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Abstract

At a symposium on Deleuze and Whitehead in 2005, I proposed that one could use mathematics 

not as an instrument or measure, or a replacement for God, but as a poetic articulation, or perhaps 

in less artful manner, a stammered experimental approach to cultural dynamics.  

But I choose to start with the simplest symbolic substances that respect the lifeworld’s continuous 

dynamism, change, temporality, unbounded transformation, morphogenesis, superposability, con-

tinuity, density, and value, and yet are free of or at least agnostic with respect to measure, metric, 

counting, finitude, formal logic, syntax, grammar, digitality, and computability, in short free of the 

formal structures that would put a cage over all of the lifeworld.  I call these substances topological 

media.  

This essay introduces modes in which we can articulate substance and infinity using topological 

notions of proximity, convergence, limit, change and novelty, without recourse to number or met-

ric. The motivation for this work is that topology furnishes us with concepts well-adapted for poieti-

cally articulating the world as plenum stuff rather than objects with an a priori schema.

Topology is a more primordial mode of articulation than number or geometry.  With care, it may 

provide a fruitful approach to morphogenesis and cultural dynamics that is neither reductive and 

nor anthropocentric with value beyond the particular motivating applications in this essay.  How-

ever, I will not pretend to any systematic application of all the scaffolding concepts introduced in 

this essay.  In fact, I should like to see what fellow students of cultural dynamics and cosmopolitics 

make of these concepts in their own work.   

Keywords

Process philosophy, morphogenesis, topology, open set, continuity, transformation, poiesis, phi-
losophy, process sociology, cosmology, cultural theory, individuation, global flows
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1 Mathematics as poetic material, and material mode of articulation 

At a symposium on Deleuze and Whitehead [ENDNOTE 1] I proposed that one could use 
mathematics as poetry rather than as instrument or measure, or a replacement for God, or a con-
ceptual battering ram.  (I must confess, however, to some pleasure in Alain Badiou’s fearless and 
fierce polemic about mathematics = ontology.)  Regarding mathematics as substance, and not 
merely a description of substance, shaping mathematics as poietic material in fact differs in kind 
from using mathematics to describe the universe as physicists see it.  Part of the charm of 
FoAM’s responsive environment trg (Kuzmanovic and Boykett, 2006)  is its attempt to make 
palpable a concept of the world (recent quantum field theoretic cosmology) by forcibly identify-
ing it with the perceptual field -- a cosmic ambition.  The artists could only begin to approximate 
this by restricting trg to a very compact physical duration and place in Kibla, and by making al-
legorical simulations in software.  Allegory makes the world of difference between depiction and 
enaction, perception and phenomenology.  Allegory is allied with depiction because it makes a 
picture and a necessary gap between the picture and what the picture homologously represents; 
therefore it always implicates questions of knowledge, which devolve to questions of sense data.  
In that case, however, we are dogged by all the epistemological problems of language as repre-
sentation raised from Wittgenstein and Debord to the present day.

This essay is part of a larger experiment to use mathematics not as representations or models of 
some aspects or strata of the world, but rather as modes of articulation, especially poetic material 
modes, that consequently are adequate to life.  It could be sharply different sorts of poetic matter: 
continuous topological dynamics, geometric measure theory, or even fancier stuff like non-
commutative algebra and etale cohomology.  But I choose to start with the simplest symbolic 
substances that respect the lifeworld’s continuous dynamism, change, temporality, infinite trans-
formation, morphogenesis, superposability, continuity, density, and value, and yet are free of or 
at least agnostic with respect to measure, metric, counting, finitude, formal logic, linguistics, 
(syntax, grammar), digitality, and computability, in short of all formal structures that would put a 
cage over all of the lifeworld.  I call these substances topological media.  Simplicity here is not a 
requirement of the theory (no Occam’s razor here) but merely an acknowledgement that I do not 
understand enough about the lifeworld to bring out fancier stuff yet, of which there is so much 
more up the wizard sleeves.

Sha • Topology and Morphogenesis
For Chris Fynsk, Yves Abrioux, Stamatia Portanova, Thomas Jellis. Please do not circulate this draft.

3 / 32



The fundamental difference in this approach is to use mathematics as substance in a workman-
like way, patching here and there to see what values ensue.  I regard mathematics as a trellis for 
play, rather than a carapace, always sensitive to whether the poetic material accommodates 
transfinite, incommensurable, immanent passion.  Totalizing carapaces like Wolfram’s computa-
tional equivalence principle, which at bottom is a transcendental atomic metaphysics founded on 
making counting sacred, would hammer us into a very sparse ontology.  And to a hammer every-
thing is a nail.

This essay introduces modes of articulation with which we can articulate substance and infinity 
using notions of proximity, convergence, limit, change and novelty, without recourse to number 
or metric.  For the moment, I will label these fields of concepts very loosely as: topology, and 
topological dynamics.  [ENDNOTE 2 ]  These concepts should honor the full density, richness, 
and felt meaning of living experience.  Moreover, ‘analysis’ as drawn from the context of 
mathematics does not entail any elements of psychoanalytic theory, or more generally any ex-
plicit psychosocial theory, at least in any conventional sense.  Mathematicians will note that for 
the sake of concision I am using these terms mildly but responsibly loosened from the contexts in 
which they traditionally have been defined.  I will elaborate them more accurately as we proceed.

The motivation for this work is that topology furnishes us with concepts well-adapted for alterna-
tively articulating the world as plenum and stuff.  Continuous topological dynamical systems are 
useful for articulating morphogenetic process.  I should say that I will introduce more and less 
than what mathematicians call ‘topology.’  More, because I will refer to fields of articulation and 
shared experience considerably more extensive than the mathematical purview of point set to-
pology, such as cigarette smoking, songs, and social migration.  Less, because in this essay we 
will spare the schoolbook approach and take a high road more akin to Gilles Châtelet’s treatment 
of mathematics via essential intuitions (Châtelet, 2000).  Like Châtelet, I will respect the intui-
tive essences of the concepts and their derivations, which in mathematics take the form of logical 
(but not formally mechanized) proof.  [ENDNOTE 3]   Also, mindful of the problematic misun-
derstanding of earlier work by, for example, René Thom (1989, 1990), let me dissuade would-be 
scientists from enlisting topological theorems for mathematical modeling in its instrumental 
sense.  And finally, I wager that the modes of articulation I introduce in this essay for their poie-
tic potential, have implications for art, philosophy, and engineering beyond the scope of the par-
ticular motivating applications in this essay.  However, I will not pretend to make systematic ap-

Sha • Topology and Morphogenesis
For Chris Fynsk, Yves Abrioux, Stamatia Portanova, Thomas Jellis. Please do not circulate this draft.

