A scientific approach to gesture recognition tracking in perfomative environments

> Sha Xin Wei sha@encs.concordia.ca Computer Science, Concordia 13 November 2007

motivating examples Responsive Environments

How can we build a world that's not complicated, but rich?

Smart environments?? airports, streets, EV

Strategy: look to experience from live performance and architecture

TGarden responsive playspaces

(1997) 2001-2002

Stanford; FoAM, Starlab Brussels; Banff New Media Institute; Georgia Tech.

Exhibited: Siggraph 2000, Medi@Terra Athens 2001, Ars Electronica Linz 2001, DEAF Rotterdam 2001; subsequent: txOom & tgvu 2002

Preliminary TGarden 2000

SXW, Sponge, FoAM collectives, SIGGRAPH New Orleans

events in responsive spaces (chamber scale)

events in responsive spaces (building scale)

txOom FoAM 2002

conditions

Live, embodied experience Real-time, performative events Collective as well as individual Improvised (no a priori)

What's a gesture?

Human movement Vocal (vs sonic) movement Elicits response

SXW, "Resistance Is Fertile: Gesture and Agency in the Field of Responsive Media," Configurations, Vol 10, Number 3, Summer 2002.

What does real-time imply?

End-to-end latency: from *onset* (mouse-down, not mouse-up) of gesture to perception of media response

Type of feedback	Frequency Hz	Latency ms
visual	15-25	50
acoustic	5-10	10-50
acoustic (melodic)	50	10
haptic	1000	1

Table 1 Human interaction bounds

latency \neq rhythm

What sense modality?

machine sense \neq human sense sensor modality \neq sense modality

Regimes of sensing

regimes of sensing vs. sensor modality scales of distance x energy (example): >> 1m x multiple bodies (pedestrian flow) ~ 1m x limb extension (greeting) 0 x contact (handshake) touch nuance (caress,

Jill Fantauzza, et al., "Greeting Dynamics Using Expressive Softwear" (Ubicomp 2003)

what sensor modality?

Physical or physiological? Critique of psychologism

Descombes, V. (2001). The Mind's Provisions: A Critique of Cognitivism, Princeton University Press.

Martin Kusch, Psychologism, Stanford Encyclopedia of Philosophy, 21 Mar 2007

intrinsic vs extrinsic

Saussure: any semiotic system is an abstract system of differences

Bobick: Kid's Room method

continuous vs discrete

what can we do without tokenizing? work with streams (discretized) continuous model ≠ discrete model

what is noise?

"heat" noise in the sensor network or operating system indeterminacies non-semantic signal

push vs. poll

Better sense of coupling, causality for gesturer.

You can feel when the system stops responding.

Joel Ryan, Institute of Sonology, and STEIM

some projects

Continuous Sensing of Gesture for Control of Audio-Visual Media

Xin Wei Sha, Giovanni Iachello, Steven Dow, Yoichiro Serita, Tazama St. Julien, Julien Fistre

continuous gesture tracking for sound

SXW, et al, Continuous Sensing of Gesture for Control of Audio-Visual Media (*ISWC 2003*)

angular moments to continuous sound

SXW, Yvonne Caravia, Yoichiro Serita, Georgia Tech IDT

Platform (lachello, Dow, Serita) Usage (Sha, Serita, Ubicomp)

SXW, et al, Continuous Sensing of Gesture for Control of Audio-Visual Media (*ISWC 2003*)

controlling what?

sound file play back vs continuous synthesis
not triggers, sound ≠ {objects in space}
classical methods for sound synthesis:
 vocal formants (howling ball txOom)
 granular synthesis

motes, MSP instruments

SXW, J Fantauzza, Ubicomp

WYSIWYG

Wearable Sound Gestural Instruments SXW - Marcelo Wanderley Hexagram

WYSIWYG

- Soft, continuous₁ controllers handkerchief, scarf, blanket
- Continuous₂ mapping to continuous₃ sound
- Improvised play
- Collective movement
- Technical Goal: Statistical correlates to *intentional* gesture

* Doug Van Nort, * David Gauthier, Sha Xin Wei, Marcelo M. Wanderley, "Extraction of Gestural Meaning from a Fabric-Based Instrument," ICMC International Computer Music Conference Proceedings, 2007.

* David Birnbaum, * Freida Abtan, Sha Xin Wei, Marcelo M. Wanderley, "Mapping and Dimensionality of a Cloth-based Sound Instrument," Proceedings of Sound and Music Computing (SMC), Lefkada Greece, 2007.

