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Simpler Question

What is the Area of a Surface?

Before going on with the Plateau problem , let’s warm up with “simpler” prototypical question: 

What Is the Area of a Surface?

  1. What is area?

  2. What is surface?

For  smooth   (continuously differentiable)  surfaces, we have a classical way of measuring 

area: 

via area 2-forms, such as  dx^dy,  as area meters

 (like light meters, sensitive to both position and orientation).
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Monstrous Surfaces

Lipschitz graph: | f(x) - f(y) | ≤ C | x - y |
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finite area, infinite boundary (!)

Countable unions of Lipschitz graphs.
Iterated sets.

Sierpinski sponge.
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Area Fails

dx^dy?? Approximation by Lipschitz graphs??

Countably rectifiable

space-filling limit (!)

Even a cylinder
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Extend the Notion of Area

Hausdorff Measure Hm

5

Hm(M) =
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Another Extension of Area

Projection (Favard) Measure

Project into hyperplanes

Monster: There are sets that are thin in almost 

every direction - but have positive Hausdorff 

measure.
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This set has H1 measure Sqrt(2)

but I1 measure 0
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(Again) Plateau’s  Question

The Minimizing Sequence: |M
1
| > |M

2
| > |M

3
| > ... ?

Armed with these hybridized notions, let’s go back to the Plateau question

Return to characterization of minimality: The Minimizing Sequence:

Take ALL surfaces that span the given loop, and pick out the one that has least area.

But, here’s a pathological sequence:
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(Again) What Is a Surface?

Extend Notion of Surface to Currents: 

Measures (ex. 2-form on surface)

Measures on measures
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Currents
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Lakatos’ Heuristic

Proofs and Refutations

In his virtuoso essay, “Proofs and Refutations,”  Imre Lakatos made central use of the notion of a counterexample to a 

conjecture.   A conjecture-demolishing counterexample, which Lakatos called a monster , was an event that according 

to his mathematical dialectic, generated new theory in the form of modified statements and concepts.

He described his heuristic fairly clearly, for example in [Appendix 1]:

1. Make a primitive conjecture.

2. Find global counterexample C.

3. Proof Analysis : Isolate part of proof that’s contradicted, and make it a lemma with C as its local 

counterexample.

4. Add newly explicit lemma to the statement of the new conjecture.

...

5. If new proof-generated concept or lemma appears in many theorems, then it becomes promoted as more 

central to the theory.

6. Counterexamples provide new avenues of inquiry and are most important in new, young, rapidly developing 

fields.

Lakatos habilitated monsters - or counterexamples - into the normal course of mathematical work, but at a rather formal, 

rhetorical, level, that of the level of proofs.  It’s telling that, despite his nod  toward discourse, he focussed the central part 

of his discussion of his method on what he termed  proof analysis.
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