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Abstract

One can use mathematics not as an instrument or measure, or a replacement for

God, but as a poetic articulation, or perhaps as a stammered experimental approach

to cultural dynamics. I choose to start with the simplest symbolic substances that

respect the lifeworld’s continuous dynamism, temporality, boundless morphogenesis,

superposability, continuity, density and value, and yet are independent of measure,

metric, counting, finitude, formal logic, syntax, grammar, digitality and computability –

in short, free of the formal structures that would put a cage over all of the lifeworld. I

call these substances topological media. This article introduces elementary topological

concepts with which we can articulate material and cultural change using notions of

proximity, limit, and change, without recourse to number or metric. The motivation

is that topology furnishes us with concepts well-adapted for poietically articulating

the world as stuff, rather than objects with an a priori schema. With care, it may

provide a fruitful approach to morphogenesis and cultural dynamics that is neither

reductive nor anthropocentric. I will not pretend any systematic application of the

scaffolding concepts introduced in this article. Instead, I would see what fellow stu-

dents of cultural dynamics and cosmopolitics make of these concepts in their own

work.

Keywords

continuity, cultural theory, individuation, poiesis, process philosophy, transformation

Mathematics as Poetic Material and Material Mode of
Articulation

At a symposium on Deleuze and Whitehead1 I proposed that one could
use mathematics as poetry rather than as instrument or measure, or a
replacement for God, or a conceptual battering ram. (I must confess,
however, to some pleasure in Alain Badiou’s fearless and fierce polemic
maintaining that mathematics¼ ontology.) Regarding mathematics as
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substance, and not merely a description of substance, shaping mathema-
tics as poietic material in fact differs in kind from using mathematics to
describe the universe as physicists see it. Part of the charm of FoAM’s
responsive environment TRG (Kuzmanovic and Boykett, 2006) is its
attempt to make palpable a concept of the world (recent quantum field
theoretic cosmology) by forcibly identifying it with the perceptual field –
a cosmic ambition. The artists could only begin to approximate this by
restricting TRG to a very compact physical duration and place in Kibla,
and by making allegorical simulations in software. Allegory makes the
world of difference between depiction and enaction, perception and phe-
nomenology. Allegory is allied with depiction because it makes a picture
and a necessary gap between the picture and what the picture homolo-
gously represents; therefore it always implicates questions of knowledge,
which devolve to questions of sense data. In that case, however, we are
dogged by all the epistemological problems of language as representation
raised since Wittgenstein and Debord to the present day.

This article is part of a larger experiment to use mathematics not as
representations or models of some aspects or strata of the world, but
rather as modes of articulation, especially poetic material modes, that
consequently are adequate to life. It could be sharply different sorts of
poetic matter: continuous topological dynamics, geometric measure
theory, or even fancier stuff like non-commutative algebra and étale
cohomology. But I propose to start with the simplest symbolic sub-
stances that respect the lifeworld’s continuous dynamism, change, tem-
porality, infinite transformation, morphogenesis, superposability,
continuity, density and value, and yet are free of or at least agnostic
with respect to measure, metric, counting, finitude, formal logic, linguis-
tics (syntax, grammar), digitality and computability, in short of formal
structures that would put a cage over all of the lifeworld. I call these
substances topological media. Simplicity is not a requirement of the
theory (no Occam’s razor here) but merely an acknowledgement that I
do not understand enough about the lifeworld to bring out fancier stuff
yet, of which there is so much more up the wizard’s sleeves.

The fundamental difference in this approach is to use mathematics as
substance in a workmanlike way, patching here and there to see what
values ensue. I regard mathematics as a trellis for play, rather than a
carapace, always sensitive to whether the poetic material accommodates
transfinite, incommensurable, immanent passion. Totalizing carapaces
like Stephen Wolfram’s computational equivalence principle, which at
bottom is a transcendental atomic metaphysics founded on making
counting sacred, would hammer us into a very sparse ontology. And to
a hammer everything is a nail.

This article introduces modes of articulation with which we can articu-
late substance and infinity using notions of proximity, convergence, limit,
change and novelty, without recourse to number or metric. For the
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moment, I will label these fields of concepts very loosely as: topology,
and topological dynamics.2 These concepts should honour the full dens-
ity, richness and felt meaning of living experience. Mathematicians will
note that for the sake of concision I am using these terms mildly but
responsibly loosened from the contexts in which they traditionally have
been defined. I will elaborate them more accurately as we proceed.

The motivation for this work is that topology furnishes us with con-
cepts that are well adapted for alternatively articulating the world as
plenum and stuff. Continuous topological dynamical systems are useful
for articulating morphogenetic process. I should say that I will intro-
duce more and less than what mathematicians call ‘topology’ – as
introduced by Henri Poincaré (1892, 1899, 1902a, 1902b, 1904),
L.E.J. Brouwer (1910, 1911, 1912, 1976) and Felix Hausdorff (1965)
(see also James, 1984). More, because I will refer to fields of articula-
tion and shared experience considerably more extensive than the math-
ematical purview of point set topology, such as cigarette smoking,
songs and social migration. Less, because in this article we will spare
the schoolbook approach and take a high road more akin to Gilles
Châtelet’s (2000) treatment of mathematics via essential intuitions.
Like Châtelet, I will respect the intuitive essences of the concepts and
their derivations, which in mathematics take the form of logical (but
not formally mechanized) proof.3 Also, mindful of the problematic
misunderstanding of earlier work by, for example, René Thom (1989,
1990), let me dissuade would-be scientists from enlisting topological
theorems for mathematical modelling in its instrumental sense. And
finally, I wager that the modes of articulation I introduce in this article
for their poietic potential have implications for art, philosophy and
engineering beyond the scope of the particular motivating applications
in this article. However, I will not pretend to make a systematic appli-
cation of all the scaffolding concepts introduced in this article. In fact, I
should like to see what fellow travellers make of these concepts in their
own work. (For a more adequate elaboration of some applications of
this approach to a particular set of work in the confluence of media and
performing arts, computational technologies of performance, and phil-
osophy of process, see Sha, forthcoming.)

A Non-reductive Morphogenesis

I discuss the process of cultural dynamics always accounting for the
radical entanglement of observer with the observed. This implies that
descriptions of a situation or a process are always situated. (As
Maturana and Varela said in Tree of Knowledge [1992]: everything that
is said, is said by somebody, somewhere; [see also Maturana, 1987].) So,
descriptions are articulations. Therefore, the mode of articulation mat-
ters. Topology provides an anexact (in Deleuze’s sense) mode of
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articulation, that does not need numerical measure, equations, exact
data, statistics.

