An Object-oriented Multimedia
Distributed Meta-database

Sha Xin Wei*
March 25, 1994

Abstract

We describe a multimedia distributed databases system (mmdd)
which manages associations of arbitrary renderable objects (such as
text, 3D-graphics, sound, video, certain executables) using a hybrid
object-oriented, relational database abstraction. Strengths include
author-modifiable schema, author-reconfigurable front ends, and rela-
tively straightforward extensibility to arbitrary media types and search
methods.

The mmdd enables authoring and navigation in rich user interface
models. It does not address low-level issues such as synchronization
of time-based media, or algebras of virtual media devices.

Key features of the architecture include (1) atoms that are not
traditional wordprocessor-like documents but abstract entities, which
endow the mmdd with unusual flexibility, and (2) object-oriented core
mediating classes which provide coherent but extensible meta-data-
and content-based services. The mmdd was designed around the pro-
jected needs of faculty and their assistant authors, based on extensive
experience with authoring multimedia simulations. The mmdd sup-
ports Stanford University’s Multimedia Distributed Library experi-
ment. !

*ASD, Stanford University, zinwei@jessica.stanford.edu
Vdraft 0.26; submitted to ACM Multimedia 94

Language 1s a labyrinth of paths. You approach from one side and you know your way
about; you approach the same place from another side and no longer know your way about.

— Wittgenstein, Philosophical Investigations

1 Introduction

This paper discusses the mmdd: a set of meta-database, content-based searcher,
hyperlinker, media abstractor/filter, and user interface classes which assem-
ble into widely varying network-based multimedia applications. The mmdd
mediates services such as relational database engines, grammar-driven index-
ers, format conversion utilities, and natural language filters. It makes such
services available via several distributed mechanisms to author-configurable
interfaces. The user interface classes have been constructed as Macintosh
XCMD'’s, Hypercard objects, NeXTSTEP Interface Builder and Objective-C
classes.

In section 2, we discuss the users and tasks we wish to support with
our multimedia management and authoring system. In section 3, we list a
few design desiderata, followed by a discussion of the currently implemented
architecture in section 4, which also contains some example interfaces. In
section 5 we briefly indicate related work, and in section 6 we discuss present
limitations of the mmdd and directions for future work.

2 Awudience and tasks

We are placing the mmdd in the hands of faculty and student authors who are
integrating multimedia technology into their work. These authors typically
have very rich media organized in associative structures which do not map
well onto static, linear forms like film. We have chosen to particularize the
mmdd in several pilot projects: a History of Silicon Valley which is a grow-
ing web of research to be used and extended in a class this winter quarter,
a History of Renaissance Theater used by members of the Drama depart-
ment, and a multimedia messaging board supporting collaborative learning.
A fourth application is a research and teaching archive of electroacoustic
music at Stanford’s Center for Research in Music and Acoustics. These are

described in the Stanford Multimedia Distributed Library proposal. [21]

A typical use is the composition, close analysis and annotation of a dis-
tributed compound document by several people. Another use is the appli-
cation of content-based analysis and database operators to any personal or
commonly-held media in the distributed filesystem. Some related tasks in-
clude entering digitized data, text composition, annotating slides or video
with text, or conversely, annotating text with sound, slides or video. In gen-
eral we want to make it easy to associate any piece or stream of renderable
media — a blob® — to another, to view blobs from multiple phenomenological
or epistemic perspectives, and to repurpose media across projects.

We identify several classes of users of the mmdd: (1) the browser who
makes few permanent changes in the corpora’s blob content or topology,
(2) the author/designer who may edit corpora or re-arrange the interface
in simple ways, (3) a designer/programmer who creates new interfaces and
scripts behavior using graphical or textual programming environments. The
mmdd provides environments which support all these activities. Although
users should be able to pass freely from one sort of interaction to another,
we believe that this model clarifies the tasks that confront a prospective
participant.

3 Some desiderata for media authoring sys-
tems

Faced with the need to manage and depict compound media in very fluid
simulation projects based on relational and rule-driven models, we sought
a fairly flexible media management system which could be adjoined to our
existing authoring practices. We also needed a system which would let us
migrate our work to other systems as the state of the art evolved. Unfortu-
nately, this ruled out some very interesting experiments (described in section
5). We discuss here a few of the design desiderata which guided the mmdd.

2John Cage rather puckishly defined music as any sound to which you pay attentiomn.
"Multimedia” — loosely defined as any juxtaposition of different types of renderable media
— also has such an epistemologically subjective sense. The mmdd includes at least cer-
tain types of interpretable or executable media such as Hypercard stacks or Mathematica
scripts; see Table in the Appendix.

o distinguish between conceptual model, data format, and data depic-
tion, and support maps between each of these ontologies. To illustrate,
word-processors typically have a fixed depiction — e.g. running text
with embedded graphics, allow no control over internal data format,
and do not encode models. (Of course this simplicity is also their
strength.) Hypercard gives a great deal of control over the depiction,
but limited control over internal data format and model. On the other
hand, traditional database programs which are designed to handle quite
complex relational models typically had fixed notions of data format,
and fairly inflexible user interfaces. Most importantly, we needed to let
authors dynamically reshape their database schema.

e anticipate a moving target in multimedia formats. This has at least four
corollaries: (A) adopt no "holy format.” (B) make as few assumptions
as possible about the internal structure of a blob; (C) retain the ability
to translate authors” work to future object-oriented file-systems and
other databases; (D) make it possible to upgrade blobs transparently.

