
A scientific approach to 
gesture recognition tracking 
in perfomative environments

Sha Xin Wei
sha@encs.concordia.ca

Computer Science, Concordia
13 November 2007

1



motivating examples

Responsive Environments
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a-signifying semiologies

ethico-aesthetic magma

pathic, improvisatory subjectivation

chaosmosis art

life

Stengel: ethics expressed not in 

propositional language but with/

through language

Guattari

How can we build a world that’s not complicated, but rich?
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Smart environments?? airports, 
streets, EV

Strategy: look to experience from live 
performance and architecture
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TGarden responsive 
playspaces

(1997) 2001-2002
Stanford; FoAM, Starlab Brussels; Banff New Media 

Institute; Georgia Tech.
Exhibited: Siggraph 2000, Medi@Terra Athens 2001, 
Ars Electronica Linz 2001, DEAF Rotterdam 2001; 

subsequent: txOom & tgvu 2002
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Preliminary TGarden 2000

SXW, Sponge, FoAM collectives, SIGGRAPH New Orleans
6
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events in responsive spaces 

!chamber scale"

SXW TGardens  2000-2001  sponge + 
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events in responsive spaces 

!building scale"

txOom FoAM 2002
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conditions

Live, embodied experience

Real-time, performative events

Collective as well as individual

Improvised (no a priori)
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What’s a gesture?

Human movement

Vocal (vs sonic) movement

Elicits response

SXW, "Resistance Is Fertile: Gesture and Agency in the Field of Responsive 
Media,"  Configurations, Vol 10, Number 3, Summer 2002.
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What does real-time imply?

End-to-end latency: from onset (mouse-down, 

not mouse-up) of gesture to perception of media 
response
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Abstract

This note describes how continuous sensing of gesture
enabling expressive control of real-time audio/visual me-
dia is achieved using Berkeley motes. We have contrib-
uted a relatively stable, inexpensive, extensible, and rep-
licable wireless sensing platform for continuous motion
tracking and placed the sensors into clothing to provide
unobtrusive, natural affordances to the gesturing user.
This paper includes an analysis of system requirements
and a discussion of the software/hardware architecture.

1. Motivation

New interactors and embedded processors offer a wide
range of control options for time-based media. We are
interested in tackling the problem of mapping freehand,
unclassified gestures to the real-time synthesis and
modulation of video and sound, by using multidimen-
sional synthesis models and leveraging the physical affor-
dances and user expectations provided by cloth substrate
or body placement. Applications for performance, play
and entertainment environments can be found in [5].

Our user-centered design involves two sets of users:
the players performing in responsive media spaces and the
designers of such spaces. For our application domain, we
are aiming to support social settings with 3 or more play-
ers in a common space, to study elicited group social be-
haviors. For comfort and freedom of movement, it is es-
sential that the people remain untethered, and that the
physical devices be unobtrusive on the body or in cloth-
ing. For the other users, the designers, we have exposed a
set of sensing functions to the Max/MSP/Jitter program-
ming environment, because it is a lingua franca for pro-
fessional live video/sound instrument designers and it al-
lows the designer to rapidly implement plausible and tan-
gible audio-visual feedback in the media environment.

2. Requirements analysis and related work

Our wireless sensor platform has evolved over 5 gen-
erations, used in 10 experiments over the past 3 years, ex-
ploring a range of technical solutions [4]. In contrast with
traditional wireless sensor networks [1, 3] the present ar-

chitecture has the unique requirement for relatively high
frequency (10-100Hz) sensor data. In trade-off we are not
as concerned about the high power consumption needed
for continuous transmission.

Three regimes of sensing are most relevant to our
situation: (1) approximate (topological) location using
magnetic and light fields, (2) contact based on point and
strip Force Sensitive Resistors (FSR) and (3) follow-
through gesture based on acceleration. Sustaining the illu-
sion of continuous, direct interaction requires the system
to support sensor readings with tight latency and update
frequency bounds.