Speaking of human experience, one of the central challenges to anthro-
pology and social sciences has been the contest between ‘quantitative’
and ‘cultural’ methods. Forty years ago, R. Duncan Luce, David Krantz,
Amos Tversky and Patrick Suppes published a three-volume
Encyclopedia of Measurement (Krantz et al., 1971; Luce et al., 1990;
Suppes et al., 1989) for the social sciences that epitomized significant
approaches to ‘measuring’ cultural and social dynamics, across a much
more ample range of techniques than the statistical or numerically based
models that typify quantitative discourse. Despite such an ample and
encyclopaedic project, we can still advance the hypothesis that any suf-
ficiently thick account of a human phenomenon, especially as a dynam-
ical process, would be too dense to be adequately modelled by numerical
models alone. This seemingly simple hypothesis evokes incompatible and
equally certain responses. The incompatibility of those responses marks
this as a proposition worth investigation. Against this hypothesis about
the inadequacy of quantitative methods, techno-scientifically powered
rationality demands rigor, prediction and generalization. Cultural, liter-
ary and historical approaches are rigorous in their domains, but compete
with difficulty against the rhetorical and political strength of the predict-
ive and general powers afforded by a system of quantitative measure-
ment. Let’s call this debate about the adequacy of quantitive vs.
qualitative methods the social scientific measurement problem.

In 2010, a European Union Framework-supported project called ‘A
Topological Approach to Cultural Dynamics’ (ATACD) closed its three-
year course with a conference in Barcelona with a very large range of
responses to the challenge of understanding cultural dynamics, with tech-
niques ranging over quantitative modelling, computational physics and
design, and literary and historical methods. The diverse and energetic
response demonstrated a wide recognition of the need for fresh
approaches to the measurement problem, between absolute mutual rejec-
tion, or absorption of one by the other, which in the present age largely
means absorption by quantitative and computational models.

This article introduces a handful of the most elementary concepts of
topology as a contribution toward more generous articulations of cul-
tural dynamics without number or metric, respecting the material and
contingent features of social and cultural phenomena.

What is the methodological significance of such an approach? Rather
than begin with a complex schema and observational apparatus, we can
try to take a minimally scaffolded approach to the phenomena: minimal
in language, and minimal in formal schema. As we dwell in the phenom-
ena, site, event, we can successively identify salient features of the phe-
nomena, and then successively invent articulations that trace the
phenomena. We do not pretend at any stage to completely capture
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what we articulate. Indeed, as I wrote at the beginning of this article, I
introduce these topological concepts and theorems not for the purpose of
providing a truer model of reality or even of perception, but as a mode of
articulation and, on occasion, poetic expression.

The most minimal mode of articulation available to us is the mode of
collectives, sets. But bare sets are too bare and in fact offer grip to
Russellian paradoxes in their bareness. The next simplest mode of articu-
lation is the notion of proximity, the motivating notion for topology. In
fact it is scaffolded by the more primordial notion of ‘open’ set, aug-
mented by the set theoretic notions of intersection and union. Along the
way, we avoid metric, numerical measure, for several reasons. A practical
one is that, far from Galileo’s claim, most phenomena in the world come
to us without numerical measure or metric. In fact, the move toward
‘data-driven’ applications confuses number-measure for the numbered
thing, which is a desiccating move. We propose to try the topological
as an anexact mode of articulation that retains as much as possible the
wet, juicy messiness of the world, without the desiccating moves of
metrizing, or premature orthogonalization.

There is a much stronger methodological potential: topological con-
cepts can provide adequate grip so we can apply theorems as an artful
propositional procedure, as Isabelle Stengers characterized Whitehead’s
speculative philosophy fashioning out of concrete ontology ‘abstractions
[that] act as ‘‘lures’’, luring attention toward ‘‘something that matters’’’
(2008: 96).4 The fundamental point is that, typically, a mathematical
theorem’s hypotheses do not need to be calibrated by numerical measure,
nor in fact any ‘empirical truth’, and therein lies its potential for supple
adequacy. In fact, the vast majority of mathematics avoids explicit
numerical constants and explicit equations, and this is especially true
of topology, as should be clear from the exposition I have given earlier
in this essay. What this implies for future work is that we can make
arguments that are both qualitative and definitive. For example, under
adequate, qualitatively expressed conditions, we may be able to rigor-
ously establish ‘qualitative’ phenomena such as periodicity, convergence
and existence of maxima or minima, all significant in articulating cul-
tural, sociological, historical dynamics.

The Case for Continua

Exploring the implications of a topological approach to a plenist, unbi-
furcated ontology, I am concerned with the question of how things
emerge and dissolve with respect to their background. I use ‘thing’ mind-
ful of several notions: (1) Latour’s (and science studies’) things, such as
controversies that have left the lab and have entered into public dis-
course, not unrelated to (2) Heidegger’s ‘thing’, performing, gathering
the fourfold: earth and sky, divinities and mortals; and (3) computer
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science/machine perception’s notion of an object that can be ‘inferred’
from sensor data. A topological dynamic approach offers a processual
perspective complementary to these notions. A processual approach to
experience calls forth memory and anticipation and, in a technologized
world, mechanical analogues known as machine learning and machine
perception. The holy grail of machine perception is to recognize a pattern
with no a priori distribution, model, taxonomy, or context. This is
analogous to upholding Derrida’s (1989) negative answer to the origin
of intuition in geometry.

Continuous Topology, Topological Manifolds

Writing of speculative philosophy and art, the challenge is always to
describe the notions in just the right degree of detail or concreteness.
It’s not only the what but the how and why that we’re concerned with.
It takes some judgement to estimate at what level of detail we need to
stop, giving enough to offer the reader the conceptual grit and grip
needed to make his or her own concepts, but not too much to obscure
the essential ideas. Some editors may not recognize that, with technical
concepts such as concepts of mathematical objects and related morph-
isms, one can err on the side of too much explanation. More detailed
descriptions aimed at students (of all ages) of mathematics typically
would stop the reader at the wall of notation. That said, Klaus
Jänich’s (1984) uniquely vivacious book on basic topology could serve
as a second reference for some of the articulations I propose. In math-
ematics, the how and why require us to go through the actual proofs.
Understanding a proof may require years of meditation on a paragraph
of mathematical writing. That said, I will present a proof only in order to
advance and thicken the argument, rather than demonstrate the truth
and force of a theorem.

Before we begin, I should emphasize that topology as mathematicians
have developed it over the past hundred years comprises an enormous
range of spaces, mappings, properties and concepts, immeasurably richer
than the discrete, graph topology cited by computer scientists and their
clients. (For example, B.C. Smith uses ‘topological’ in a typically loose
way: ‘By ‘‘topological’’ I mean that the overall temporal order of events
is dictated, but that their absolute or metric time-structure (e.g., exactly
how fast the program runs) is not’ [1999: 6].) Graphs are a particular and
relatively uninteresting class of topological spaces, but the vast majority
of topological spaces are not graphs. For the purposes of this article,
when I say ‘topological’ I will mean the general properties of the class of
topological manifolds and not the special properties of discrete graphs. In
fact, one of my strongest technical reasons for introducing the topo-
logical is to provide an alternative to all the figures in discrete sets and
graphs. Topology is (much) more than graphs.5
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Examples

It may be helpful to keep in mind some working examples in which you,
the reader, can check your developing intuitions about the topological
concepts that I am about to describe. For each example, the fundamental
question to think about concerns proximity: what do you consider to be a
neighbourhood, without necessarily appealing to any numerical quanti-
tative means.