4 / 32



plication of all the scaffolding concepts introduced in this essay.  In fact, I should like to see what 
	

 fellow travelers make of these concepts in their own work.

2 Continuous Topology, Topological Manifolds 

Writing of speculative philosophy and art, the challenge is always to describe the notions in just 
the right degree of detail or concreteness.  It’s not only the what but the how and why that we’re 
concerned with.  It takes some judgment to estimate at what level of detail we need to halt, 
enough to offer the reader the conceptual grit and grip needed to make his or her own concepts,  
but not too much to obscure the essential ideas.  Some editors may not recognize that with tech-
nical concepts such as concepts of mathematical objects and related morphisms, one can err on 
the side of too much explanation.  More detailed descriptions aimed at students (of all ages) of 
mathematics typically would stop the reader at the wall of notation.  That said, Klaus Janich’s 
(1984) uniquely vivacious book on basic topology could serve as a second reference for some of 
the articulations I propose.  In mathematics, the how and why require us to go through the actual 
proofs.  Understanding a proof may require years of meditation for a paragraph of mathematical 
writing.  That said, I will present a proof only in order to advance and thicken the argument, 
rather than demonstrate the truth and force of a theorem.

Before we begin, I should emphasize that topology as mathematicians have developed it over the 
past hundred years comprises an enormous range of spaces, mappings, properties and concepts, 
immeasurably richer than the discrete, graph topology cited by computer scientists and their cli-
ents.  (For example, B. C. Smith uses topological in a typically loose way:  ‘By “topological” I 
mean that the overall temporal order of events is dictated, but that their absolute or metric time-
structure (e.g., exactly how fast the program runs) is not.’ (Smith, 1999: 6) Graphs are a particu-
lar and relatively uninteresting class topological spaces, but the vast majority of topological 
spaces are not graphs.  For the purposes of this book, when I say topological, I will mean the 
general properties of the class of topological manifolds and NOT the special properties of dis-
crete graphs.  In fact, one of my strongest technical reasons for introducing the topological is to 
provide an alternative to all the figures in discrete sets, and graphs.
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3 Examples

It may be helpful to keep in mind some working examples in which you, the reader, can check 
your developing intuitions about the topological concepts that I am about to describe.  For each 
example, the fundamental question to think about concerns proximity: what do you consider to 
be a neighborhood, without necessarily appealing to any numerical quantitative means.

3.1 Example: The Earth 

One example comes from considering the geophysical boundary of our planet: where does the 
Earth end, and the space begin as one ascends into the atmosphere?  One could apply all sorts of 
criteria.  The point at which one loses consciousness in an rising high altitude balloon?  The 
barometric pressure?  The flux of ultraviolet light or cosmic rays intersecting a meter held in the 
hand?  The visibility of the people waving their hands goodbye?  Take the barometric pressure 
for example.  A macroscopic body intersecting the atmosphere at extremely high speed (tens of 
thousands of miles per hour) and at a shallow enough angle may even glance off the atmosphere 
the way a rock can skip off the surface of a lake, but the same body brought slowly through the 
atmosphere will easily penetrate the atmosphere.  So the manner in which one approaches the 
planet certainly affects the boundedness of the planet.

Of course where the Earth ends and space begins is conventional, but the conventionality under-
lines the material fact that there is no sharp atmospheric boundary around the planet Earth.

3.2 Flows

A flow can be regarded as a set of trajectories, where each particular trajectory of a particle, 
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.   A second, less ex-
plicit, way is to consider not individual trajectories of flows but a model of how all possible tra-
jectories are generated from a much more concise set of differential equations describing the 
flow as a whole, whose ‘solutions’ are the trajectories.  In other words, the set of differential 
equations yield not specific numbers but equations as their solutions.  So we move from the ac-
tual to the potential in a concrete way.  In fact this mode of thinking is a germ of the intuition be-
hind the paired concepts: actual / potential.  Systems of ordinary differential equations are the 
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heart of the theory of dynamical systems, which in turn provide notions constituting complexity 
theory, systems theory, and cybernetics.

Now, even this description, however flexibly it unchains us from an unwarrantedly explicit de-
scription of material experience, is still too explicit, and subject to reification error, or what A.N. 
Whitehead called the “fallacy of misplaced concreteness” (Whitehead, 1978; 21).  In the absence 
of any concrete data about the ‘physics of materials,’ i.e.  the constants of the model, analogous 
to constants of thermal or electrical conductivity, or the gravitational constant G, or the speed of 
light in electromagnetism, what can we say with rigor and warrant that on the one hand does not 
make unreasonably ‘concrete’ demands on description, yet on the other hand, honors the phe-
nomena in question?  If we dispense with explicit equations also at this potential level of ordi-
nary differential equations (ODE’s), we can still, nonetheless, make provably certain statements 
about the behavior of the possible solutions to a given system.  Some qualitative but rigorously 
treatable features or aspects include periodicity, or the existence and uniqueness or structure of 
periodic trajectories (also called ‘orbits’).  [ENDNOTE 4] 

We can articulate rich physical phenomena using notions like the wash of ripples along the banks 
of a river, the accumulation of leaves in the eddies trapped in the crook of a tree trunk fallen into 
the water, or more symbolic entities like the destinations of lanterns set out to float on the cur-
rent, or the origins of a river and all its tributaries.  The destination(s) and origins of a trajectory 
regarded as limits as trajectory-time goes to infinity or negative infinity can be regarded as sym-
bolic limit events.

3.3 Demographics 

Consider the set X of all the life courses of people through time.  (For this example, think of time 
conventionally as a unidimensional index of processes.)   This is, in principle, a space of bound-
lessly many dimensions.  Each point or element of this set X is itself a whole life course, a trajec-
tory that could be arrayed along a literally boundless number of features: geography, wealth, bio-
matter, movement, historical context, class, social fields, and so forth.  It is difficult to imagine 
how to compare lives against one another, and in fact one could well argue that any attempt to 
metrize the set of life courses unavoidably dessicates the experiences they singly and intersubjec-
tively trace.  Consider the flow of peoples into the United States over the past century, and con-
sider how the State has attracted, admitted, or excluded people along its borders.  The life 
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courses of all these immigrants vary infinitely, and we cannot follow these lives in their dizzying 
contingent crenulation.  Indeed, how could we begin to think what lives are proximate, or related 
to which, and how some lives cluster or intertwine, while others remain forever distinct?  In what 
senses can we understand ‘intertwine’, ‘cluster’, and ‘remain distinct’?  How, aside from resort-
ing to literary means of Dantean scale, can we articulate the set of all life courses, the ‘space of 
lives’?  We will come back to this example, after we have absorbed some topological concepts.