As better digitization technology or better sources are acquired, we
should be able to feed new data into the mmdd without troubling the
authors unless they request notification.?

e support multiple, variable depictions and associations of media.
Rather than spend much effort casting multimedia structures into some
universal document formats like Adobe Acrobat or HTML. the mmdd
sidesteps altogether the document metaphor used by word- processors,
at least its static conception, in favor of dynamically composing ele-
ments, and even depiction formats depending on the user’s state.

o scale: decay gracefully on low-end personal computers, but take ad-
vantage of more powerful services from the net if available. The mmdd
works on heterogenecous network of computers, including Macintosh
and NeXTSTEP (NS) systems, backed by plain unix servers.

3 A radical approach to this versioning problem would be to treat every single blob as
a media stream rather than a static datum. Thus the mmdd treats time-based media as
well as atemporal media on a uniform footing.

*We wish to balance functional power of the infrastructure with flexibility and adaptibil-
ity of the human-computer interface. This strongly motivated our decision to marry envi-

e accommodate a constellation of cooperating applications, some of which
may be supplied by authors, rather than rely on a monolithic library.
We encourage our authors to use their own favorite commercial appli-
cations, though for the base media formats (e.g. RTF or TIFF) we
supply some lightweight viewers

e be useful to non-technical authors in non-technical endeavors by win-
ter 1993, yet remain extensible to arbitrary media formats, annota-
tion/indexing schemes and search metaphors.

We investigated a variety of commercial multimedia databases, but found
. . 0] . . . =4
none which satisfied all our design requirements at that time.”

ronments such as unix which can perform low-level and network functions quite well, with
NS and Macintosh which carry the most carefully conceptualized HCI design environments
available across the campus.

>We evaluated FileMaker, Atlas Pro— a geographic information system, Art Access —
a flat database aimed at curators of art museums and at wirephoto services, Fetch a
flat multimedia database, Oracle, Sybase, and Versant — a robust object-oriented database
aimed at large medical, geographic and engineering systems. We also examined some more
experimental systems, including Parabase, Gain and Atasca.

Ot

4 Architecture

DISTRIBUTED MULTIMEDIA ARCHITECTURE

User| MS Word, Hypercard- e e Tcl/TK-
Interfaces Mosaic, based Craftman - based
Interface Builder - based
TCH-IP Objective|- C; DO TCP-IP|or DO
........... |
. N
MMDD core mediating classes
MMDD
Core authorization butler, oo meta-database,
arent classes: multimedia searchers, link manager, abstractor)
Distributed indexed NexXTSTEP image
! Ind Kit
Services converters grammar.driven content
parser/indexe nalyzer
Persistent (databases: Sybase, Oracle, etc. experimental databases)
Storage(filesystems: NFs, AFs, AppleShare)

Figure 1. Schematic of the mmdd architecture (light gray indicates where future
components will fit). DO = Distributed Objects/CORBA, a cross-platform
object-level inter-operation protocol being developed by NeXT, HP and Sun.

Our prototype system uses NeXTSTEP (NS) and Macintosh computers,
supported by Sun file-servers and an IBM database server, with inter-object
communication by Objective-C, a TCP-IP based API, and Distributed Ob-

jects.

4.1 Front ends — optics

Figure 2. A NeXTSTEP(NS) virtual light table showing databased abstracts of a
scorefile, a Mathematica program, a WriteNow document, a sound sample, a live
video channel, a several TIFF images, an MPEG digital video (also in
foreground), and a 3D RIB file, viewed by geomview (in background). Abstracts
may be of any type — text, voice, etc.

A key aspect of the mmdd is that there are multiple "optics” through
which one can view into and manipulate the multimedia web structures. For
each environment which we support, the mmdd provides a set of reconfig-
urable interface objects out of which author-designers can assemble front
ends. Front ends talk to the mmdd either by invoking the public methods
of the mmdd classes (section 4.3), or via TCP-IP using a simple applica-
tion programming interface. (see 4.5) The user interface objects include a
polymorphic MediaView which can display multiple types of media, a Com-
positeView which performs some layout and tiling of daughter MediaViews,
TableViews optimized for matrices of scalar types, as well as a FetchGroup
which buffers queries to the Mom and caches returned data.

For Macintosh clients, we have built a set of such local data-caching
classes and interface classes in HyperTalk, and a set of XCMD’s which use the
mmdd’s API, all packaged into template Hypercard stacks. Obviously, a more
robust application developer workbench would be desirable, but that will
depend on the evolution of environments from innovative industrial partners.