Example: The Earth

One example comes from considering the geophysical boundary of our
planet: where does the Earth end and space begin as one ascends into the
atmosphere? One could apply all sorts of criteria. The point at which one
loses consciousness in a rising high altitude balloon? The barometric
pressure? The flux of ultraviolet light or cosmic rays intersecting a
meter held in the hand? The visibility of the people waving goodbye?
Take the atmospheric resistance, for example. A macroscopic body inter-
secting the atmosphere at extremely high speed (tens of thousands of
miles per hour) and at a shallow enough angle may even glance off the
atmosphere the way a rock can skip off the surface of a lake, but the same
body brought slowly through the atmosphere will easily penetrate the
atmosphere. So the manner in which one approaches the planet certainly
affects the boundedness of the planet.

Of course, where the Earth ends and space begins is conventional, but
the conventionality underlines the material fact that there is no sharp
atmospheric boundary around the planet Earth.

Flows

A flow can be regarded as a set of trajectories, where each particular
trajectory of a particle, �½s�, is a mapping from a scalar parameter into a
given manifold � : R!M. A second, less explicit, way is to consider not
individual trajectories of flows but a model of how all possible trajec-
tories are generated from a much more concise set of differential equa-
tions describing the flow as a whole, whose ‘solutions’ are the trajectories.
In other words, the set of differential equations yields not specific num-
bers but equations as their solutions. So we move from the actual to the
potential in a concrete way. In fact this mode of thinking is a germ of the
intuition behind the paired concepts: actual/potential. Systems of ordin-
ary differential equations are the heart of the theory of dynamical sys-
tems, which in turn provide notions constituting complexity theory,
systems theory and cybernetics.

Now, even this description, however flexibly it unchains us from an
unwarrantedly explicit description of material dynamical experience, is
still too explicit, and subject to reification error, or what A.N. Whitehead
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called the ‘fallacy of misplaced concreteness’ (Whitehead, 1978: 21). In
the absence of any concrete data about the ‘physics of materials’, that is,
the constants of the model, analogous to constants of thermal or elec-
trical conductivity, or the gravitational constant G, or the speed of light
in electromagnetism, what can we say with rigor and warrant that on the
one hand does not make unreasonably ‘concrete’ demands on descrip-
tion, yet on the other hand honours the phenomena in question? If we
dispense with explicit equations also at this potential level of ordinary
differential equations (ODEs), we can still, nonetheless, make provably
certain statements about the behaviour of the possible solutions to a
given system. Some qualitative but rigorously treatable features or
aspects include periodicity, or the existence and uniqueness or structure
of periodic trajectories (also called ‘orbits’).6

We can articulate rich physical phenomena using notions like the wash
of ripples along the banks of a river, the accumulation of leaves in the
eddies trapped in the crook of a tree trunk fallen into the water, or more
symbolic entities like the destinations of lanterns set out to float on the
current, or the origins of a river and all its tributaries. The destination(s)
and origins of a trajectory, regarded as limits as trajectory-time goes to
infinity or negative infinity, can be regarded as limit events of dynamical
processes.

Where’s the Smoke?

Stand a group of people in a room; ask someone to light and smoke a
cigarette. Ask each person to raise a hand upon smelling the smoke. This
seems like a reasonable way to empirically define where the smoke is. But
notice several features about this experiment. The extent of the smoke
changes with time. The extent is determined physiologically, situation-
ally, phenomenally: different people have different sensibilities and each
person may be more or less sensitive to smoke according to how much s/
he thinks about the smoke. In fact, just asking people to smell for smoke
primes their sensitivities. Therefore the smoke’s extent is an amalgam of
the physical particles in motion, the people’s physiologies, and the phe-
nomenological expectation set by the asking.

Songs

Imagine the set of all songs, alternatively defined as (1) performed live,
with contingent warble, glide and rubato; (2) transcribed to a formal
system of notes in a normalized and regularized set of pitches and dur-
ations; (3) paralleled and labelled by words: titles and lyrics; (4) as vari-
ations in air pressure – time series of acoustic amplitudes over time. Each
of these characterizations enables quite different ways of considering
what songs are similar to what. Consider yet another interpretation:
(5) songs as a set of social practices whose cultural and micro-local

Sha 227

 at CONCORDIA UNIV LIBRARY on October 21, 2012tcs.sagepub.comDownloaded from 

http://tcs.sagepub.com/


meaning and value are inherited from local as well as non-local histories.
A performance of one song also conditions other performances. In his
history of Arab musical performance on the eve of the introduction of
European notational, recording and distributional economies, El-Mallah
(1997) describes how the recording and transcription of a particular
performance freezes-in a canonical representative of a family of related
song performances whose boundary is constantly re-negotiated by social
practices. A key point here is that those social practices, however
categorized, unfold boundlessly and endlessly in ways that I suggest
are non-computable in essence. (To argue this fully would take us too
far afield, so I refer to Penrose [1991] as one starting point.)

From Demographics to Events

Imagine the set X of all the life courses of people through time. (For this
example, think of time conventionally as a unidimensional index of pro-
cesses.) This is, in principle, a space of boundlessly many dimensions.
Each point or element of this set X is itself a whole life course, a trajec-
tory that could be arrayed along a literally boundless number of features:
geography, wealth, bio-matter, movement, historical context, class, social
fields and so forth. It is difficult to imagine how to compare lives against
one another, and in fact one could well argue that any attempt to metrize
the set of life courses unavoidably desiccates the experiences they singly
and intersubjectively trace. Consider the flow of peoples into the United
States over the past century, and consider how the state has attracted,
admitted or excluded people along its borders. The life courses of all
these immigrants vary infinitely, and we cannot follow these lives in
their dizzying contingent crenulation. Indeed, how could we begin to
think what lives are proximate, or related to which, and how some
lives cluster or intertwine, while others remain forever distinct? In what
senses can we understand ‘intertwine’, ‘cluster’ and ‘remain distinct’?
How, aside from resorting to literary means of Dantean scale, can we
articulate the set of all life courses, the ‘space of lives’? This example and
the smoke example suggest a material, morphogenetic approach to socio-
cultural dynamics. We will come back to this example, after we have
absorbed some topological concepts.