Table 1 Human interaction bounds

Type of feedback Frequency Hz Latency ms

visual 15-25 50

acoustic 5-10 10-50

acoustic (melodic) 50 10

haptic 1000 1

End-to-end latency is used to evaluate the responsive-
ness of interactive media and includes the time needed to
sense changes actuated by the user, to modify its state,
and to produce a feedback in the space. The maximum ac-
ceptable latency is determined by the human mo-
tor/perceptual system depending on interaction mode
(visual, acoustic or haptic). Table 1 summarizes rough ac-
ceptable bounds in this situation, based on the Model
Human Processor. Update frequency is the number of
sensors readings that occur per time period. To achieve
high frequency (necessary for the illusion of continuity)
and to support many concurrent sensors, wireless com-
munication must use the available radio spectrum opti-
mally. Besides low latency and high update frequency, the
following factors were also important in choosing the ar-
chitecture:

• small size, robustness and ease of physical setup;
• simple interface to media generation engine;
• easy allocation of processing activities;
• inexpensive and easy to recreate;
• low power consumption.
After examining a number of options, we chose the

Berkeley motes because they are small, inexpensive, and
readily available wireless sensor modules. The motes plat-
form is easy to modify for implementing non-standard
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11



What sense modality?

machine sense ! human sense

sensor modality ! sense modality
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Regimes of sensing

regimes of sensing vs. sensor modality

scales of distance x energy (example):

>> 1m x multiple bodies (pedestrian flow)

~ 1m x limb extension (greeting)

0 x contact (handshake)

touch nuance (caress, 

Jill Fantauzza, et al., "Greeting Dynamics Using Expressive Softwear" (Ubicomp 2003)
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what sensor modality?

Physical or physiological?

Critique of psychologism

Martin Kusch, Psychologism, Stanford Encyclopedia of Philosophy, 21 Mar 2007

Descombes, V. (2001). The Mind's Provisions: A Critique of Cognitivism, Princeton 
University Press.
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intrinsic vs extrinsic

Saussure: any semiotic system is an abstract 
system of differences

Bobick: Kid’s Room method
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continuous vs discrete

what can we do without tokenizing?

work with streams

(discretized) continuous model ! discrete 
model 
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what is noise?

“heat” noise in the sensor

network or operating system indeterminacies

non-semantic signal
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push vs. poll

Better sense of coupling, causality for 
gesturer.

You can feel when the system stops 
responding.

Joel Ryan, Institute of Sonology, and STEIM
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some projects

19



continuous gesture tracking for sound

SXW, et al, Continuous Sensing of Gesture for Control of Audio-Visual Media 
(ISWC 2003)
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angular moments to continuous sound

SXW, Yvonne Caravia, Yoichiro Serita, Georgia Tech IDT 21
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Platform (Iachello, Dow, Serita)

Usage (Sha, Serita, Ubicomp)

SXW, et al, Continuous Sensing of Gesture for Control of Audio-Visual Media 
(ISWC 2003)
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controlling what?

sound file play back vs continuous synthesis

not triggers, sound ! {objects in space}

classical methods for sound synthesis:

vocal formants (howling ball txOom)

granular synthesis
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motes, MSP instruments

SXW, J Fantauzza, Ubicomp 24
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WYSIWYG
Wearable Sound Gestural Instruments

SXW - Marcelo Wanderley
Hexagram
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WYSIWYG

• Soft, continuous1 controllers

handkerchief, scarf, blanket

• Continuous2 mapping to continuous3 sound

• Improvised play

• Collective movement

• Technical Goal: Statistical correlates to 
intentional gesture1
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* Doug Van Nort, * David Gauthier, Sha Xin Wei, Marcelo M. Wanderley, 
“Extraction of Gestural Meaning from a Fabric-Based Instrument,” ICMC 
International Computer Music Conference Proceedings, 2007. 

* David Birnbaum, * Freida Abtan, Sha Xin Wei, Marcelo M. Wanderley, 
“Mapping and Dimensionality of a Cloth-based Sound Instrument,” Proceedings 
of Sound and Music Computing (SMC), Lefkada Greece, 2007.

26



WYSIWYG architecture
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WYSIWYG blanket test

28

Woven w/ conductive fibers on Jacquard loom, M. Bromley, J. Berzowksa, XS Labs.
Mechatronics, Feature extraction, mappings to sound: E. Sinyor, D. Gauthier, F Abtan, 
D. Birnbaum, D. v Nort
Choreography by SY Cho and members of Dance Department.

28



higher order features

Phase relationship between spatial locations

Periodicity as function of position

Harmonicity, generalizing “regular motion”

Directionality, as cue to focus and intent

But: we always start and end with human interpretant
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Ouija
Collective gesture
Intentional gesture

Movement art:  *Improvisation vs. choreography

* => no a prior classifiers.  But also, no grammar!
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Ostensive Experiments

Entrainment
pass dynamics body to body w/o explicit instruction

(un)rehearsed or (un)trained, 3-6 people

Contact Improv

Camouflage

Calligraphy

Delay
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Implicit Experiments

Effects of no | passive | responsive temporal 
media on movement.

Future:

Look (inspection) for emergence of co-articulation.