Under NS we have extended the dbkit’s user interface classes in the In-
terface Builder.[14] From these components it is quite easy to (re)fashion
viewer/composer applications customized to the needs of our faculty and
student authors. We have produced half a dozen viewer applications tailored
to various tasks, such as cataloguing, navigating and weaving compound me-
dia, allowing various intensities of reading or authoring. (see videotape)

For example, Figure 3 shows one early Macintosh workspace for the the
Elizabethan Renaissance Theater project. The item of interest occupies the
large focus field, with linked media around the border. This particular delib-
erately simple interface emphasizes direct manipulation. A browser can pull
a media object into the center of attention, make links, search, and add voice
or text annotations. Since the user interfaces are written in Hypercard and
Interface Builder, we can quickly re-arrange the interfaces without breaking
database service.

———————————— i A
ﬂ m Fundubear: s VWarriar i
Cormrrekn. dell firte troupsr of sdor e ronidered to be the S
Cabyaegl lin presianiens. pelameen The banis dm comnrmedie parfarmeards U ta
il dm Smrctiby. i 2 I o it i | e bl reas wppded wdregde plod cratlise

o

Figure 3. A Macintosh workspace, showing drag-drop of an item from the
Elizabethan Renaissance Theater corpus into the focus field, with linked media

in border.

We emphasize that the mmdd supports the dynamic composition of views
in content and even form, depending on the state of the user. Figure 4 shows
a NS "detail-view,” the main image comes from a fileserver, annotations and

links” abstracts are culled from the mmdd databases. Some reformatting
can also be performed dynamically, for example, to present musical media
instead of visual media.

Pantaloon the Warrior

Figure 4. A dynamically constructed view of one media entity — Pantaloon —
from the Renaissance Project. Linked ”"daughter” images appear as sound and
image abstracts on the left, and research assistant’s comments appear below.

This particular interface shown in Figure 4 shows several navigational
methods with which we are experimenting: tracing links represented by non-
text media objects, profile search (query by example), term search in selected
meta-data fields, and full content text search.

To complement standard boolean queries on meta-data, which we provide
to expert users who are familar with their application’s schema, we also
experimented with alternatives such as multiple pools for cascaded search
and more free-form gathering (Figure 5). Authors can assemble personal
sets of media by combining boolean searches with more intuitive gathering
and winnowing gestures. Authors may catalog new material by dragging
items from other pools or directly from the filesystem into personal pools.
Authors can also make links by a similar gesture. This takes advantage of
the NS appkit’s universal drag-drop service.

P T =

Figure 5. Multiple pools for cascaded search and browsing of personal "light
tables.”

The mmdd interfaces are integrated with sister applications via NS Ser-
vices: selections can be sent to applications such as Mathematica with graph-
ical or formatted text results returned to originating views. Figure 6 shows
NS Digital Librarian, which provides simple full text indexed search on words
or regular expressions.

10

NAC P aDOMaLOTICN 4
Stanford: by Peter Lobban and A.
Dale Kaiser and by David Jackson,
Robert Symons and Paul Berg.
Earlier work by others had shown
that the ends of the DNA molecules
of certain bacterial viruses can be

Figure 6. Digital Librarian, a NeXTSTEP text-search application which we have
used as a prototypical indexed content-search service.

4.2 Core multimedia database classes

The mmdd’s heart is written as a set of Objective-C classes, epitomized by
Butler — authenticator/accessor, Mom — multimedia object manager which
is the Objective-C representation of multimedia database entities, Searcher
— object-oriented query, and Linker — generalized hyperlink manager. We
describe only these principal parent objects.

11

4.2.1 Blob structure

media entity or stream example
meta-data: abstract 1 text caption
abstract 2 text note
multimedia abstract 3 TIFF icon
annotations/abstracts
in Mmdb database abstract n voice annotation

version 1
version 2
version 3

Mathematica Notebook
QuickTime movie
TIFF of poster frame

source data:

in filesystems

Figure 7. The media entity is a logical construct with a meta-data vector of
abstracts in multiple media, and an equivalence class of representations stored in
the filesystems.

Blobs are described by meta-data descriptors such as id, name, location...
in an extensible structure where only the location is expected but not required
of the client — the Mom generates an id and fills in a timestamp upon creation
of a new meta-data record.”

The heart of the mmdd’s flexible handling of media lies in the fact that
its descriptor fields may be arbitrary (Objective-C) objects, or even raw
data wrapped in Objective-C Data objects. A further, practical flexibility
comes from allowing multiple versions of a logical media entity, where the
equivalence is defined by the application, not the database. Virtual blobs
may be created and linked to support arbitrary logical hierarchies. Note
that our atomic blobs are abstract media objects, not physical files or logical
documents in the traditional sense of word-processor programs. Thus, the
Mom can manage composite blobs as well as selections within blobs, an
important uniformization of the hypermedia model.

6For some (most?) purposes, network time-service could provide a "univeral” times-
tamp, but some clients may wish to define their own time-stamp service.