Point-set Topology

The basic axioms of set theory include the notion of inclusion (member-
ship), subset, intersection and union. What is already enormously power-
ful at this level of description is that there is no comment on the nature of
a set, whether it is material or abstract, finite or infinite. There is no
restriction at all on how a set may be defined. In a most fundamental
difference with computer engineering, a set does not have to be defined
by explicit enumeration. Much of the imaginary of the computer scientist
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is delimited by the notion of a finite, denumerable set {x1, x2, x3, . . . , xn}
where n is some explicit, finite integer. But a set can be defined by a rule,
such as ‘set of all real numbers’, or ‘the set of all moments of introspec-
tion’, or ‘the set of all pleasures’. It is set theory’s lack of structure (mass,
dimension, colour, emotion, race, class, gender, religion, history, etc.)
that makes it such an ample notion: anything can be in a set. And it is
this very omnivorous nature of the concept of set that gave rise to the
most significant crisis in the foundations of logic and mathematics in the
early 20th century, instantiated by Russell’s paradox and the paradox of
the set of all sets. But here I stop since my concern is not to explicate or
repair set theory, but to pass on to fields richer than bare sets. In fact, the
very enormity and brilliance of Badiou’s effort to construct a neo-
Platonist ontology on set theory testifies to the sparseness of the theory
which necessitates the effort. Just one step up from bare set theory takes
us to point-set topology, the next sparsest set of concepts in mathematics,
built from the raw material of sets, but now admitting more structure.

It may appear marvellous how what seems like the barest whiff of
structure yields such a powerful set of concepts and theorems. But this
should not appear any more surprising than Galileo’s Renaissance obser-
vation that the book of Nature is written in mathematics, if one regards
mathematics from a Latourian perspective as a relatively high-level
machine for the inscription of material processes (Latour, 1988).

In this article, we can only touch on the most elementary concepts and
theorems, but even these seem fertile for our interests in philosophy of
media, art and technoscience.

Point-set topology is one of the most primordial modes of articulation
available to us, the open set is its most fundamental notion. It is even
more primordial than counting. Primordial does not mean foundational,
however: it means that no other compactly articulated concepts are ready
to hand from which to construct an argument, in the given scope of
reasoning.

We begin with point-set topology, not set theory, because, pace
Badiou, I believe that set theory is too sparse to accommodate being in
the world without severe distortions of our felt experience. Two obser-
vations to substantiate this belief:

(1) Russell and Whitehead took hundreds of intricate, technical
pages to establish from set theory alone the integers: 1, 2, 3,. . . as
sets built out of the empty set: (ø, {ø}, {ø, {ø}}, {ø, {ø, {ø}}}. . .}.
They prove theorem *102, that 1+1¼ 2, after about 1000 pages of
work.

(2) In a tour de force effort, for which he received the Fields Medal,
Paul Cohen established the independence of the Continuum
Hypothesis from the Axiom of Choice. In our context, this
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demonstrates that the continuum is ontologically distinct from even
the transfinitization of ordination, number, count.

Point-set topology provides articulations of these notions: open (closed)
set, extent, neighbourhood (proximity), connectedness, convergence, limit
and continuous transformation (or mapping), all without relying on
numerical measure or metric. Yet, as we will see, we can make more
certain statements about qualitative, that is, topological, behaviour
than any that can be made with numerical measure. Moreover, having
such primordial structure means that topological arguments start with
less conceptual machinery, which appeals to the minimalist taste.
Readers who have slogged through epsilon-delta proofs will appreciate
a notion of continuity built only out of the elementary notions of open
set and inverse map.

The open set captures the notion of a set that welcomes members, and
does not have a sharp litmus test for membership. In fact its most funda-
mental characterization is the following: If x is in the set O, then there is
some complete neighbourhood of x entirely contained inside O. What are
some examples of an open set? Amundane one would be fromdemograph-
ics. Say that we are restricting access to amovie theatre to people ages 13 to
17. At those boundary ages, disputes inevitably emerge: how close to the
‘edge’ may one be and still be admitted? If we were to say 13 and older,
someone who is 12 years, 364 days, 23 hours, and 59 minutes old may
argue that they are really already 13 up to the precision of clock technol-
ogy. Let’s say we restrict to those who are strictly older than 13 and strictly
younger than 16. Then one would have a margin, but an undefined sort of
margin: any margin will do, so long as that margin is not nil. For example,
one test could be for the putative theater-goer to pull someone who is
younger, but provably older than 13. That would suffice.

A more nuanced example comes from the political economy of
pharmaceuticals in Mexico. Anthropologist Cori Hayden (2007) has stu-
died the complex and ever-shifting taxonomies of pharmaceuticals in
Mexico, ranging from brand-name ‘originals’ to ‘generics’, interchange-
able generics, and ‘similar’ drugs. She identifies brand-name originals
(the ‘originator’ holding the initial patent), generic medicine (same com-
pound, no brand name, not proven bioequivalent), branded generic
(same compound, branded by generics manufacturer, not proven to be
bioequivalent), interchangeable generic (same compound, bioequivalent),
and ‘similar’ (non-bioequivalent copy). The last category is recognized by
the World Health Organization, but not by Mexican health regulations.
Indeed, a chain of pharmacies has been built along this last category, Dr.
Simi’s SimilaresTM. Hayden considers how similarity and equivalency are
contested in Mexico among transnational pharmaceutical corporations,
other retailers, advertisers and the public (itself a contested set of sets),
where the norms of similarity are heterogeneous and politically
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contested. Numerical measurement is inadequate to the shifting but def-
inite and perhaps overlapping regions of similarity in the world of these
pharmaceuticals.7

The rigorous concept of open set concretizes the notions of similarity
and comparison from such examples. The conceptually deepest aspect of
the concretization is that it leaves behind the concept of number, or, even
more deeply, the very concept of in-principle-numeric measure. In
other words, one does not need to measure anything using some metric
(a distance, whether physical or ‘abstract’) or number in order to apply
this test for openness. This concept of openness underlies the rigorous
characterization of open set.

Especially in this article I qualify certain concepts or arguments as
‘rigorous’, meaning that they admit definitions that are sufficiently pre-
cise and arguments sufficiently verifiable to be accepted by mathemat-
icians. Such concepts and arguments enjoy a particular mode of
portability, shareability and re-usability similar to that shared by the
perspectivally approached, aperspectival entities (objects and processes)
of mathematics. I use such concepts not to box thought, but to sustain
articulation, perhaps poietic articulation.

The open set is the most basic notion in point-set topology, but a set is
never definable as open in itself; it is always defined relative to a top-
ology, which is a set X of which U is a subset, together with a family of
the subsets of X that are declared to be open. Which sets are declared to
be ‘open sets’ is up to you, the designer of the topology, provided only
that the subsets in this family satisfy the following.