Look for statistical correlates among sensor features.
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Ouija: entrainment

Ouija Experiment on Collective Gesture in 
Responsive Media Spaces, June-July 2007

33
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machine vision for feature extraction from movement, 
continuous synthesis of video based on physics models, 
leveraging corporeal intuition.

Ouija: Calligraphy 1/2

34
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Ouija: Calligraphy 2/2

35
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Ouija: Delay

Conventional performance’s fixed sequence of movement => 
less need for realtime gesture tracking?  But how fixed is fixed? 36
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future work
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expert movement analysis

Dr. S. Gill, Middlesex & Cambridge (Ian Cross)

non-verbal movement, rhythm and musicality in 
movement

SXW, S. Gill, Gesture and Response in Field-Based Performance, Creativity and 
Cognition Conference, 2005.
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expert movement analysis

D. van Nort, McGill (Marcelo Wanderley 
IDMIL)

predictive and geometric models for gestural sound

e.g. correlation, ICA, realtime wavelets

D. Gauthier, M. Fortin
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statistical correlates, not 
certificates, of intention

Correlation, e.g.                                  , or

Kalman filter estimates of state X(t) from 
observables y(t), of form

to supply other processes downstream with parameters to steer their behavior. (Part of this was
inspired by ”steerable computation” of physical simulations in the 1980’s.)

Taking the general point of view that the observables y(t) are the result of a linear dynamical system
on some model parameters X(t) plus some non-linear perturbation of controllable as ”noise,” we
can try to discover those X(t).

One example of a particularly powerful approach is to use Kalman filters to estimate the state.
(LeRoux 2003[12]) In the discrete time version of such an approach, the state evolution is assumed
to be given by

X(t + 1) = A(t)X(t) + b(t) + w(t) (1)

where X is the state vector we intend to estimate, A(t) is the known square transition matrix of
the process. The control b(t) is given and there is a zero mean process noise w(t) with known
covariance rw (t). This noise w(t) is independant of X(t). The measured vector y(t) is given by
the measurement equation :

y(t) = H(t)X(t) + v(t). (2)

H(t) is the rectangular measurement matrix, v(t) is the zero mean measurement noise, of known
cova- riance rv (t). The noise v(t) is independant of X(t). The dimension of w(t) is the dimension
of x(t); the dimension of v(t) is the dimension of y(t). The covariance of the state vector X(t) is

P (t) = E[|X(t)− X̄|2] (3)

where X̄ = E[X(t)] the expected, or mean value of X(t).

The Kalman filter estimates from the observables y(t) the state vector X(t) with the lowest norm
covariance matrix. In the recent decade, Kalman filters have been used successfully in computer
vision, for example to track objects using camera data alone, but supplemented with a model of
physics. (ex. Brostow 2004, van Nort 2006.)

We can Kalman filters to predict human activity after a window of samples, then observe the
human or allow the machine process to diverge from prediction. In the course of play, a human
could naturally diverge. In the conventional design of adaptive or predictive systems, this would
be considered an error to be corrected, but in performative systems, we can use the measure of
discrepancy to parametrize other computation. This method could supply a discrepancy measure
as a parameter of ”surprise” (orthogonal to prediction / expectation) to steer continuous temporal
media synthesis processes.

This continuous gesture tracking extends more mature work from 2001 through 2006 based on
potential energy formalism adapted from classical mechanics and continuous dynamical systems,
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(a) (b)

Figure 1. The Blanket instrument (a) sans human interac-
tion (b) collective play along the interior.

embedded in the fabric itself, as well as in the resultant
sound. To this end, we consider the sum total of all in-
dividual and collective gestures as they emerge from the
fabric, and gestural extraction approaches that are appro-
priate given these goals.

4. EXTRACTION OF MEANINGFUL GESTURES

4.1. Interaction and Intentionality

We utilize the statistical framework of correlation analy-
sis and related methods. This allows us to explore pos-
sible continuous fabric topologies and their temporal be-
havior without committing to a single model through the
use of high-level or overly-specialized data. It further al-
lows us to explore the notion of intentionality in gesture,
the markers of which stem from actions such as repeated
or concurrent motions.

The LDRs are distributed uniformly across the Blan-
ket surface, leaving no directional bias and allowing us
to choose to track those areas which are most contextu-
ally relevant. The simple sensing modality of vertical dis-
placement does not afford a rich interaction itself, but the
number of available sensors and a proper consideration
of their own inter-channel interaction can greatly enhance
this. In particular, we “listen” to a given subset of the
sensor grid, and analyze various spatial and temporal cor-
relation sequences that are extracted from this.