12

4.2.2 Butler

A Butler maps users to equivalence classes of authorship ranging from full
creation/destruction of database schema to passive browsing, connects to
requested databases (see discussion of SQL servers below) and instantiates
Mom objects which represent the Objective-C incarnations of database enti-
ties.

4.2.3 Multimedia object manager

Blobs are always stored by reference in a Mom, along with multimedia indices
and other descriptors. The heuristic is that indices, of whatever type, be it
text, graphic, or sound, must be small enough to be delivered en masse across
the network in a few beats. Some indices may be Objective-C objects of
arbitrary type, including any serialized object from any client which adheres
to the API; thus, in a descriptor field of object type a Mom can archive
entirely different data such as a Macintosh PICT or an NS Sound, though in
practice this is not done, to simplify life for the client applications.

The Mom makes essentially no assumption about the internal structure
of a blob (see discussion of blob type below). It stores abstracts, generalized
thumbnails, of a blob, and can serve up references to one of several versions of
a given blob in support of the graceful decay design principle. For example,
we can take Kodak Photo-CD images and keep versions in different sizes and
bit-depths to speed transport to machines with limited graphics rendering.
A more interesting example would be to keep layered wavelet-compressions
of a digital video.

4.2.4 Search class

The Searcher class abstractly supports search on indices against a pattern,
plus methods to generate an arbitrary boolean query against object-patterns
where the comparison operators may be defined either by subclasses of the
Searcher or by the index and pattern objects themselves. Content-based
searches, being slower and format-dependent, are relegated to subclasses
which may call upon parallelized methods. (see section 5 below) Some blob
descriptors are defined with an eye toward storing metrics for proximity,
fuzzy, and more general searches. While we expect specialized search classes

13

to maintain their own dynamically computed metrics, the mmdd can store
precomputed norms. (See our discussion

4.2.5 Links and Linker class

Links now refer to whole blobs as atoms, so that the granularity is fixed at
the moment of scanning/digitization or fairly soon thereafter. (see section
5 on limitations and future work.) Links are databased separately from
the media, which avoids marking up data files. For portability, we decided
against linking mechanisms specific to an operating system or application.”

< source (database entity, id), destination (database entity, id), qualifier ..>

Figure 8. Extensible link structure: source and destination blobs may be virtual,

or selections within physical media.

The link structure is quite simple, but extensible. We attempt to give
universally unambiguous blob ids by joining database entity identification
with an identifier unique within that database. Thus we can annotate one
blob even by entities drawn from foreign databases, such as a bibliography
database extracted from the university library system and from our faculty
authors’ private databases.

With such a general link structure, we can link any two blobs in the
mmdd, which may be files, Objective-C objects, or even virtual objects,
logical entities like " The Commedia Harlequin” to which the author can link
other entities. We have traded efficiency for generality, but have the option
of writing link maps into the SQL engine’s tables to take advantage of its
native relational operators.

The parent Linker class provides a few convenience functions to trace
links based on source, destination, or a string qualifier. This provides the
basis for handling link maps which may be owned by a particular person or
class of people. Since links are first-class entities in the mmdd, applications
may apply Mom and Searcher objects directly to the set of links, or even
apply their own functions. This provides great flexibility and extensibility to
alternative link management strategies.

"However we have encouraged students and faculty to compose links using native viewer
applications such as Microsoft Word or NS Edit, to gain some experience with hypermedia
forms.

14

4.3 Distributed services
4.3.1 Relational database services

We use commercial entity-relationship engines to provide ordinary search and
sort on atomic types, relational database functions, and meta-data storage.
We take advantage of the NS dbkit[14] to insulate our mmdd from the pecu-
liarities of particular SQL engines, so we can easily connect to any number
of popular commercial relational database engines on the net. For example,
we are currently experimenting with Sybase servers on IBM RS6000 as well
as NeXT computers.®

4.3.2 Filtering and abstraction

The mmdd currently creates abstracts of images automatically, but is able
to store abstracts of arbitrary type. Although the mmdd allows clients to
store arbitrary, even OS-specific blob types (e.g. voice annotations), it guar-
antees access across unix, Macintosh, and DOS/Windows only to the equiv-
alence classes of TIFF and RTF. By an equivalence, we mean any approx-
imate information-preserving transformation of data-format. For example,
public-domain pbmplus and its cousins provides inter-conversion among ap-
proximately 40 graphics types, including TIFF, EPS, Mac PICT, and GIF.
Although only isomorphic filters will be allowed for some critical blobs, in
practice, somewhat lossy transformations are acceptable because our author-
ing model follows a policy of flowing media from archival locations to the
clients.

4.4 Communication
4.4.1 Inter-object communication

The mmdd’s core objects communicate via three alternative protocols: (1)
direct Objective-C method invocation, (2) TCP-IP based application pro-
gramming interface modelled after SQL but extended to arbitrary non-text
patterns and attributes, and (3) NS Distributed Objects (DO, PDO). The
mmdd’s NS viewer applications simply invoke the methods, though of course

#Any database service for which there is a NS dbkit adaptor may be used. These
include Oracle, dbase, INGRES, and NS IndexingKit.

they could use distributed objects, while the Macintosh viewers use the API.
The distributed objects protocol provides an elegant way to migrate compu-
tation across different hosts and base operating systems.