3.4 Where’s the Smoke?  

Stand a group of people in a room; ask someone to light and smoke a  cigarette.  Ask each per-
son to raise a hand upon smelling the smoke.  This seems like a reasonable way to empirically 
define where is the smoke.  But notice several features about this experiment.  The extent of the 
smoke  changes with time.  The extent is determined physiologically, situationally, phenome-
nally: different people have different sensibilities and each person may be  more or less sensitive 
to smoke according to how much s/he thinks  about the smoke.  In fact, just asking people to 
smell for smoke primes  their sensitivities.   Therefore the smoke’s extent is an amalgam of the 
physical particles in motion, the people’s physiologies, and the phenomenological expectation 
set by the asking.

3.5 Songs 

Consider the set of all songs, alternatively defined as (1) performed live, with contingent warble, 
glide, and rubato; (2) transcribed to a formal system of notes in a normalized and regularized set 
of pitches and durations; (3) paralleled and labelled by words: titles and lyrics; (4) as variations 
in air pressure -- time series of acoustic amplitudes over time.  Each of these characterizations 
enable quite different ways  of considering what songs are similar to what.  Consider yet another 
interpretation: (5) songs as a set of social practices whose cultural and micro-local meaning and 
value inherit from local as well as non-local histories.  A performance of one song also condi-
tions other performances.  As we recall from the brief excursion into the history of Arab musical 
performance at the cusp of Western notational, recording, distributional economies, the formal 
notation of a particular performance freezes-in a canonical representative of a Wittgensteinian 
family of songs whose boundary is constantly re-negotiated by social practices.  A key point here 
is that those social practices, even though they may be conditioned, unfold boundlessly and end-
lessly in ways that I suggest are non-computable in essence.  (To argue this fully would take us 

Sha • Topology and Morphogenesis
For Chris Fynsk, Yves Abrioux, Stamatia Portanova, Thomas Jellis. Please do not circulate this draft.

8 / 32



too far afield, so I refer to (Penrose, 1991) as one starting point.) This example and the previous 
demographic example anticipate a material, morphogenetic approach to socio-cultural dynamics.

4 Pointset Topology

The basic axioms of set theory include the notion of inclusion (membership), subset, intersection 
and union.  What is already enormously powerful at this level of description is that there is no 
comment on the nature of a set, whether it is material, abstract, finite, or infinite.  There is no re-
striction at all on how a set may be defined.  In a most fundamental difference with computer en-
gineering, a set does not have to be defined by explicit enumeration.  Much of the imaginary of 
the computer scientist is delimited by the notion of a finite, denumerable set {x1, x2, x3, …, xn} 
where n is some explicit, finite integer.  But a set can be defined by a rule, such as ‘set of all real 
numbers,’ or ‘the set of all moments of introspection,’ or ‘the set of all pleasures.’  It is set the-
ory’s lack of structure (mass, dimension, color, emotion, race, class, gender, religion, history, 
etc.) that makes it such an ample notion: anything can be in a set.  And it is this very omnivorous 
nature of the concept of set that gave rise to the most crisis in the foundations of logic and 
mathematics in the early 20c, instantiated by Russell’s paradox and the paradox of the set of all 
sets.  But here I stop since my concern is not to explicate or repair set theory, but to pass on to 
fields richer than bare sets.  In fact, the very enormity and brilliance of Badiou’s effort to con-
struct a neo-Platonist ontology on set theory testifies to the sparseness of the theory which neces-
sitates the effort.  Just one step up from bare set theory takes us to point-set topology, the next 
sparsest set of concepts in mathematics, built from the raw material of sets, but now admitting 
more structure.

It may appear marvelous how what seems like the barest whiff of structure yields such a power-
ful set of concepts and theorems.  But this should not appear any more surprising than Galileo’s 
Renaissance observation that the book of Nature is written in mathematics, if one regards 
mathematics from a Latourian perspective as relatively high-level machines of inscription of ma-
terial processes.  (Latour, 1988)

In this essay, we can only touch on the most elementary concepts and theorems, but even these 
seem fertile for our interests in philosophy of media, art and technoscience.
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Point-set topology is one of the most primordial  modes of articulation available to us, the open 
set is its most fundamental notion.  It is even more primordial than counting.  Primordial does 
not mean foundational, however: it means that no other compactly articulated concepts are ready 
to hand from which to construct an argument, in the given scope of reasoning.

We begin with point-set topology, not set theory, because, pace Badiou, I believe that set theory 
is too sparse to accommodate being in the world without severe distortions of our felt experience.  
Two observations to substantiate this belief: 

(1) Russell and Whitehead took hundreds of intricate, technical pages to establish from set theory 
alone the integers: 1, 2, 3, …  as sets built out of the empty set: ( ø, {ø}, {ø, {ø}}, {ø, {ø, {ø}}} 
…  }.  They prove theorem *102 , that 1+1 = 2, after about 1000 pages of work.

(2) In a tour de force effort, for which he received the Fields Medal, Paul Cohen established the 
independence of the Continuum Hypothesis from the Axiom of Choice.  In our context, this 
demostrates that the continuum is ontologically distinct from even the transfinitization of ordina-
tion, number, count.

Pointset topology provides articulations of these notions:  open (closed) set, extent, neighbor-
hood (proximity), connectedness, convergence, limit, and continuous transformation (or map-
ping),  all without relying on numerical measure or metric.  Yet, as we will see, we can make 
more certain statements about qualitative, i.e.  topological, behaviour than any that can be made 
with numerical measure.  Moreover, having such primordial structure means that topological ar-
guments start with less conceptual machinery, which appeals to the minimalist taste.  Readers 
who have slogged through epsilon-delta proofs will appreciate a notion of continuity built only 
out of the elementary notions of open set and inverse map.

