariant vector fields for a nilpotent Lie algebra of

dimension 4 (realized in R^4), study the corresponding geodesic equations.   One goal is to study the

shape of the geodesic ball.   This example may be realized in a future draft. ]

Examples 5 & 6, Media structures

There are several applications outside mathematics, too.  Here are two speculative examples, the

first conceptual, the second design.

¥ More flexible models of ÒtimeÓ -- alternatives to the interval as a parameter for Òtime-basedÓ

media.   Conventional time-based editors use a notion of parallel streams of data, all synchronized to a

single parameter.   Other models use a notion of a tree of clocks, which may be difficult to understand

for lack of conceptually simple abstractions (like a ÒloopÓ).     Another problem with the conventional

model of time is that it assumes an algebra of intervals which can be complicated and difficult to use,

again because of the explicit parametrization of media by intervals.  (For an example, open a QuickTime

movie on your Macintosh or PC under a common editor or player.)   Here, very simple notions from
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geometry and analysis may be useful.

¥ More flexible models of "space" -- one issue now bedeviling virtual reality architects is the

problem of coordinatizing symbolically defined ÒspacesÓ  which are created by independent rules and

models.   To a geometer, their problem of making ÒtransitionsÓ between local coordinate systems falls

neatly into the notion of a manifold.  Whereas ad hoc solutions worked for planar domains, architecting

these more complex and possibly dynamically varying ÒspacesÓ will need well-founded geometric

models. This is an area ripe for the application of notions from differential geometry and topology.

V. Appendices

Related Work

How is the GW  novel?  Let me survey existing mathematical computation and writing systems and

point out some limitations of each that the GW addresses.     The deep sense in which the GW is novel is

that the GW is a system for creating geometric methods and structures, not a system that purports to

autonomously perform geometric reasoning.

1. Blackboard 

Although in many respects, blackboards and paper remain the ideal media of exploratory mathematical

writing, they lack computational support and memory.    In fact, we can use blackboard and paper

media as the reference media and use their qualities (cheap, fast, non-volatile, "free" syntax) as a guide

for evaluating computational media.

2.  Visualization

A general and serious constraint in many visualization systems is that their data structures are

restricted to represent, for example, polyhedral complexes in R3, or a small set of graphics primitives

like line segment, disc, or piecewise cubic polynomial curves, or a tree of graphics  primitives.

In Geomview  data structures are much too primitive (eg MESH, polygon list) -- with no differential

geometric structure.  Operators are assumed to be of fixed type: eg. affine transformations of Ri (i =

2,3,4), or coded in a primitive, C-like, programming language in which it is difficult to read the

mathematical sense from the code.   Applications rely on peculiarities of H3 and R3.   Geomview was

designed for a peculiarly powerful set of software and hardware -- Silicon Graphics / GL graphics
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language -- oriented mainly to rendering a particular class of 3D graphics, rather than manipulating

topological or differential geometric structures.     Consequently there is a plethora of texture-mapping

and lighting and remarkable navigation/positioning functions, but a paucity of any general geometric

functions.   For example, there is a Hinge tool, written specifically for polyhedra in R3 or H3, which

allows the user to rotate a face of a polyhedron around a designated edge.  Such a function does not

serve many geometric research needs, and in any case had to be written directly in a low-level

programming language.

A more recent invention, Pisces' principal contribution is the drawing of curves and surfaces

defined as levelsets of piecewise smooth functions.   Otherwise there is no symbolic or graphical

manipulation environment.   It uses Geomview for 3D manipulation, and uses a hodge-podge of control

panels written in TCL.   These  control panels use an instrumentation panel design metaphor which

adds an obscuring layer of metaphor atop the mathematician's gestural process.

C. Gunn's Oorange is perhaps one of the most powerful of current generation 3D graphics

visualization systems.   However, its most salient features -- dynamically linkable object-oriented

programming units, and an user-interface operator tree -- assume a very elaborate programmer's

mental model, a superstructure which obscures altogether geometric and other forms of mathematical

analysis.