4.4.2 Storage, transport, conversion

Here we lie at the mercy of our networks, but the mmdd makes no assump-
tions about the media formats or network protocols, and so can inherit what-
ever solutions are implemented. Again, the mmdd should be viewed as a dis-
tributed media manager which is not directly concerned with network issues
such as synchronization and latency.

Blobs are archived as ordinary Macintosh and unix typed files. We antic-
ipate that databased file-systems will eliminate many of the circumlocutions
currently required by this file-based object store.

To import foreign text-based databases, we have writtten Mathematica
functions which map string tensor spaces of any dimensions. We sacrifice
speed for extensibility and generality across operating systems and table for-
mats. Although we recognize that this is unacceptable substitute for dynam-
ically adjoining foreign database servers, we see no alternative until certain
protocols like 7Z39.50 or distributed objects are standardized and widely sup-
ported.

As noted, we also can import PICTs or RTF structured text from the
Macintosh to our unix servers. Conversion and filtering services have been
designed as distributed services in a parallel project, a modest version of the
general media transcoding initiative.

5 Related work

5.1 Information depiction, user interfaces

A prototype LISP-based, object-oriented information system was written by
Cutting et al. at Xerox PARC [6], but it was specialized for text data. Some
pioneering work has been done by Rao and colleagues [19] in Xerox PARC’s
Information Grid project in the domain of object-oriented viewer application
kits. Xerox PARC’s Information Grid shows promise as an embedding ar-
chitecture in the similar spirit as the mmdd, though as described, it focuses
on retrieval of application objects as its top level mechanism for accessing

16

user information, documents, or services, an approach echoed by some com-
mercial firms such as Oracle. Such application-centric systems may be too
coarse-grained in the paradigm of lightfooted search agents in databases of
information.

In the domain of user interface kits, one system which has garnered
some attention is Ousterhout’s X-based user interface specification language
Tel/TK [16]. However, we need user interface systems which can be used
by fairly non-technical designers, yet achieve the broad design space needed
to support present-day multimedia simulations like the Paris Theater (Reg-
naut [22]), not to speak of even richer interface gestural models supported
by systems such as J. Lanier’s VPL [10] which provided a language by which
applications could do unto each other as humans would do unto them.

5.2 Model — format — depiction trichotomy

Klas et al. discussed similar fundamental principles, such as distinction be-
tween " the modelling and the presentation of objects” [9]. They spent a large
amount of effort on versioning, and claimed that nonlinear document struc-
ture allowed "easier” navigation than linear structure. Many of the "subtle”
issues concerned with connecting the presentation layer to the conceptual
layer have been solved at a fair degree of generality in the mmdd, though
much more work remains, of course.

Trehan and colleagues [20] devised an object-oriented hypermedia system
with features similar to some aspects of the mmdd. However, they re-derive
the software superstructure from a custom programming language (concur-
rent OO C), and their system is intimately bound to a set of X-Windows
editor tools. This results in a fairly porous set of classes ill-matched to the
rich application universe found on Macs and PCs. Nonetheless, Trehan et
al.’s abstraction of database collections, media classes, and tools agrees in
spirit with corresponding aspects of the mmdd. The mmdd enjoys certain
advantages by relegating constructs such as stream objects and inter-object
communication via distributed objects to a layer of which can be provided
by the ambient development environment (NS). Thus the mmdd builds upon
a much richer stratum and can directly support the experiments at hand.

Andreas Paepcke and colleagues [17] designed an object-oriented cover
for a database to support more flexible forms of text-searching mediated by
some query and presentation classes. They have also recognized the need for a

17

deeper semantic connection between user interface objects and computational
services.

5.3 Services

While Gaines and Shaw [7] also aim to provide services such as seman-
tic nets, (numerical) simulation engines in addition to hypermedia, unfor-
tunately their entire layout is rigidly fixed on the metaphor of the paper
document. This excludes a huge design space which could integrate such fa-
cilities in radically different ways, as some of the mmdd applications require.
Moreover, they locked their extensions underneath a monolithic Macintosh
application, rather than cooperating with relatively lighter weight modules.

5.4 Case study, comparison with World Wide Web
and NCSA Mosaic

While we have exported some of our corpora also via World Wide Web
3], [2], WWW and NCSA’s design significantly differs from the mmdd’s (see
section 4), and do not serve the mmdd’s spectrum of media and interactivity.
We briefly contrast the two designs to more clearly situate the mmdd:?

e NCSA Mosaic, and HTML, are based on a word-processor document
model: text with inlined media "raisins,” which is too rigid for the
sort of interactions the mmdd is designed to support, such as staged
video sprites and dynamically defined compound objects like ”class-
room activity” or "historical actor.” The mmdd supports a world of
co-equal media entities, which may be anything ranging from Quick-
Time movies, Hypercard stacks or Mathematica programs to streams
of music or video.

o Mosaic and WWW have no native design for mediating database ser-
vices. CGI’s represent a relatively limited stopgap measure via static
data forms which do not streamline the real work of cross-database
communication, query-generation, model management, all of which are

9While we focus most of our comparison at the level of the user interfaces, it is important
of course, to distinguish the underlying World Wide Web architecture from the interfaces
that happen to be written for it.