Axioms of Topology

1. If A and B are open, then the intersection of A and B (notated A \B) is open.
2. The arbitrary union of open sets is open.
3. The total set X, and the empty set, denoted ø, are both open.

I wish to underline the openness of the concept of open set: given a set
X – a universe – there is not necessarily a unique topology. More than
one topology may be defined on a given set X. Every set X has at least
two topologies. The coarsest topology is the one where the only open sets
are X and the empty set ø. And the finest topology is the one in which all
the subsets are declared to be open.

By definition, a subset C of X is closed if its complement is open in X.
An arbitrary subset U of X may be neither open nor closed. Take, for

example, the set of points in the cone of half-open segments based at the
origin of xi� 0, but whose distance from the origin is strictly less than 1:
(x1)

2+ (x2)
2+ ���+(xn)

2< 1.
The main lesson here is that the art of a topologist, even at this elem-

entary level, contains a great deal of creative flexibility, that there is no
transcendental principle determining a unique topology for every set X.
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A topology is always a choice relative to a universe-set, satisfying some
light conditions that enable a conversation built upon provable theorems.
Note that the full space X and the empty set ø are both open and closed.

Certain kinds of topologies are more amenable than others to most intu-
itions. For example, you may expect that given any two distinct points a, b
in X you ought to be able to find two open sets around each that do not
meet, that is, that they can each be contained in their ownbubble. But itmay
be that the elements (points) of a topology are all entangled in some way
(e.g. if they are the rays that meet at the origin) and the set of sets declared
‘open’ is too sparse to separate these elements. One example of a very sparse
topology would be the one in which the only open sets are the empty set ø,
and the entire space X. No two distinct points are separated according to
that pathologically sparse topology. (Mathematicians call such unpleasant
and complicating situations ‘pathologies’, but have various ways to deal
with them by construction and definition.)

Separability and Topological Spaces

To exclude such pathologies, we use the following

Definition: A space X isHausdorff (separable) if any two points a, b,
are contained in disjoint open neighbourhoods U, V; denoted:
a2U, and b2V, U\V¼Ø. (See Figure 2.)

Although this may seem hardly contestable, not all topologies are
Hausdorff.

An Example of a Non-separable (non-Hausdorff) Space. Define a topology
on subsets of Rn, called the Zariski topology, by looking at the zerosets
of polynomials. For a polynomial P(z) there are only finitely many points
z in Rn, for which P(z)¼ 0. Call this set Zeroset[P]. A discrete set of
points is closed in Rn, so its complement is an open set. But any two

Figure 1. Half-open cone in R2: it includes points on the vertical and horizontal rays.

Figure by author.
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complements of discrete sets of points meet as subsets of Rn, so no pair of
points in Rn can be separated by disjoint open sets in the Zariski top-
ology, the family of sets that are defined to be open with respect to the
Zariski topology of complements of zerosets of polynomials. (As an
exercise, consider the space of all songs that are fixed by a finite set of
word-positions, or named-pitches in fixed positions in the melody.)

Inducing a Topology: Revisiting Ellis Island

Consider again the flow of peoples into the United States over the past
century, but consider an iconic slice through the flowof peoples at the event
of their entry through the USBureau of Immigration center at Ellis Island,
New York. Consider the event of being examined by the state and given
some status as an immigrant to the nation. In terms of topological dynam-
ical systems this amounts to taking a transversal slice through the flow.This
slice is called the Poincaré section (see Figures 3 and 4). (There is a constel-
lation of concepts in differential topology and dynamical systems with
which we canmake this as fruitfully rigorous as anymathematical theory.)

And imagine some groupings thatmake sense in such a transversal section
to the flow of lives through that place and event. Groupings could arise from
one of any number of features: with whom one rubs shoulders in the waiting
room, religious practice, exhibiting amedical syndrome, wealth or class, and
so forth. Each choice associates the people into different collections of

Figure 3. A Poincaré section through life courses as paths. Figure by author.

Figure 2. Hausdorff separability: any two points a, b, are contained in disjoint open neigh-

bourhoods U, V, a2U, and b2V. Figure by author.
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groupings and proximities, by no means spatial or metric. Consider colour-
ing the life courses that run before and extend beyond this event according to
some particular grouping.We can in principle colour the life courses by how
they grouped on a particular day on Ellis Island. In the words of a student of
topology, a topology on people intersecting the Immigration intake facility
induces a topology on the set of life courses (see Figure 3).

Definition: A point z is a limit of an infinite sequence of points z1,
z2, . . . , if for every neighbourhood U containing z, there is some

Figure 5. Tree – arboreal; roots – rhizomatic; dirt – substrate.

Source: Available at http://upload.wikimedia.org/wikipedia/commons/6/60/Tree_roots_cross_

section.jpg (retrieved 1 June 2012).

Figure 4. A Poincaré section through the flow of a dynamical system.

Source: H. Löffelmann, T. Kucera and E. Gröller, ‘Visualizing Poincaré Maps together with

the Underlying Flow’. Available at: http://www.cg.tuwien.ac.at/research/vis/dynsys/

Poincare97/yellow.1024x768.fc.jpg (retrieved 24 May 2012).

234 Theory, Culture & Society 29(4/5)

 at CONCORDIA UNIV LIBRARY on October 21, 2012tcs.sagepub.comDownloaded from 

http://tcs.sagepub.com/


integer N, for which zi are 2 U, for all i>N. In other words, no
matter how you restrict attention around this point z, after ignoring
finitely many points in the sequence, the remaining members of the
sequence are all contained in the neighbourhood U.

Theorem: Limits in a topological space X are unique if and only if X
is Hausdorff.8

Proof. We prove one direction: X is Hausdorff implies that limits are
unique. Suppose x and x’ are each a limit of the sequence z1, z2, . . ..
Let us suppose that x and x’ are distinct. We will show that this
yields a contradiction. Since X is Hausdorff, we can find disjoint
neighbourhoods U containing x, and U’ containing x. Consider U.
By definition, there is a ‘tail’ of the sequence z1, z2, . . . entirely con-
tained inside U. In other words, there is an integer N such that all
zk, for k>N are contained in this neighbourhood U. But the same
is true for U’: there is a tail with an associated threshold index N’ of
the sequence z1, z2, . . . that is entirely contained in U’. Looking far
enough out along those tails, we arrive at points zk that must lie in
both U and U’. (Just choose the index k greater than both N and
N’.) But then U and U’ are not disjoint. This contradiction shows
that the hypothesis that x and x’ are distinct is untenable. So limits
are unique. QED.

Notice we proved that limits are unique, but not that a limit necessarily
exists for any particular infinite sequence. Despite the most committed
beliefs in a god, or an ideal communist or market economy, or
Whiteheadean eternal object, the existence of a limit is a separate
matter from its putative qualities. For example, we can say X is a
closed curve whose tangent vector sweeps out a total signed angle of
7p (pi). However, one can prove that every closed curve’s tangent
vector sweeps out a total angle of 2p, so there are no such curves.