3. General programming languages

Inappropriate data structures for geometry complicate the description of geometric operations that

must act on such structures.   (Algorithms that take advantage of non-trivial structure, such as such as

boundary operators defined on k-skeletons are exceptional. Besides, they are usually wasted by being

specialized to graphics purposes, like texture mapping, rather than geometric purposes.)  Given

primitive structures, it is hard to define new structures and maps like computing or estimating an

integral using the Gauss Bonnet theorem.

As an illustration of this unnaturality of description, contrast this description of an inner product:

u.v 

with this one:

float dotuv[21];

for i = 0 to 20 do

dotuv[i] = u[i] * v[i];

end

Aside from the obvious defects of the second representation: (A) more verbose, (B) extraneous structure
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(for-loop, semi-colons syntax), (C) assumption on dimension, the most serious disadvantage is that

there is a strong assumption of type (i is an integer,  dotuv is a 21-dimensional vector of machine

floating point numbers).   Type-checking is critical for mechanical computation, but maybe not for an

effective description of mathematical structure.

Proofs written in such a low-level description tend to be difficult to read, and consequently errors

are more difficult to detect.  The usual workaround is to limit programs to very short code segments,

but then the mathematician must specify computational steps in a verbose and weak language, greatly

lengthening the entire exposition.   More subtly, the logical relation between an algorithm written in

pseudo-code and proofs about the algorithm can be uncertain when the translation, done in an ad hoc

fashion, may be faulty.    See for example, an early preprint by Hass and Schlafly on the Double Bubble

conjecture (1996).   In the pseudocode in [HassSchlafly], it is not clear how a function's return value is to

be used in the flow of control of an algorithm.   This ambiguity in the representation of the algorithm

was not reflected in the proof of mathematical correctness, and more importantly, could not be

represented in the proof because it relies on semantics ("return value of function", "flow of control

across multiple subroutine calls") which are outside the semantics of a proof in geometric analysis.    In

the GW, this would be obviated by casting this description in a higher-order language which could be

used to write a proof as well as an algorithm.

The problem of type is one of the most subtle and practically intractable issues in the theory of

programming languages.  []    This is a concept analogous to mathematical concepts of a function's

domain and range, but in a more primitive level.    Systems such as AXIOM or programming

languages like C that make type very explicit tend to be extremely verbose and too cumbersome by the

standards of efficiency characteristic of mathematician's English.

Using one of the more sophisticated type-sensitive languages like ML, we can define domains and

functions:

type Quaternion h

type Quaternion-> Quaternion f

type QStarNorm = (Quaternion-> Quaternion) -> Real T

In fact, algorithms have been implemented in ML to perform category-theoretic operations on

algebraically defined mathematical structures.   There is a trade-off between the precise algebraic power

of systems in which type is carefully and explicitly tracked, and the flexibility of  pattern-rewrite

systems in which the mathematician can freely invent new interpretations of syntax.   The GW will hew

close to this latter, flexible end of the spectrum.
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4. Computer algebra

Most of the leading computer algebra systems are not powerful enough for numeric simulations, and

are not integrated with standard numerical analysis packages.

AXIOM is exceptionally powerful and general, but the algebraic machinery makes it cumbersome

to use.   Nonetheless, the powerful domain definition facilities make it a useful reference computational

algebra system.   Ricci is a very powerful computation system for tensors on bundles, but is a purely

algebraic engine, not connected with an explicit metric in a way which would make it usable in

conjunction with analysis or numerical estimates.

A problem common to many of the more popular symbolic manipulation programs, including

Maple's and Mathematica's core algebra engines, is that they are designed to automate  computation.

A practical consequence of this design is there are opaque functions that are inaccessible to the working

mathematician because they are compiled or written in low-level code (machine language, or C-like

code).    This is an unavoidable necessity if we are to build systems that work reasonably fast.   The

argument that all code must be equally transparently inspectable by the user ignores the socio-textual

fact that readers of analog scientific literature always have a textual horizon -- they can follow citations

only to a certain depth.   But we can usefully distinguish inspectability-in-principle from uniform

inspectability.  Some degree of inspectability-in-principle is certainly necessary to sustain scholarly

discipline, and this will be true for the geometric models that will be described by the GW.   This will

necessarily be the case, as we propose to write a novel descriptive and interpretive layer for geometric

structures that will make it much easier to use sketching and direct manipulation interfaces.