The open set captures the notion of a set that welcomes members, and does not have a sharp lit-
mus test for membership.  In fact its most fundamental characterization is the following:  If x is 
in the set O, then  there is some complete neighborhood of x entirely contained inside O.  What 
are some examples of an open set?  A mundane one would be from demographics.  Say that we 
are restricting access to a movie theater to  people ages 13 to 17.  At those boundary ages, dis-
putes inevitably emerge: how close to the ‘edge’ may one be and still be admitted?  If we were to 
say 13 and older, someone who is 12 years, 364 days, 23 hours, and 59 minutes old may argue 
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that they are really already 13 up to the precision of clock technology.  Let’s say we restrict to 
those who are are strictly older than 13 and strictly younger than 16.  Then one would have a 
margin, but an undefined sort of margin: any margin will do, so long as that margin is not nil.  
For example, one test could be for the putative theater-goer to pull someone who is younger, but 
provably older than 13.  That would suffice.

The rigorous notion of open set extracts this notion of a comparative test from its particular con-
text.  The conceptually deepest aspect of the extraction is that it leaves behind the concept of 
number, or, even more deeply, the very concept of in-principle-numeric measure.  In other words, 
one does not need to measure anything using some metric (a distance, whether physical or ‘ab-
stract’)  or number in order to apply this test for openness.

This notion of openness underlies the rigorous characterization of open set.

Especially in this essay I qualify certain concepts or arguments as ‘rigorous,’ meaning that they 
admit definitions that are sufficiently precise and arguments sufficiently verifiable to be accepted 
by mathematicians.  Such concepts and arguments enjoy a particular mode of portability, share-
ability, and re-usability similar to that shared by the perspectivally approached, aperspectival en-
tities (objects and processes) of mathematics.  I use such concepts not to box thought, but to sus-
tain articulation, perhaps poietic articulation.

The open set is the most basic notion in point-set topology, but a set is never definable as open in 
itself; it is always defined relative to a topology, which is a set X of which U is a subset, together 
with a family of  the subsets of X that are declared to be open.  Which sets are declared to be 
‘open sets’ is up to you, the designer of the topology, provided only that the subsets in this family 
satisfy the following: 

4.2 Axioms of Topology 

	

 1.  If A and B are open, then the intersection of A and B (notated A ∩B) is open.

	

 2.  The arbitrary union of open sets is open.

	

 3.  The total set X, and the empty set, denoted ø, are both open.
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I wish to underline the openness of the concept of open set: given a set X -- a universe -- there is 
not necessarily a unique topology.  More than one topology may be defined on a given set X.  
Every set X has at least two topologies.  The coarsest topology is the one where the only open 
sets are X and the empty set ø.  And the finest topology is the one in which all the subsets are de-
clared to be open.

By definition, a subset C of X is closed if its complement is open in X.

An arbitrary subset U of X may be neither open nor closed.  Take, for example, the set of points 
in the cone of half-open segments based at the origin of xi ≥ 0, but whose distance from the ori-
gin is strictly less than 1:  (x1)2 + (x2)2 + …   + (xn)2 < 1.

FIGURE 1.  Half-open cone in R2: it includes points on the vertical and horizontal rays, but ex-
cludes those on the arc. 

The main lesson here is that the art of a topologist even at this elementary level contains a great 
deal of creative flexibility, that there is no transcendental principle determining a unique topol-
ogy for every set X.  A topology is always a choice relative to a universe-set, satisfying some 
light conditions that enable a conversation built upon provable theorems.  Note that the full space 
X and the empty set ø are both open and closed.
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Certain kinds of topologies are more amenable than others to most intuitions.  For example, you 
may expect that given any two distinct points a, b in X you ought to be able to find two open sets 
around each that do not meet, i.e.  that they can each be contained in their own bubble.  But it 
may be that the elements (points) of a topology are all entangled in some way  (e.g.  if they are 
the rays that meet at the origin) and the set of sets declared ‘open’ is too sparse to separate these 
elements.  One example of a very sparse topology would be the one in which the only open sets 
are the empty set ø, and the entire space X.  No two distinct points are separated according to 
that pathologically sparse topology.  (Mathematicians call such unpleasant and complicating 
situations ‘pathologies,’ but have various ways to deal with them by construction and definition.) 

4.4 Separability and Topological Spaces

To exclude such pathologies, we use the following 

Definition: A space X is Hausdorff (separable) if any two points a, b, are contained in disjoint 
open neighborhoods U, V; denoted: a ∈ U, and b ∈ V,  U ∩V = ∅.  (See Figure 2.)

Although this may seem hardly contestable, not all topologies are Hausdorff.

•
a •

b

•
a •

b

U V

FIGURE 2.  Hausdorff separability: any two points a, b, are contained in disjoint open neighbor-
hoods U, V, a ∈ U, and b ∈ V.

An Example of a Non-separable, (non-Hausdorff) Space

Define a topology on subsets of Rn, called the Zariski topology, by looking at the zerosets of 
polynomials.  For a polynomial P(z) there are only a finitely many points z in Rn, for which P(z) 
= 0.  Call this set, Zeroset[P].  A discrete set of points is closed in Rn , so its complement is an 
open set.  But any two complements of discrete sets of points meet as subsets of Rn, so no pair of 
points in Rn can be separated by disjoint open sets in the Zariski topology, the family of sets that 
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are defined to be open with respect to the Zariski topology of complements of zerosets of poly-
nomials.

(As an exercise, consider the space of all songs that are fixed by a finite set of word-positions, or 
named-pitches in fixed positions in the melody.)

4.3 Inducing a Topology: Revisiting Ellis Island

Consider again the flow of peoples into the United States over the past century, but consider an 
iconic slice through the flow of peoples at the event of their entry through the US Bureau of Im-
migration center at Ellis Island, New York.  Consider the event of being examined by the State 
and given some status as an immigrant to the nation.  In terms of topological dynamical systems 
this amounts to taking a transversal slice through the flow.  (There is a constellation of concepts 
in differential topology and dynamical systems with which we can make this as fruitfully rigor-
ous as any mathematical theory.)  

And consider some groupings that make sense in such a transversal section to the flow of lives 
through that place and event.  Groupings could arise from one of any number of features: with 
whom one rubs shoulders in the waiting room, religious practice, exhibiting a medical syndrome, 
wealth or class, and so forth.  Each choice associates the people into different collections of 
groupings and proximities, by no means spatial or metric.  Consider coloring the life courses that 
run before and extend beyond this event according to some particular grouping.  We can in prin-
ciple color the life courses by how they grouped on a particular day on Ellis Island.  In the words 
of a student of topology, a topology on people intersecting the Immigration intake facility in-
duces a topology on the set of life courses.  (See Figure 3.)
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FIGURE 3.  A Poincaré section through life courses as paths.

FIGURE 4.  A Poincaré section through the flow of a dynamical system
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FIGURE 5. Cross sections of root processes.