Returning to our demographic example, one could have a topology on
the space of life courses that is not Hausdorff. This means that no two
distinct life courses are contained in their own, disjoint neighbourhoods.
For example, some ethical theories could amount to arguing that each
open set of life courses overlaps with every other set of life courses.
However, if the topology is Hausdorff, then if an infinite (or practically
infinite) sequence of life courses has a limit – if there is some particular
life course around which an infinite (boundlessly many) set of life courses
cluster – then that limit is unique.

Notice that we can use the proof of the theorem in fact as the sketch
of an argument, because the concept and the proof are quite supple
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and general. They rely on no notion of metric, no numerical measure, no
data. Most significantly we have a mode of articulation of changes of
state with no requirement that change be arrayed according to a unidi-
mensional index called time, nor any dimensional index at all. Therefore
the argument can be used in a great many material dynamic situations.

Covering, Basis

Given a subset � of the topological space X, a covering of � is a collec-
tion of open sets in X such that their union contains �. It is key that the
sets be open in X. A covering does not have to be finite (or even countably
infinite). For example, any subset S of a metric space, no matter how
pathological (imagine a monstrously heterogeneous cloud of shards and
dust like the set A in Figure 6), has a covering. Just take for the covering
a set of epsilon balls centred on the points of S: S � [z2SBiðxÞ. There are
as many balls as there are points in S, so if S contains an uncountable
number of points, then this covering has an uncountable number of balls.
It does the job, but extravagantly, transfinitely.

A basis for the topological space X is a family of the open sets in X
such that every subset of X has a cover comprising elements from that
family. There can be more than one basis – usually an infinite number of
bases – for a space X relative to a given topology.

Examples

Exercise: Consider the topology T1 generated by open discs.
Compare it with the topology T2 generated by infinite strips. In
other words, is every set that can be covered by an open set in T1
also covered by an open set in T2?

It is not true that any family of subsets of a topological space V can be
extended by arbitrary unions and intersections into a topology for V,
even if the initial family itself contains an infinite number of sets and the
union of the family has unbounded extent. Regarding the x–y plane as a
subset of R3, consider the family of sets generated by (countable)

Figure 6. Covering a set A with a family of open sets S1[ S2[ . . .. Figure by author.
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intersections and arbitrary unions of subsets of the x–y plane P (the
points <x, y, z> in R3 such that z¼ 0). Any union or intersection of
two subsets of P will be another subset of P. Now take a ‘thick’ subset of
the full R3, say the unit ball B centred at <0, 0, 1/2>, which intersects the
plane P, but most of whose points are not in P. No union or intersection
of planar subsets in P can cover the ball B.

Notice that these notions of openness and covering do not require any
notion of dimension, so they are more primordial than dimensionality. A
topological space does not have to have the property of dimension! But in
the case that our topological space is indeed dimensional, in particular if
it has the structure of a vector space like R3, then we see that there is
some deeper relation between a set’s characteristic of being an open set
and its dimensionality. Two-dimensional, in particular planar subsets of
R3 cannot be open in any topology on R3.

Topological Vector Spaces

A vector space V is a set that has the structure of Rn, in other words its
structure is isomorphic to the product of n copies of the real number line
R. Therefore any element of such a space V can be indexed by an n-tuple
of real numbers, that is, a vector of dimension n: <x1, x2 . . . xn>.
Although a vector space may seem canonical in man-made parts of
our world – witness the prevalence of table-based relational databases
in our informatic technology – in fact, the ubiquity is itself an artifact of
the convenience of a particular form of linear algebraic thinking.

Not All Topological Spaces Are Vector Spaces

A set (space) may not have any features that resemble a vector space.
Christopher Alexander (2002: 143–242) identified 15 fundamental prop-
erties that appear over and over again in built spaces that have vitality.
The more shape-oriented of these patterns include: interlock, border, good
shape and, most importantly, centre. Of course, the space of features that
build vitality is infinite and infinitely nuanced, and much more specific in
every concrete instance, so how can we interpret Alexander’s 15 patterns?
One way is to see them as a basis in a subspace of the topological space of
patterns of built structure. Certain patterns are indeed geometrical, or
more accurately have to do with spatial relations such as degree or diver-
sity of spatial rhythm, or the propensity to develop centres of tension or
attention. Notice that, as is clear with the ‘smoke’ example, these patterns
intrinsically intertwine the observer with the observed. Moreover, we do
not necessarily have any notion of scaling a pattern, for example, a way
to multiply the number of centres by some numerical constant, or other-
wise numerically quantify a pattern.

So, while Alexander’s ‘space’ of patterns does not seem to have the
structure of a vector space (e.g. a structure of patterns naturally
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homomorphic with a notion of addition and of scalar multiplication), we
can still interpret the foundational character of Alexander’s 15 patterns
in the sense of a covering generated by a particular family of patterns
(subsets) in the space of all patterns of living in the built environment.
But in order to articulate such a topological approach, we would need to
articulate the intersection and union of two patterns. One obvious inter-
pretation would be to logically combine them; for example, a design
configuration that exemplifies both ‘good interlock’ and ‘no two parts
the same’. But another interpretation could be to first apply the operation
of making a design have more interlock, and then to further individuate
series. Indeed, given that Alexander emphasizes that his patterns are
actually transformations rather than particular forms, the second inter-
pretation could be a more plausible approach to topologizing an
Alexandrian space of patterns. In that case, an open set of patterns
would actually be an open set in the topology of transformations that
can be applied to a built structure at a site. Again, recalling that there can
be many topologies depending on the situation, we can retain a more
supple approach to architectural design.

This emphasis on transformation, rather than ‘things themselves’, plus
our previous discussion of dynamical examples, motivates the notion of
mappings of topological spaces as a mode of articulation of material
dynamical processes.

Mapping

Given topological manifolds X and Y we can define maps (aka functions,
mappings) from one to another, f: X!Y, as an association of elements
of X and elements of Y: to every element x in X (written x2X), we
associate an element labelled f(x) in Y. The only condition is that the
result of applying the mapping f is well defined; that is, that the result is
determinate and unique for the given x. A rigorous test: if f(x1) 6¼ f(x2),
then x1 6¼ x2 for any x1, x2 in X.