WYSIWYG architecture

WYSIWYG blanket test

Woven w/ conductive fibers on Jacquard loom, M. Bromley, J. Berzowksa, XS Labs. Mechatronics, Feature extraction, mappings to sound: E. Sinyor, D. Gauthier, F Abtan, D. Birnbaum, D. v Nort Choreography by SY Cho and members of Dance Department.

higher order features

Phase relationship between spatial locationsPeriodicity as function of positionHarmonicity, generalizing "regular motion"Directionality, as cue to focus and intent

But: we always start and end with human interpretant

Ouija

Collective gesture Intentional gesture Movement art: ***Improvisation** vs. choreography

* => no a prior classifiers. But also, no grammar!

Ostensive Experiments

Entrainment

pass dynamics body to body w/o explicit instruction (un)rehearsed or (un)trained, 3-6 people Contact Improv Camouflage Calligraphy Delay

Implicit Experiments

Effects of no | passive | responsive temporal media on movement.

Future:

Look (inspection) for emergence of co-articulation.

Look for statistical correlates among sensor features.

Ouija: entrainment

Ouija Experiment on Collective Gesture in Responsive Media Spaces, June-July 2007

Ouija: Calligraphy 1/2

machine vision for feature extraction from movement, continuous synthesis of video based on physics models, leveraging corporeal intuition.

Ouija: Calligraphy 2/2

Ouija: Delay

Conventional performance's fixed sequence of movement => less need for realtime gesture tracking? *But how fixed is fixed?*

future work

expert movement analysis

Dr. S. Gill, Middlesex & Cambridge (Ian Cross) non-verbal movement, rhythm and musicality in movement

SXW, S. Gill, Gesture and Response in Field-Based Performance, Creativity and Cognition Conference, 2005.

expert movement analysis

D. van Nort, McGill (Marcelo Wanderley IDMIL)

predictive and geometric models for gestural sound e.g. correlation, ICA, realtime wavelets D. Gauthier, M. Fortin

statistical correlates, <u>not</u> certificates, of intention

Correlation, e.g. $R_n[k, i, j] = E(x_i[n]x_j[n-k])$, or Kalman filter estimates of state X(t) from observables y(t), of form

X(t+1) = A(t)X(t) + b(t) + w(t)

A(t) is the known square transition matrix of the process control b(t) is given zero mean process noise w(t) measured vector y(t) = H(t)X(t) + v(t)H(t) is the rectangular measurement matrix

v(t) is the zero mean measurement noise

minimizing covariance $P(t) = E[|X(t) - \bar{X}|^2]$

engineering note

Body gesture	Object "gesture"	Mechanical energy	Sensing technology	Price, Efficiency,
				Availability ¹
Any movement	Handling	Acceleration	Accelerometer	254
Any part [?]	Wearing			
Sensitivity	Throwing		Piezoresistive	225
Hands	Handling	Force	Air pressure	244
Feet	Holding	Pressure	Flexion	244
Lying/sitting	Pushing		Piezoresistive	234
	Pressing		Load cell	255
	Squeezing		Miniature pressure transducer	154
			Piezoelectric	244
		Strain	Strain gauge	254
		Contact	Capacitive	545
	Specific (cutting, etc.)	Presence	Capacitive	545
Mouth	Inside/outside	Humidity	Hygrometer	333
Sweep	Hydrophile material		Piezoresistive	525
Movements	Inside/outside	Temperature	Piezoresistive	525
Energy/heat	Thermosensitive materials			
Hands	Long objects	Linear position	Piezoelectric	242
Feet	Large surfaces	2D Localization	Piezoresistive	545
			Capacitive	545
Articulation	Soft materials	Flexion	Piezoresistive	545
	Surface (de Rossi)			333
[?]	Rigid materials	Strain	Piezoresistive	545
Space movements		3D Localization	Video	
Body parts		Orientation	Tilting, acceleration, magnetic	244
		Rotation	Magnetic, piezoresistive	445
Contact/non-contact	Activation	Switching	Capacitive	545
			Piezo	545

¹ 1: Very poor

2: Poor

3: Moderate

- 4: Good
- 5: Very good

thanks to E. Sinyor

summary

Conditions:

Live, real-time, performative events Collective as well as individual Improvised (no a priori) Strategy: Leverage corporeal intuition Continuous models controllers, media, and mappings geometrical / topological models Statistical approaches correlation Kalman estimate state

topological media lab

Credits: http://www.topologicalmedialab.net People

Concordia University Engineering Visual Arts, EV 7.725 1515 Ste. Catherine Ouest, Montreal H3G 2W1