18

uniformly and dynamically handled by the NS dbkit’s object-oriented
methods.

e Mosaic requires that its documents be marked up in a "holy format”
derived from SGML. The mmdd, via its object-oriented database struc-
tures, requires essentially no assumption about the internal structure
of a blob, yet maintains meta-information and supports database func-
tions on the blobs. Specifically, whereas links must be explicitly written
into HTML documents, a laborious and error-prone operation, mmdd’s
link-maps are transparently written into independent databases by sim-
ple user gestures, such as drag-drop under the NS Workspace and Mac
front ends.

e Mosaic front ends have frozen layout and functionality and, most im-
portantly no schema editing at all. By contrast, the mmdd is designed
to let authors revise their own schema. Mmdd interfaces can be recon-
figured in minutes. Whereas XMosaic and Windows require installa-
tion of viewers which must conform to some Mosaic-specific protocols,
mmdd front ends exchange structured data with ordinary commercial
applications familiar to users.

o In contrast to WWW’s strategy of providing libraries including special-
case media viewers on an ad hoc basis, the mmdd’s object architecture
provides a rational and flexible framework (described below) for inte-
grating any service.

6 present limitations and directions for fu-
ture work

We intend to migrate client corpora from the mmdd to true databased,
object-oriented persistent storage systems which should replace current filesys-
tems in the forseeable future.

Currently though it is quite easy for a nonexpert to edit the base database
schema using existing schema editing tools, the end-author may not dynam-
ically change the schema. We intend to allow the end-author to define new
typed attributes dynamically. Experience with other multimedia simulation

19

projects suggests that dynamic schema editing is vital during the design
phase of a mmdd project, but not used by browsers. (also see Batra[l].)

We wish to test the extensibility of our system in at least two signifi-
cant dimensions, perhaps by implementing reasonably refined query by im-
age content methods (IBM, [15]), natural language content analysis (NASA
[11]; Apple [18]), or video content analysis and captioning (Media Lab [13],
SRI).

6.1 Content-based filter services

A fundamental problem with any media service is the conversion of file for-
mats. While the mmdd itself needs minimal information about internal blob
structure, its clients must be able to communicate media in their preferred
formats. For example, a Macintosh drawing program could profitably be
used by an author to edit a non-Macintosh document on the network. Al-
though some mature applications attempt to import and export multiple file
formats, the efficient solution would be to have the ambient operating system
provide such services to all applications. This elegantly provides extensibility
and factors out demanding computational tasks from the mmdd.

A related problem is that, sophisticated searches usually benefit from
some content-based pre-processing of the documents. This is especially crit-
ical with large text corpora or nontext media. Such pre-processing can be
regarded as an abstraction service, which again, should be provided as a
general service.

Formally, abstraction and conversion services are independent of the core
mmdd classes, but we expect to tightly integrate them into our general
scheme.

Modelled loosely after the elegant NS Services which automatically inter-
poses filters between vendor and consumer applications, such abstraction and
conversion services would be dynamically extensible. Two key differences are
that non-NS clients of the mmdd should be able to request filtering via the
mmdd, and that the services may distribute to whatever compute servers
can best perform them. Of course, this places the burden on siting compute
servers close to either the fileservers or the client applications.

¢ Abstraction service

To search a database rapidly, one usually needs a set of indices. Content-
based searches require richer indices which may be generally viewed as
7abstracts.” like the abstract of a traditional research article, or the
poster frame of a QuickTime movie.

The polymorphic abstractor automatically summarizes files in a way
which is sensitive to type, and perhaps content. The abstractor is
easily modulated, e.g. by scripts or subclassing. For example, upon
encountering a directory which is actually bundled as a single hyper-
linked document (as is common with unix word processors or mm mail)
the abstractor might create a single RTF file summarizing the contents.
Or, encountering a Mac PICT file, it may create Mac icon, as well as
TIFFs in several sizes and bit-depths. Another example would be to
extract the "author,” "title” and "abstract” structures from TeX doc-
uments. A Searcher object can invoke abstractors and request special
work like pre-processing graphics to prepare for queries by image con-
tent, or running FFT on a soundfile.

There is a large body of research, partitioned by media type, on auto-
mated interpretation of documents ranging from natural language text
interpretation [4], to image interpretation (Niblack et al. [15], Hirata
et al. [8]) and video interpretation (Matthews [13]). Note that we do
not require semantic analysis, merely "dumb” heuristics to make thin
versions of documents for transport and for search or classification.
Examples are the scatter-gather text methods by Cutting et al. [5]
and music recognition (e.g. Bruce Penny-Cooke at MacGill University)
and music pattern recognition (e.g. David Huron at the University of
Waterloo).