Definition: A point z is a limit of an infinite sequence of points z1, z2, …  , if for every neighbor-
hood H containing z, there is some integer N, for which zi are ∈ U, for all i > N.  In other words, 

no matter how you restrict attention around this point z, after ignoring finitely many points in the 
sequence, the remaining members of the sequence are all contained in the neighborhood U.

Theorem: Limits in a topological space X are unique if and only if X is Hausdorff.  [ENDNOTE 
5]

Proof.   We prove one direction:  X is Hausdorff implies that limits are unique.  Suppose x and x’ 
are each a limit of the sequence z1, z2, ….   Let us suppose that x and x’ are distinct.  We will 
show that this yields a contradiction.  Since X is Hausdorff, we can find disjoint neighborhoods 
U containing x, and U’ containing x.    Consider U.  By definition, there is a ‘tail’ of the sequence 
z1, z2, … entirely contained inside U.  In other words, there is an integer N such that all zk, for k 
> N, are contained in this neighborhood U.   But the same is true for U’:  there is a tail of the se-
quence z1, z2, … that is entirely contained in U’.   Looking far enough out along those tails, we 
arrive at points zk  that must lie in both U and U’.  But then U and U’ are not disjoint.   This con-
tradiction shows that the hypothesis that x and x’ are distinct is untenable.   So limits are unique. 
Q.E.D.

Notice we proved that limits are unique, but not that a limit necessarily exists for any particular 
infinite sequence.   Despite the most committed beliefs in a god, or an ideal communist or market 

Sha • Topology and Morphogenesis
For Chris Fynsk, Yves Abrioux, Stamatia Portanova, Thomas Jellis. Please do not circulate this draft.

16 / 32



economy, or Whiteheadean eternal object, the existence of a limit is a separate matter from its 
putative qualities.

Returning to our demographic example, one could have a topology on the space of life courses 
that is not Hausdorff.  This means that no two distinct life courses are contained in their own, 
disjoint neighborhoods.  For example, some ethical theories could amount to arguing that each 
open set of life courses overlaps with every other set of life courses.  However, if the topology is 
Hausdorff, then if an infinite (or practically infinite) sequence of life courses has a limit -- if there 
is some particular life course around which an infinite (boundlessly many) set of life courses 
cluster -- then that limit is unique.

Notice that we can use the proof of the theorem in fact as the sketch of an argument, because the  
concept and the proof are quite supple and general.  They rely on no notion of metric, no numeri-
cal measure, no data.  Therefore the argument can be used in a great many material situations.

4.5 Covering, Basis

Given a subset Ω of the topological space X, a covering of Ω is collection of open sets in X such 
that their union contains Ω. It is key that the sets be open in X.  A  covering does not have to be 
finite (or even countably infinite).  For example, any subset S of a metric space, no matter how 
pathological (imagine a monstrously heterogeneous cloud of shards and dust like the set A in 
Figure 6), has a covering.  Just take for the covering a set of epsilon balls centered on the points 

of S:  

for t in a range

t ∈ [α,β]

15 Topology

A ∩ B

∅

⊂

Ω

x ∈ X

U ⊂ X

φ : X → Y

R

ε δ x ∈ R

f : R → R

x ∈ R

z ∈ M

S ⊂
⋃

x∈S Bε(x)

∪

7

.      There are as many balls as there are points in S, so if S contains an 
uncountable number of points, then this covering has an uncountable number of balls.  It does 
the job, but extravagantly, transfinitely.

A S1⋃S2⋃…

FIGURE 6.  Covering a set A with a family of open sets S1⋃S2⋃….
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A basis for the topological space X is a family of the open sets in X such that every subset of X 
has a cover comprising elements from that family.  There can be more than one basis -- usually 
an infinite number of bases -- for a space X relative to a given topology.

4.6 Examples

Exercise:  Consider the topology T1 generated by open discs.  Compare it with the topology T2 
generated by infinite strips.  In other words, is every set that can be covered by an open set in T1 
also covered by an open set in T2?

It is not true that any family of subsets of a topological space V can be extended by arbitrary un-
ions and intersections into a topology for V, even if the initial family itself contains an infinite 
number of sets and the union of the family has unbounded extent.  Regarding the x-y plane as a 
subset of R3, consider the family of sets generated by (countable) intersections and arbitrary un-
ions of subsets of the x-y plane P (the points <x, y, z> in R3 such that z = 0).  Any union or inter-
section of two subsets of P will be another subset of P.  Now take a ‘thick’ subset of the full R3, 
say the unit ball B centered at <0, 0, 1/2>, which intersects the plane P, but most of whose points 
are not in P.  No union or intersection of planar subsets in P can cover the ball B.

Notice that these notions of open-ness and covering do not require any notion of dimension, so 
they are more primordial than dimensionality.  A topological space does not have to have the 
property of dimension!  But in the case that our topological space indeed is dimensional, in par-
ticular if it has the structure of a vector space like R3, then we see that there is some deeper rela-
tion between a set’s characteristic of being an open set and its dimensionality.  Two dimensional, 
in particular planar, subsets of R3 cannot be open in any topology R3.

4.7 Topological Vector Spaces

A vector space V is a set that has the structure of Rn, in other words its structure is isomorphic to 

the product of n copies of the real number line R.  Therefore any element of such a space V can 
be indexed by an n-tuple of real numbers, i.e. a vector of dimension n: <x1, x2, …, xn>.  Although 
a vector space may seem canonical in man-made parts of our world -- witness the prevalence of 
table-based relational databases in our informatic technology -- in fact, the ubiquity is itself an 
artifact of the convenience of a particular form of linear algebraic thinking. 
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4.8 Not All Topological Spaces Are Vector Spaces 

A set (space) may not have any features that resemble a vector space.  Christopher Alexander 
identified 15 fundamental properties (Alexander, 2002: 143-242)  that appear over and over 
again in built spaces that have vitality.  The more shape-oriented of these patterns include: inter-
lock, border, good shape, and most importantly, center.  Of course, the space of features that 
build vitality is infinite and infinitely nuanced, and much more specific in every concrete in-
stance, so how can we interpret Alexander’s 15 patterns?  One way is to see them as a basis in a 
subspace of the topological space of patterns of built structure.  Certain patterns are indeed geo-
metrical, or more accurately have to do with spatial relations such as degree or diversity of spa-
tial rhythm, or the propensity to develop centers of tension or attention.  Notice that, as is clear 
with the ‘smoke’ example, these patterns intrinsically intertwine the observer with the observed.  
Moreover, we do not necessarily have any notion of scaling a pattern, e.g. a way to multiply the 
number of centers by some numerical constant, or otherwise numerically quantify a pattern.