4.2. Spatio-Temporal Correlation

Consider the raw control input stream as a single time-
varying vector X[n] = {x1[n], x2[n], . . . , xN [n]}, wherein
each dimension represents a different point on the sensor
grid. From this information, we build a collection of es-
timators and feature extractions techniques based on the
general idea of cross-correlation across spatial channels as
well as temporal autocorrelation at given points along the
cloth surface. Considering X[n] as a wide-sense station-
ary stochastic process [4], we can express its generalized
spatio-temporal correlation sequence as

Rn[k, i, j] = E(xi[n]xj [n− k]) (1)

giving us an expression of the dependence between vari-
ables across space and time.

Now, this leaves us with a statistical framework from
which we must build a proper real-world estimate, as well

as a potentially intractable amount of data. The former
problem is dealt with by looking at time-smoothed as well
as instantaneous estimates of the data streams, which re-
sults in the two respective approaches:

R̂n[k, i, j] = xi[n]xj [n− k] (2)

and

R̃n[k, i, j] =
n∑

l=n−L

xi[l]xj [l − k] (3)

where L is the window size of observation for the in-
put streams of control data. The problem of reducing the
amount of data from which we extract meaningful gestural
features is dealt with by consideration and observation of
the manner in which one interacts with the Blanket instru-
ment, including some observations on the set of gestural
actions that it affords and elicits.

4.3. Fabric-Based Interaction and Resulting Feature
Extraction

We don’t make any strong modeling assumptions because
of our goal to not strongly enforce cognitive models or
schemas such as one would have in a classic instrumental
performance context. Yet there are certain modes of inter-
action that we consider as indicators of intentional move-
ment, including periodic motion and wave-like or repeated
movements of the Blanket.

4.3.1. Multi-dimensional, Area-Based Correlates

With this in mind we consider certain areas of our cloth
surface as having particular importance due to the shape
and installation of the Blanket. This leads us to extract the
multi-dimensional cross-correlation of these areas of in-
terest. Topologically speaking, this relation does not have
to constrain itself to the underlying sensor grid. Defining
other correlative structures allows us discover many more
natural and organic gestures, as these often do not arise in
perfect orthogonality to the Blanket surface dimensions.
For example, the interaction between boundary and cen-
ter is of importance to the Blanket, as these two represent
perceptual limits of the surface as well as natural points
of interaction for individual (waving of the blanket) as
well as collective play (“covering” of an inner participant,
sending gestural waves back and forth). The fundamen-
tal difference between this approach to feature extraction
and that of grid-based column correlation is depicted in
figure 2. Further, this extraction approach differs from the
expression of the previous section in that we consider an
entire area of fabric space as a single entity, and examine
its relation to another section of the soft controller over
time. For example, the general interaction between two
columns of the MxM grid becomes

R̄n =
M−1∑

i=0

xi[n]xi+kM [n] (4)

meaning that we are taking the inner product of two
columns, in this example the first and the kth. In the case
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engineering note

thanks to E. Sinyor

Body gesture Object “gesture” Mechanical energy Sensing technology Price,
Efficiency,
Availability1

Any movement Handling Acceleration Accelerometer 254
Any part [?] Wearing
Sensitivity Throwing Piezoresistive 225
Hands Handling Force Air pressure 244
Feet Holding Pressure Flexion 244
Lying/sitting Pushing Piezoresistive 234

Pressing Load cell 255
Squeezing Miniature pressure transducer 154

Piezoelectric 244
Strain Strain gauge 254
Contact Capacitive 545

Specific (cutting, etc.) Presence Capacitive 545
Mouth Inside/outside Humidity Hygrometer 333
Sweep Hydrophile material Piezoresistive 525
Movements Inside/outside Temperature Piezoresistive 525
Energy/heat Thermosensitive materials
Hands Long objects Linear position Piezoelectric 242
Feet Large surfaces 2D Localization Piezoresistive 545

Capacitive 545
Articulation Soft materials Flexion Piezoresistive 545

Surface (de Rossi) 333
[?] Rigid materials Strain Piezoresistive 545
Space movements 3D Localization Video
Body parts Orientation Tilting, acceleration, magnetic 244

Rotation Magnetic, piezoresistive 445
Contact/non-contact Activation Switching Capacitive 545

Piezo 545
1 1: Very poor

2: Poor
3: Moderate
4: Good
5: Very good

Table 1. Gestures and sensors, at a glance. 41



summary
Conditions:

Live, real-time, performative events

Collective as well as individual

Improvised (no a priori)

Strategy:

Leverage corporeal intuition

Continuous models

controllers, media, and mappings

geometrical / topological models

Statistical approaches

correlation

Kalman estimate state
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