Conversion service

On a more basic level, it would be quite useful to extend the model pro-
vided by the NS Services, where producer applications post announce-
ments of the formats of a selection which they are prepared to vend
and consumer applications request a selection in a preferred format.
The dynamically extensible set of system services should interpose fil-
ters between media streams and convert data in transit. It would be
quite useful have such services mediating Macintosh-unix connections.
Such an intermediary radically simplifies the development of applica-

21

tions which must work with heterogeneous media on different operating
systems.

We are using combinations of netatalk, AFS and NF'S filesystems, which
provide limited facilities for dynamic intervention by custom filters.
Experimental systems in the genre of "open documents” will be quite
useful, but serve a different metaphor, that of the paper document (qv.
Xerox PARC’s System 33), whereas we need to support more supple
transport models.'?

6.2 Other services

We will investigate how best to provide connections to other network ser-
vices. Two currently interesting enterprises are World Wide Web (WWW)
and Z39.50. WWW provides a literally global but boundlessly complicated
topology of interlinked documents. Its principal constraint from our per-
spective is that it was designed as a document delivery system, rather than
as a multimedia authoring system. Nonetheless, by delivering the mmdd
via a WWW server, we gain a few simple but widely distributed viewers
at little cost. One may view the mmdd in this context as simply another
WWW server, which could potentially become a WWW service. However, a
WWW server gains no uniform deep access to sibling network services a la
2.39.50. For the latter, we will depend on commercial solutions, for example
in the form of NS dbkit adaptors or some other equally powerful API. Such
compliance will allow mmdd clients to connect to sibling information sources.

6.3 Detached media

One of the most serious limitations of the mmdd is its dependence on network
services. We would like to have authors "check out” subsets of associated
media from the mmdd, annotate them perhaps at home or in the field, and
write the updates back to the mmdd. This requires local applications which
contain embedded instances of the Mom and its sister classes.

00mne example comes from scientific computation: we derive a model within Mathe-
matica on a Macintosh, but have it numerically computed on a remote compute server,
and have the results converted for review on a Silicon Graphics machine. Alternatively,
we could send the resulting animation to videotape, using for example, a QuickTime
converter.

22

6.4 Links vs. queries

We intend to take advantage of the database’s object fields to attach links
to selections within blobs.

We are interested in exploring how far we can replace the notion of hyper-
text links with a more fluid mechanisms of query, and query-generation, for
which we have prepared the architecture. For example, through an adaptor
to the underlying grammar-driven Indexing Kit, a general grammar-driven
database service which can parse and index any structure for which a gram-
mar can be specified, the mmdd can provide such grammar-driven content-
based indexed searches to any of its clients. This is potentially a a very
powerful and general indexed search mechanism for the class of formally
parsable media structures.

We also are planning to refine or replace our link-maps by more sophisti-
cated methods of personalizing or contextualizing the views into the media
web. We are exploring the possibility of interposing an adaptive network
which would build user-class profiles from users’ browsing and linking behav-
ior or from users’ more formal queries on meta-data attributes. Such work
has been done, for example, by Mathé & Chen in the context of adaptive
hypertext [12].

6.5 Other platforms

Finally, we have not supported X or Windows clients, except by providing a
API and a TCP-IP service in lieu of a common distributed objects protocol.
We regard our current distribution of media via Mosaic to such environments
as a stop-gap measure to be replaced by reconfigurable Ul environments.

7 Conclusion

We have described a hybrid object-oriented relational database system which
manages and presents graphs of compound media on Macintosh, NeXTSTEP
environments, supported by unix and AppleShare file-systems. We have con-
centrated our efforts on what seem to be some of the lacunae in approaches
toward a casually usable multimedia authoring system spanning unix and
Macintosh operating systems which may be extended to arbitrary media

23

formats, and arbitrary search methods in a relatively elegant and efficient
fashion.

8 Acknowledgments

Deborah Zimmerman in the Academic Development Group was responsible
for the Macintosh HyperCard front end, and Rick Wong implemented the
tep-ip API supporting blob-transport. We thank Tim Lenoir, Henry Lowood,
Judy Dolan, Bill Eddelman, and the student assistants for participating in
the design process, and we are indebted to Charles Kerns for his constant
interest. We thank also Bill Verplank and Terry Winograd for their criticism.

24

9 Appendix

9.1 Concise representation of the mmdd

The mmdd model has a simple structure which can be more clearly expressed
in more precise terms.

The mmdd structure can be viewed as a directed graph {, , ¥ }where the
nodes v € , are logical entities representing generalized selections in multi-
media objects, and arcs 0 € ¥ are associations of ordered pairs (v;,7), 7 €, ,
carrying extra structure. Both , and ¥ carry simple but extensible structure.
Each 7 is represented by « & [r], where « is a a vector of annotations and
abstracts in various media types, and [r] is an equivalence class of persistent
data for example a file or, more generally, a selection in a blob modulo
an equivalence defined by the application. In practice the a are stored in
a relational database while the r are stored in the filesystem. For efficiency
and to keep the database relatively compact with an eye toward detachable
sub- databases, our policy dictates that the sizes |a;| << |r|, and that most
queries will preferentially compare patterns against the «; rather than the
full content r. The associations may be qualified to allow individuals to create
their own link maps.