So, although Alexander’s ‘space’ of patterns does not seem to have the structure of a vector 
space, we can still interpret the foundational character of Alexander’s 15 patterns in the sense of 
a covering generated by a particular family of patterns (subsets) in the space of all patterns of 
living in the built environment.  But in order to articulate such a topological approach, we would 
need to articulate the intersection and union of two patterns.  One obvious interpretation would 
be to logically combine them; for example, a design configuration that exemplifies both ‘good 
interlock’ and ‘no two parts the same’.  But another interpretation could be to first apply the op-
eration of making a design have more interlock, and then to further individuate series.  Indeed, 
given that Alexander emphasizes that his patterns are actually transformations rather than par-
ticular forms, the second interpretation could be a more plausible approach to topologizing an 
Alexandrian space of patterns.

This emphasis on transformation, rather than ‘things themselves’, plus our previous discussion of 
dynamical examples, motivate the notion of mappings of topological spaces.

4.9 Mapping 

Sha • Topology and Morphogenesis
For Chris Fynsk, Yves Abrioux, Stamatia Portanova, Thomas Jellis. Please do not circulate this draft.

19 / 32



Given topological manifolds X and Y we can define maps (a.k.a. functions, mappings) from one 
to another, f: X→Y,  as an association of elements of X and elements of Y: to every element x in 
X (written x ∈X ), we associate an element labelled f(x) in Y.  The only condition is that the re-
sult of applying the mapping f is well-defined; i.e.  that the result is determinate and unique for 
the given x.  A rigorous test: If f(x1) ≠ f(x2), then x1 ≠ x2 for any x1 , x2 in X.

Given two topological manifolds M and N, consider the set of all mappings that in some sense 
respect the topological structure of these spaces.  Approximately put, such mappings should 
carry open sets in the domain space M to open sets in the range space N.  We call such mappings 
continuous homomorphisms, and we label the set of such mappings Hom(M,N).  One particularly 
interesting, infinite dimensional subspace of Hom(M,N) is the set of differentiable maps 
Diff(X,Y) of differentiable maps from X to Y.  (To define that requires some calculus, but for 
now, we will say that in the case X and Y are vector spaces, a differentiable function, at every 
point x, has some local approximation by a linear mapping.  [ENDNOTE 6]) On top of 
Diff(X,Y), we can define further a mapping defined not on the base spaces X and Y, but on the 
function space Diff(X,Y).  We’ll call such a mapping an operator to help us remember that it 
maps a mapping to a mapping.  An important example would be a differential operator like ∇, 
that maps a function f to its differential, a linear mapping from TM to TN.  This provides an 
enormous expressive range to any analysis of transformation and functional change.  You can see 
that this allows us to lift the discussion of mappings to a tower of structures, or to higher order 
operators.

Computer engineers, cognitive scientists, and their clients in cultural studies or social sciences, 
are typically are quite cavalier about the domain or range of a mapping.  But in order to make 
sense of a map f, it is necessary to ask: What is its domain?  What is its range?  For example, fol-
lowing George Lakoff one could define metaphor as a ‘structural homomorphism’ from one cog-
nitive domain to another.  But what does that mean?  What is a cognitive domain?  Is it like an 
open set in a topological vector space?  If this metaphor is supposedly a map called, say f, is this 
map non-trivial: Image[f] ≠ ø ?  Is it even well-defined: f(x) ≠ f(y) => x ≠ y ?  One expects that a 
metaphor, if indeed it can be regarded as mapping, can certainly associate one entity to two or 
more entities, therefore such an association is not a well-defined mapping.
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4.10 Continuous, Connected, Simply-connected 

Gottfried Wilhelm Leibniz, one of the authors of the view of matter to which I am subscribing 
this work, introduced a material law of continuity, which he described in a letter to Fontenelle in 
1699: 

‘… the law of continuity that I believe I was the first to introduce, and which is not 
altogether of geometric necessity, as when it decrees that there is no change by a 
leap.’ (Leibniz, 2006: 137)

This expresses an axiom about the fullness of the world, a world not atomic, but plenist.  One 
way to introduce this idea is via a related concept of a simply-connected set.  Intuitively, we can 
say the set is simply-connected if we can draw a curve between any two points in that set without 
having to lift the pen.  But this is a gedanken test, a quasi-physical action to be imagined in order 
to determine some quasi-physical property.  If the curve is broken, then one imagines there is a 
point at which the pen must be picked up off of the paper and set down somewhere else to con-
tinue the drawing of the curve – Leibniz’s leap.  But there are vastly different sorts of sets, not 
just curves, many for which it does not make sense to speak of dimension and which cannot be 
modeled by a two dimensional sheet of paper.  For example, consider the clouds in the sky, or the 
aroma of smoke, or the set of all metaphors.  For such sets, we would need some concept that 
articulates the intuition of continuity more generally.  Look more carefully at a (bounded) curve 
segment, broken at (at least) a single point.  A disconnected curve is also the union of two open 
sub-intervals, or sub-arcs.  It is this criterion that we can generalize to arbitrary sets: Can the set 
be decomposed into two disjoint open subsets?  If each of the two covering sets is open, then we 
imagine that we can slip a boundary – a ‘leap’ – into the gap between them.  So, a set is con-
nected, by definition, if and only if it cannot be covered by two open subsets.  The feature of 
connectedness has nothing to do with the unidimensionality of the curve.  Notice that the set in 
question may or may not be open or look anything at all like an ordinary shape that you can 
draw;  it could be rather messy, even pathological, as some mathematicians like to say.
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Figure.  Alexander’s Horned Sphere, defined by an infinite nest of ever-finer pincers, cuts R3 into 
two components, one of which -- the exterior -- is not simply connected.

This prototype criterion of connectedness induces in the imagination a transformation, a map-
ping, from one set, the interval, into another set, a curve that may be broken or unbroken.  It is a 
subtle and profound shift of conceptual register to turn our attention from sets to the transforma-
tions of sets, to what is called a space of mappings.  To articulate continuity, we really are asking 
a question not about a set (an object) U ⊂ X , but a mapping (a transformation on objects) be-

tween topological spaces, say φ: X →Y .  In this case, we say that a mapping φ from topological 
space X to topological space Y is continuous if and only if the pre-image of any open set in its 
range space Y is open in its domain space X; mnemonically, ‘φ-1[open] is open.’  This is a con-
siderably more expansive and supple test than trying to draw a curve in your imagination.  This 
was one of the more subtle conceptual moves in the history of 20c mathematics, whose philo-
sophical consequences we are just beginning to consider with this essay.  Such a concept of con-
tinuity offers us a way to begin to articulate continuity in the full extent of felt experience of the 
world without any recourse to metric or dimension.