Given two topological manifolds M and N, consider the set of all
mappings that in some sense respect the topological structure of these
spaces. Approximately put, such mappings should carry open sets in the
domain space M to open sets in the range space N. We call such map-
pings continuous homomorphisms, and we label the set of such mappings
Hom(M,N). One particularly interesting, infinite dimensional subspace
of Hom(M,N) is the set of differentiable maps Diff(X,Y) of differentiable
maps from X to Y. (To define that requires some calculus, but for now,
we will say that in the case X and Y are vector spaces, a differentiable
function, at every point x, has some local approximation by a linear
mapping.)9 On top of Diff(X,Y), we can define further a mapping defined
not on the base spaces X and Y, but on the function space Diff(X,Y).
We’ll call such a mapping an operator to help us remember that it maps a
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mapping to a mapping. An important example would be a differential
operator like r that maps a function f to its differential, a linear mapping
rf from TM to TN. This provides an enormous expressive range to any
analysis of transformation and functional change. You can see that this
allows us to lift the discussion of mappings to a tower of structures, or to
higher order operators.

Computer engineers, cognitive scientists and their clients in cultural
studies or social sciences are typically quite cavalier about the domain or
range of a mapping. But in order to make sense of a map f, it is necessary
to ask: What is the domain of f? What is its range? For example, follow-
ing George Lakoff one could define metaphor as a ‘structural homo-
morphism’ from one cognitive domain to another. But what does that
mean? What is the structure? What is a cognitive domain? Is it like an
open set in a topological vector space? If this metaphor is supposedly a
map called, say, f, is this map non-trivial: Image[f] 6¼ ø? Is it even well
defined: f(x) 6¼ f(y)¼> x 6¼ y? One expects that a metaphor, if indeed it
can be regarded as mapping, can certainly associate one entity to two or
more entities, therefore such an association is not a well-defined map-
ping. So it is not clear what space, domain, mapping, or homomorphism
mean, but it could be a fertile exercise to pursue this question furnished
with topological concepts.

Continuous, Connected, Simply Connected

Gottfried Wilhelm Leibniz, one of the authors of the view of matter to
which I am subscribing in this work, introduced a material law of con-
tinuity, which he described in a letter to Fontenelle in 1699:

the law of continuity that I believe I was the first to introduce, and
which is not altogether of geometric necessity, as when it decrees
that there is no change by a leap. (Leibniz, 2006: 137)

This expresses an axiom about the fullness of the world, a world not
atomic, but plenist. One way to introduce this idea is via a related concept
of a simply connected set. Intuitively, we can say the set is simply con-
nected if we can draw a curve between any two points in that set without
having to lift the pen. But this is a gedanken test, a quasi-physical action
to be imagined in order to determine some quasi-physical property. If the
curve is broken, then one imagines there is a point at which the pen must
be picked up off of the paper and set down somewhere else to continue
the drawing of the curve – Leibniz’s leap. But there are vastly different
sorts of sets, not just curves, many for which it does not make sense to
speak of dimension and which cannot be modelled by a two-dimensional
sheet of paper. For example, consider the clouds in the sky, or the aroma
of smoke, or the set of all metaphors. For such sets, we would need some
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concept that articulates the intuition of continuity more generally. Look
more carefully at a (bounded) curve segment, broken at (at least) a single
point. A disconnected curve is also the union of two open sub-intervals,
or sub-arcs. It is this criterion that we can generalize to arbitrary sets:
Can the set be decomposed into two disjoint open subsets? If each of the
two covering sets is open, then we imagine that we can slip a boundary –
a ‘leap’ – into the gap between them. So, a set is connected, by definition,
if and only if it cannot be covered by two open subsets. The feature of
connectedness has nothing to do with the unidimensionality of the curve.
Notice that the set in question may or may not be open or look anything
at all like an ordinary shape that you can draw; it could be rather messy,
even pathological, as some mathematicians like to say.

This prototype criterion of connectedness induces in the imagination a
transformation, a mapping, from one set, the interval, into another set, a
curve that may be broken or unbroken. It is a subtle and profound shift of
conceptual register to turn our attention from sets to the transformations
of sets, to what is called a space of mappings. To articulate continuity, we
really are asking a question not about a set (an object) U�X, but a map-
ping (a transformation on objects) between topological spaces, say ’:
X!Y. In this case, we say that a mapping ’ from topological space X
to topological space Y is continuous if and only if the pre-image of any
open set in its range space Y is open in its domain space X; mnemonically,
‘u�1[open] is open’ – the pre-image of an open set is open. This is a con-
siderably more expansive and supple test than trying to draw a curve in
your imagination. This was one of themore subtle conceptual moves in the

Figure 7. Alexander’s Horned Sphere, defined by an infinite nest of ever-finer pincers,

cuts R3 into two components, one of which – the exterior – is not simply-connected.

Source: Notes on Algebraic Topology, by Andries Brouwer, aeb@cwi.nl,v1.0, 991111,

http://www.win.tue.nl/�aeb/at/algtop-5.html (retrieved 24 May 2012).
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history of 20th-century mathematics, whose philosophical consequences
we are just beginning to consider with this article. Such a concept of con-
tinuity offers us a way to begin to articulate continuity in the full extent of
felt experience of the world without any recourse to metric or dimension.

Nonetheless, this notion of continuity agrees with the more familiar,
restricted, metric concepts of continuity. For example, in the case of the
real line R, a classical formal way of describing continuity is to use the
ordinary Euclidean distance derived from absolute value on R. Here is a
definition of continuity for functions of the real line that uses the notion
of a metric: f is continuous at a point x0 if for all "> 0 there is a d> 0, such
that j x� x0 j< d¼> jf[x]� f[x0] j>". (Glossing this more fully in English:
If a point x is within distance d of the fixed point x0, then the value of f at
x is within distance " of the value of f at x0.) The function f: R!R is
called a continuous mapping if it is continuous at every point x2R.

We can apply what mathematicians colloquially call an ‘epsilon-delta’
characterization of continuity to any function of the real line, but this
requires at least some way of measuring the distance between any two
elements of the set. You should draw some diagrams and convince your-
self that this epsilon-delta definition of continuity agrees with the more
purely topological notion of continuity. In other words, if a function
mapping R to R is continuous in one sense, then it is continuous in
the other sense as well, and conversely.

However natural this has become since Newton, a metric measuring
the distance between any two elements of a set is often not evident in
social and cultural phenomena. Moreover, demanding or imposing a
metric introduces artifacts with political implications. Topology does
not require a metric.

Theorem. The image under a continuous map f: X!Y, of a con-
nected set K is connected.

Proof: Suppose not. Then there are two disjoint open subsets of Y,
call them V and W, such that the image under f of K is a subset of
the union of V and W. (Written in more contemporary concision:
f[K]�V[W.) Since f is continuous, by definition, the inverse
images of V and W with respect to f� f�1[V] and f�1[W] – are
both open subsets of X. We’ll prove that these are disjoint, and
cover K, which will contradict the hypothesis that K is connected.
To show these two pre-images are disjoint, suppose p is a point in
their intersection. But then f[p] is in both V and W, which cannot be
the case, because V and W are disjoint. Therefore, their pre-images
are also disjoint. Next, take any point m in K. By our hypothesis,
the image point f[m] must be in either V or W. Therefore m is in the
pre-image of V or of W with respect to f� f�1[V] or f�1[W]. In other
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words m is in the union of f�1[V] and f�1[W]. We’ve shown that K is
covered by these two pre-images, which are disjoint, open sets. This
contradiction implies that our hypothesis must be false. Therefore
f[K] is a connected subset of Y. QED.