In this setting, abstraction and conversion services are contraction maps
¢ :r — « and (pseudo-)isomorphisms ¢» : — /. For precise estimates of the

complexity of the functions required, we would need to define information-
theoretic topologies on , and its function spaces.

9.2 Pictures

Figure 9. The Search classes support comparisons against arbitrary objects; we

will accommodate several non-text content-based search methods.

performance art

|
d\ Mathematica
scripted |
authoring Hypercard Craftman
environments |
|
_integrated | .
pnimation/video | QuickTime MacroMind ScriptX?
I
o
graphlcsl TIFF PostScript PICT Renderman
I
S"‘”’d: snd AIFF midi score
|
text! text rtf TeX SGML
I
4 - - e e - - — -
"data" "programs"

Figure 10. What is multimedia? This table is intended only to give a sense of the
dimensions along which we can array some renderable media, and to indicate the
scope of the need for a well-integrated, databased filesystem, perhaps based on
an object-oriented model.

26

References

1]

[10]
[11]

[12]

D. Batra and J. G. Davis. Conceptual data modelling in database design:
similarities and differences between expert and novice designers. Intl. J.
Man-Machine Studies, 37:83 101, 1992.

T. J. Berners-Lee. The world wide web, talk at Stanford PCD seminar
CS 547, 1993.

T. J. Berners-Lee, R. Cailliau, J-F Groff, and B. Pollermann. World-
wide web: The information universe. In Flectronic Networking: Re-
search, Applications and Policy, volume 2, pages 52 58, 1992.

Bran Boguraev and J. Pustejovsky. Lexical Knowledge: Acquisition and
Representation. MIT Press, in preparation.

D. Cutting, D. Karger, and Jan Pedersen. Constant interaction-time
scatter/gather browsing of large document collections. In Proceedings of

STIGIR 93, 1993,

D. Cutting, Jan Pedersen, and P.-IX. Halvorsen. An object-oriented
architecture for text retrieval. In Proceedings of RIAO’91, 1991.

Gaines and Shaw. ... In Proceedings ACM Multimedia, 1993.

Kyoji Hirata, Yoshinori Hara, Naoki Shibata, and Fusako Hirabayashi.
Media-based navigation for hypermedia systems. In Proceedings of ACM
Hypertext, pages 159 173, 1993.

W. Klas, E. Neuhold, and M. Schrefl. Visual databases need data models
for multimedia data. Visual Database Systems, pages 433 462, 1993.

Jaron Lanier. personal communication. (see reference in Sci. Am), 1988.

Nathalie Mathe’. Facilitating access to information in large documents
with an intelligent hypertext system. In Proceedings of the 9th AIAA
Conf. on Computing in Aerospace, 1993.

Nathalie Mathe” and James Chen. A user-centered approach to adaptive
hypertext based on an information relevance model. In Fourth Int’l Conf.
on User Modeling, Aug 1994.

[18]

[19]

[20]

[21]

22]

J. Matthews, P. Gloor, and F. Makedon. Videoscheme: A programmable
video editing system for automation and media recognition. In Proceed-
mngs ACM Multimedia, pages 419-426, 1993.

Inc. NeXT. NeXTSTEP. Addison Wesley, 1992.

W. Niblack, R. Barber, W. Equitz, M. Flickner, E. Glasman,
D. Petkovic, P. Yanker, and C. Falouttsos. The QBIC project: querying
images by content using color, texture, and shape. Technical report,

IBM Almaden, 1993. Research Report RJ 9203 (81511).

J. K. Ousterhout. An x11 toolkit based on the TCL language. In Pro-
ceedings of the Winter 1991 USENIX Conference, pages 105-115, 1991.

Andreas Paepcke. Viewing heterogeneous text databases: object tech-
nology works for the view and its implementation. Technical report,
Hewlett-Packard Lab, 1992.

J. Pustejovsky and Bran Boguraev. Lexical knowledge representation
and natural language processing. Artificial Intelligence, 1993.

R. Rao, S. K. Card, H. D. Jellinek, J. D. Mackinlay, and J. D. Robert-
son. The information grid: A framework for building information re-
trieval and retrieval-centered applications. In Proceedings of the ACM
Symposium on User Interface Software and Technology, 1992.

Trehan, Sawashima, Yamaguchi, and Hasebe. Toolkit for shared hyper-
media on a distributed object oriented architecture. In Proceedings of
ACM Multimedia, pages 175182, 1993.

Sha Xin Wei, Robert Street, and Michael Keller. NSF proposal: A
multimedia distributed library. Technical report, Stanford University,

1994.

Fabienne Zimmermann-Regnaut. Interactive memory of theater: Paris
Theater. In Conference at Univ. Paris VIII, Dec 1993.

28