Nonetheless, this notion of continuity agrees with the more familiar, restricted, metric concepts 
of continuity.  For example, in the case of the real line R, a classical formal way of describing 
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continuity is to use the ordinary Euclidean distance derived from absolute value on R.  Here is a 
definition of continuity for functions of the real line that uses the notion of a metric: f is continu-
ous at a point x0 if for all ε > 0 there is a δ > 0, such that | x - x0 | < δ => | f[x]- f[x0] | < ε.  f : R 
→R is called a continuous mapping if it is continuous at every point x ∈ R.

We can apply what mathematicians colloquially call an ‘epsilon-delta’ characterization of conti-
nuity to any function of the real line.  You should draw some diagrams and convince yourself 
that this epsilon-delta definition of continuity agrees with the more purely topological notion of 
continuity.  In other words, if a function mapping R to R is continuous in one sense, then it is 
continuous in the other sense as well, and conversely.

Theorem.  The image under a continuous map f : X → Y , of a connected set K is connected.

Proof: Suppose not.  Then there are two disjoint open subsets of Y, call them V and W, such that 
f[K] ⊂  V ∪ W.  Since f is continuous, by definition, f-1[V] and f-1[W] are both open subsets of 

X.  We’ll prove that these are disjoint, and cover K, which will contradict the hypothesis that K is 
connected.  To show the these two pre-images are disjoint, suppose p is a point in their intersec-
tion.  But then f[p] is in both V and W, which cannot be, because V and W are disjoint.  So, their 
pre-images are also disjoint.  Next, take any point m in K.  By our hypothesis, the image point 
f[m] must be in either V or W.  then m is in the pre-image f-1[V] or f-1[W].   m is in the union of f-

1[V] and f-1[W], so we’ve shown that K is covered by these two pre-images, which are disjoint, 
open sets.  This contradiction implies that our hypothesis must be false.  Therefore f[K] is a con-
nected subset of Y.  Q.E.D.  [ENDNOTE 7]

5 Toward Topological Dynamics as an Approach to Social and Cultural Morphogenesis 

Let’s pause to see where we are and where we are headed.  Based on some primordial concepts 
of open set, topology, basis, mapping, continuity, we have built up a miniature theory that allows 
us to describe phenomena in qualitative terms and make definite statements about them.  These 
statements, being axioms and theorems, hold in all the situations where we have checked that the 
three basic conditions for a topology are satisfied.  They are propositional in Isabelle Stenger’s 
sense.  Now we head toward building a trellis for describing dynamical systems, which are usu-
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ally introduced as systems of differential equations, using such qualitative articulations.  On one 
hand we will be able to give a more delicate and concrete nuance to flow, change, and becoming 
than what Deleuze and Guattari explicitly described, and on the other hand, we do not bind our-
selves to numerical empiricism or to reductive forms like graphs.

We are not furnished yet with the concepts to articulate these intuitions in detail, so we will defer 
this for a more complete description of dynamical systems and process.  At the very least, we 
should recognize that the classical figures of the line, the circle, and the sinusoidal wave are not 
adequate to the temporality of human experience and phenomena.

5.1 A Non-reductive Morphogenesis

I discuss the process of cultural dynamics always accounting for the radical entanglement of ob-
server with the observed.  The implies that descriptions of a situation or a process are always 
situated.  (As Maturana and Varela said in Tree of Knowledge: everything that is said, is said by 
somebody, somewhere.  (Maturana, 1987; Maturana and Varela, 1992))  So, descriptions are ar-
ticulations.  Therefore, it matters the mode of articulation.  Topology provides an anexact (in De-
leuze’s sense) mode of articulation, that does not need numerical measure, equations, exact data, 
statistics.

Speaking of human experience, one of the central challenges to anthropology and social sciences 
has been the contest between ‘quantitative’ and ‘cultural’ methods.  In 1972,  R.  Duncan Luce, 
David Krantz, Amos Tversky, and Patrick Suppes published a three volume Encyclopedia on 
Measurement for the social sciences that epitomized significant approaches to ‘measuring’ cul-
tural and social dynamics, across a much more ample range of techniques than the statistical or 
numerically based models that typify quantitative discourse.  Despite such an ample and ency-
clopedic project, we can still advance the hypothesis that any sufficiently thick account of a hu-
man phenomenon, especially as a dynamical process, would be too dense to be adequately mod-
eled by numerical models alone.  This seemingly simple hypothesis evokes incompatible, and 
equally certain responses.  The incompatibility of those responses marks this as a proposition 
worth investigation.  Against this hypothesis about the inadequacy of quantitative methods, 
techno-scientifically powered rationality demands rigor, prediction, and generalization.  Cultural, 
literary, and historical approaches are rigorous in their domains, but compete with difficulty 
against the rhetorical and political strength of the predictive and general powers afforded by a 
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system of quantitative measurement.  Let’s call this debate about the adequacy of quantitive vs.  
qualitative methods, the social scientific measurement problem.

In 2010, a European Union Framework-supported project called ‘A Topological Approach to 
Cultural Dynamics’ (ATACD) closed its three year course with a conference in Barcelona with a 
very large range of responses to the challenge of understanding cultural dynamics, with tech-
niques ranging from quantitative modeling, computational physics, and design, and literary and 
historical methods.  The diverse and energetic response demonstrated a wide recognition of the 
need for fresh approaches to the measurement problem, between absolute mutual rejection, or 
absorption of one by the other, which in the present age largely means absorption by quantitative 
and computational models.

This essay introduces a handful of the most elementary concepts of topology as a contribution 
toward more generous articulations of cultural dynamics without number or metric, respecting 
the material and contingent features of social and cultural phenomena.

What is the methodological significance of such an approach?  Rather than begin with a complex 
schema and observational apparatus, we can try to take an minimally scaffolded approach to the 
phenomena: minimal in language, and minimal in formal schema.  As we dwell in the phenom-
ena, site, event, we can successively identify salient features of the phenomena, and then succes-
sively invent articulations that trace the phenomena.  We do not pretend at any stage to com-
pletely capture what we articulate.  Indeed, as I wrote at the beginning of this essay, I introduce 
these topological concepts and theorems not for the purpose of providing a truer model of reality 
or even of perception, but as a mode of articulation, and on occasion, poetic expression.