Toward Topological Dynamics as an Approach to Social and
Cultural Morphogenesis

Let us pause to see where we are and where we are headed. Based on
some primordial concepts of open set, topology, basis, mapping, con-
tinuity, we have built up a miniature theory that allows us to describe
phenomena in qualitative terms and make definite statements about
them. These statements, being axioms and theorems, hold in all the situ-
ations where we have checked that the three basic conditions for a top-
ology are satisfied. They are propositional in Isabelle Stengers’ sense.
Now we head toward building a trellis for describing dynamical systems,
which are usually introduced as systems of differential equations, using
such qualitative articulations. On one hand, we will be able to give a
more delicate and concrete nuance to flow, change and becoming than
what Deleuze and Guattari explicitly described, and on the other hand,
we do not bind ourselves to numerical empiricism or to reductive forms
like graphs. We are not furnished yet with the concepts to articulate these
intuitions in detail, so we will defer this for a more complete description
of dynamical systems and process another day. At the very least, we
should recognize that the classical figures of the line, the circle, and the
sinusoidal wave are not adequate to the temporality of human experience
and phenomena. To more adequately address this takes us to a forth-
coming work.10

So what, in sum, have we encountered from the beginning of this jour-
ney? (It is only a beginning.) We have a non-ego-based, number-free and
metric-free account of experience that respects evidence of continuous
lived experience but does not reduce to sense perception or ego-centred
experience. We have an essential concept of continuity both as a quality
of lived experience and as a mode of description of such experience. We
have here the seed of an approach to poiesis and expressive experience
that is ‘non-classical’ in the senses of quantum theory and measure
theory, avoiding recourse to stochastic methods, statistics and informatic
sweepings of the lifeworld under the rug. Yet because topological articu-
lations admit metric measures as special cases, we can commensurate
dynamical processes with metric, numerical measure when it is war-
ranted, justified and practically feasible. Furnished with a topological
alternatives to, or thickenings of, quantitative methods, we can, through
particular studies such as the other contributions in this issue, build a
new set of methods for cultural analysis that on the one hand mesh
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analytically with quantitative methods and on the other are more
adequate to qualitative change, multiplicity and complex dynamics in
culture. Consequently, we have the possibility of a radically de-centred,
de-anthropomorphized concept of experience and cultural dynamics.
This avoids methodological and critical problems with reductive model-
ling and the more canonical interpretations of phenomenology. And it
provides a conceptual trellis for the condensation of subjectivity in the
endless exfoliation of experience in the world.

Notes

1. ‘Deleuze, Whitehead and the Transformations of Metaphysics’, with Isabelle
Stengers, James Williams, Mick Halewood, Steven Meyer and about 20 other
philosophers, Royal Flemish Academy, May 2005. See Sha (2005).

2. As a term in humanities and social sciences, ‘theory’ lumps together a het-
erogeneous assortment of philosophical, historiographical, analytical, crit-
ical, psychoanalytical and other conceptual studies. But such a set of
reflections, representing divergent and even incommensurable approaches
to the diverse objects of literature, art, history and human experience,
seems to create a set of all sets, that is, in fact an impossible object, a reifi-
cation error. To a mathematician, the word ‘theory’ by itself has no meaning,
it is always a theory of something: of Lie groups, of Riemannian manifolds,
of currents and varifolds. There is no impermeable ontological or epistemic
distinction between the objects and the modes of articulation of mathematics.
This porosity implies a material continuity consonant with Badiou’s lemma
‘mathematics is ontology’ (Sha, 2000).

3. A mathematical mode of articulation like topology or any field of mathema-
tics is much more than merely a descriptive scheme. One can say surely and
supra-individually what will follow from the given conditions. This additional
expressive power of a mathematical mode of articulation derives from its
structure as proof. But what mathematicians regard as proof is not what
logicians or foundationalists call proof, because mathematicians rely on the
accumulated body of intuition acquired in continuous streams of face-to-face
apprenticeship together with not-necessarily computational calculations
which fill in the potentially infinite gaps in between the steps of a mathem-
atical proof. Mathematical proofs combine deductively, effectively and
supra-individually.

Gödel’s Incompleteness Theorem does not invalidate this point because it
does not contradict the correctness of a correct proof, or the collective truth
of interdependent theorems relative to an axiomatic system. Gödel proved
something far more radical than a simple – and naively untenable – refusal to
acknowledge the validity of mathematical proofs. He demonstrated that in
any mathematical theory that contains the logic of arithmetic one can con-
struct a statement that is provably true, and provably false in that theory!

4. Isabelle Stengers writes:

In order to think abstractions in Whitehead’s sense, we need to
forget about nouns like ‘a table’ or ‘a human being’, and to think
rather about a mathematical circle. Such a circle is not abstracted
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from concrete circular forms; its mode of abstraction is related to
its functioning as a lure for mathematical thought – it lures math-
ematicians into adventures which produce new aspects of what it
means to be a circle into a mathematical mode of existence.

This is why Whitehead could write, in Modes of Thought, that
‘The aim of philosophy is sheer disclosure’ . . . . The aim of the
abstractions that Whitehead designed is not to produce new defin-
itions of what we consensually perceive and name, but to induce
empirically felt variations in the way our experience matters.
(Stengers, 2008: 96)

5. It should be unnecessary to say also that topology is not topography.
6. A much more powerful way to understand such trajectories is to regard them

as orbits of points under the action of a Lie group acting on the given space
M. Or, even more flexibly, as orbits under the action of a homeomorphism
mapping M to M, h: M!M.

7. Hayden prefaces her review of the technics and politics of similarity with an
anti-Similares slogan: ‘¿Te curaste o te sientes similar? (Are you better, or do
you feel similar?) (2007: 481–2).

8. When we say ‘X is a topology’, more precisely we mean X and a particular
family of subsets of X that we declare to be open. Different choices of family
yield different topologies on the same point set X. X could be (Hausdorff)
separable with respect to one topology, but not with respect to another.

9. For vector spaces X and Y, over the scalar field R, a map f: X ->Y is linear if

fðuþ vÞ ¼ fðuÞ þ fðvÞ

and

fðk � uÞ ¼ k � fðuÞ

for any u, v in X, and any scalar k in R.

Figure 8. Lie group action on manifold M, lifting to their respective tangent spaces TM

and Lie algebra g. Figure by author.
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10. This project is the subject of a forthcoming book, entitled Poiesis,
Enchantment, and Topological Matter.
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