5.  Sketching systems

Computer graphics and interface researchers are beginning to develop direct-manipulation

environments in which a user can create graphical elements with freehand gestures rather than going

through an interpreter of written coded descriptions.    (Imagine being forced to write an integral sign --

the sigma  -- by specifying it as a parametrized curve  rather than simply making a stroke.)    Perhaps

the most ambitious commercial operating system  built around gestures was the Penpoint operating

system developed by GO Technologies in the 1980's [].   GO and later gesture-recognition systems have

had limited success because of the complexity of the full range of human gestures used in writing on a

flat plane.    Some recent and current projects have had notable success by simplifying the problem in

several ways, by making "shallow" systems that merely capture bits without immediate (deferred)

interpretation (eg. Tivoli -- T. Moran), or by restricting to special contexts.   These include Geometer's
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Sketchpad, Napkin  and Sketch.   Geometer's Sketchpad is restricted to ruler-and-compass 2D geometry.

In some sense, one might view the GW as an attempt to generalize Geometer's Sketchpad to differential

geometry.    Napkin is by design similar in spirit to the GW, in that it aims to augment the earliest

stages of free form exploration.   It is designed for architects' freehand sketching.     Similarly, Zeleznik

& Hughes et alÕs Sketch is designed to support mechanical engineers' initial sketching with significant

ambiguity in the interpretation of their strokes.  But the interpretive model used by Sketch is

nonetheless a relaxation of the CAD structures and notions, which makes it unsuitable as it stands for

mathematical creation.   Similarly with the other systems.   Typically these systems use a fixed palette of

objects and operators, with interfaces that fall into the fixed structure paradigm which makes it

extremely difficult to adapt them for uses by geometers and others outside the disciplines for which

they were originally conceived.23

By basing feature-recognition on a sophisticated, but limited geometric model, the GW  attempts to

reduce difficult problem of gesture recognition to a tractable one.   Results may be incorporated in a

new generation of reactive environments.   Recently, T. Winograd, P. Hanrahan and students have

begun construction of a wall-sized high-resolution displays with a software architecture that may

accomodate novel input methods.24

6.  General Hybrid Math Systems

Mathcad, the most ambitious of hybrid mathematical computation systems, despite some novel

interface hybridizations, suffers from a confused integration of programming language, numerical

algorithms, and interface structures.   Many features which properly should be part of the symbolic

algebra or of a programming language (eg. Transpose, Simplify<Evaluate) are wired into the interface

as menus.   This means that the program treats certain mathematical operators as atomic functions,

which cannot be changed or integrated into user-defined operations.  Structured layout is based on the

model of a coarse tree of graphics rectangles, which is too cumbersome.

7. Numerical Simulation

Matlab, arguably the most popular numerical matrix analysis program, is limited fundamentally to

two-dimensional arrays of real or complex floating point numbers.   Therefore all structures must be

cast somehow into such representations in order to apply Matlab functions.   K. Brakke's Surface

23 Consider how much broader are the communities of mathematicians who use paper and
chalkboard.
24 T. Winograd, ÒA Human-Centered Interaction Architecture,Ó 1998.
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Evolver  [Brakke] lies at the other extreme -- it was hardwired specifically to evolve piecewise surfaces

according to the minimization of certain functionals dependent on the normal and the curvature.   By

comparison, the GW  will make it possible to quickly and reliably construct special numerical models

within an integrated system.

8.  Socio-technical Practice

With the developing sophistication on the part of designers of complex or powerful computer systems

since 70's and 80's came the realization that socio-economic dynamics had to be considered in the design

of computation that could be used for "real work" by non-programmers.   In this context, the GW

represents an attempt to go beyond the "Hollywood model" of scientific computation that we've

inherited from the era of supercomputing centers.   In this model of computationally augmented

research, a senior researcher acquires a team of technical experts and artists who build a special system

using special hardware or software to explore some structures of particular interest to this researcher

and his/her school.    While this was appropriate when computation was expensive and rare, we now

have the opportunity to take advantage of much more ubiquitous powerful computation, and even

more important, of a significantly richer software framework for intercommunicating computational

processes, and more expressive languages than those commonly used by non-mathematical

programmers.  This decentralized, finer-grained use of technology may fit better the practices of the

contemporary mathematical research community.
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