The most minimal mode of articulation available to us is the mode of collectives, sets.  But as 
I’ve noted above, bare sets are too bare, and in fact offer grip to Russellian paradoxes in their 
bareness.  The next simplest mode of articulation is the notion of proximity, the motivating no-
tion for topology,  In fact it is scaffolded by the more primordial notion of ‘open’ set, augmented 
by the set theoretic notions of intersection, and union.  Along the way, we avoid metric, numeri-
cal measure, for several reasons.  A practical one is that, far from Galileo’s claim, most phenom-
ena in the world come to us without numerical measure or metric.  In fact, the move toward 
‘data-driven’ applications confuses number-measure for the numbered thing, which is a dessicat-
ing move.  We propose to try the topological as an anexact mode of articulation that retains as 
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much as possible the wet, juicy, messiness of the world, without the dessicating moves of metriz-
ing, or premature orthogonalization.

There is a much stronger methodological potential: topological concepts can provide adequate 
grip so we can apply theorems.  The fundamental point is that typically, a mathematical theo-
rem’s hypotheses do not need to be calibrated by any numerical measure, and therein lies its po-
tential for supple adequacy.  In fact, the vast majority of mathematics avoids explicit numerical 
constants and explicit equations, and this is especially true of topology, as should be clear from 
the exposition I have given earlier.  What this implies for future work is that we can make argu-
ments that are both qualitative and definitive.  For example, under adequate, qualitatively ex-
pressed conditions, we may be able to rigorously establish ‘qualitative’ phenomena such as pe-
riodicity, convergence, and existence of maxima or minima.

5.2 The Case for Continua 

Exploring the implications of a topological approach to a plenist, unbifurcated ontology, I am 
concerned with the question of how things emerge and dissolve with respect to their background.  
I use ‘thing’ mindful of several notions: (1) Latour’s (and science studies’) things, such as con-
troversies that have left the lab and have entered into public discourse, not unrelated to (2) Hei-
degger’s ‘thing,’ performing, gathering the fourfold: earth and sky, divinities and mortals; (3) 
computer science /machine perception’s notion of an object that can be ‘inferred’ from sensor 
data.  A topological dynamic approach offers a processual perspective complementary to these 
notions.     Processual approach to experience calls forth memory and anticipation, and in a tech-
nologized world, mechanical analogues known as machine learning and machine perception.  
The holy grail of machine perception is to recognize a pattern with no a priori distribution, 
model, taxonomy, or context.  This is analogous to a holding a negative answer to Derrida’s Ori-
gin of Intuition in geometry.

5.3 Conclusion
So what, in sum, have we encountered from the beginning of this journey?  (It is only a begin-
ning.)  We have a non-ego-based, number-free, and metric-free account of experience, that re-
spects evidence of continuous lived experience but does not reduce to sense perception or ego-
centered experience.  We have an essential concept of continuity both as a quality of lived expe-
rience and as a mode of description of such experience.  We have here the seed of an approach to 
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poiesis and expressive experience that is ‘non-classical’ in the senses of quantum theory, and 
measure theory, avoiding recourse to stochastic methods, statistics, and informatic sweepings of 
the life world under the rug.  And we have the possibility of a radically de-centered, de-
anthropomorphized concept of experience and cultural dynamics.  This avoids methodological 
and critical problems with reductive modeling and the more canonical interpretations of phe-
nomenology.  And it provides a conceptual trellis for the condensation of subjectivity in the end-
less exfoliation of experience in the world.
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Endnotes

1.  Deleuze, Whitehead and the Transformations of Metaphysics, with Isabelle Stengers, James 
Williams, Mick Halewood, Steven Meyer and about 20 other philosophers, Proceedings of the 
Royal Flemish Academy, 2005.

2.  As a term in humanities and social sciences, ‘theory’ lumps together a heterogeneous  assort-
ment of philosophical, historiographical, analytical, critical, psychoanalytical, all conceptual 
studies.  But such a set of reflections, representing divergent and even incommensurable ap-
proaches to the diverse objects of literature, art, history and human experience seems to create a 
set of all sets, that is, in fact an impossible object, a reification error.  To a mathematician, the 
word ‘theory’ by itself has no meaning, it is always a theory of something: of Lie groups, of 
Riemannian manifolds, of currents and varifolds.  There is no impermeable ontological or epis-
temic distinction between the objects and the modes of articulation of mathematics.  This poros-
ity implies a material continuity consonant with Badiou’s lemma ‘mathematics is ontology.’  
(Sha, 2000)

3.  A mathematical mode of articulation like topology or any field of mathematics is much more 
than merely a descriptive scheme.  One can say surely and supra-individually what will follow 
from the given conditions.  This additional expressive power of a mathematical mode of articula-
tion derives from its structure as proof.  But what mathematicians regard as proof is not what lo-
gicians or foundationalists call proof, because mathematicians rely on the accumulated body of 
intuition acquired in continuous streams of face-to-face apprenticeship together with not-
necessarily computational calculation which fill in the potentially infinite gaps in between the 
steps of a mathematical proof.  Mathematical proofs combine deductively effectively and supra-
individually.

Gšdel’s Incompleteness Theorem does not invalidate this point because it does not contradict the 
correctness of a correct proof, or the collective truth of interdependent theorems relative to an 
axiomatic system.  Gšdel proved something far more radical than a simple -- and naively unten-
able -- refusal to acknowledge the validity of mathematical proofs.  He demonstrated that in any 
mathematical theory that contains the logic of arithmetic one can construct a statement that is 
provably true, and provably false in that theory! 
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4.  A much more powerful way to understand such trajectories is to regard them as orbits of 
points under the action of a Lie group acting on the given space 

M.  Or even more flexibly as orbits under the action of a homeomorphism mapping M to M, 
h: M → M.

FIGURE 7: Lie group action on manifold M, 
lifting to their respective tangent spaces TM and Lie algebra g.

5.  When we say ‘X is a topology’  more precisely, we mean X and a particular family of subsets 
of X that we declare to be open.  Different choices of family yield different topologies on the 
same point set X.   X could be (Hausdorff) separable with respect to one topology, but not with 
respect to another.

6.  For vector spaces X and Y, over the scalar field R, a map f: X -> Y is linear if 
f(u + v) = f(u) + f(v)

and
f(k * u) = k * f(u)

for any u, v in X, and any scalar k in R.

7. Taking a transformational attitude to the course of events, accepting Foucault’s view of history 
is a history of rupture and dis-connection implies necessarily that the transformational agencies 
themselves must be dis-continuous.
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