
MediaWeaver { A Distributed Media

Authoring System for Networked Scholarly

Workspaces

Sha Xin Wei�

Stanford University

June 2, 1997

Abstract

We describe MediaWeaver { a software framework for composing

distributedmedia in the context of university research and instruction.

Authors compose networked media, software tools and mediastreams,

and can freely annotate media by media of any form using schema of

their own design. Faculty and student authors compose distributed

media using common Macintosh, World Wide Web and NeXTSTEP

applications, supported by services from UNIX workstations.

The MediaWeaver system mediates between network multimedia

services and interface kits with which novice programmers and non-

programmers may easily create radically di�erent interactive views

into shared mediabases. The network services include search engine

abstractions, �lters, relational modeling frameworks.

MediaWeaver has supported collaborative projects in history, drama,

music, art, anthropology, environmental studies, and other �elds since

1993. Applications range from traditional relational text databases

and indexed HTML WWW sites to course readers, research archives,

journals and seminar spaces.

�Sweet Hall 415, Stanford University, Stanford, CA 94305. xinwei@stanford.edu

1



� 1. Introduction

� 2. The Problems

� 3. Design Principles

� 4. Architecture

� 5. Future Work

� 6. Bibliography

1 Introduction

A major challenge facing designers of networked computing environments
today is to fashion scholarly workspaces which are simultaneously coherent,
easily recon�gurable, e�ciently expressive { small gestures go a long way,
and above all, worth using.

In this paper, we describe MediaWeaver, a system that has streamlined
the composition of arbitrary renderable media, mediastreams and applica-
tions in diverse models and narrative structures. MediaWeaver is designed
to support the construction of models of human systems which are both
conceptually rich and data rich. It also mediates between coherent, cus-
tomizable interfaces and an open set of network services, such as database
engines, WWW servers, fulltext and image search engines (Wang [13])1, and
media conversion facilities. And it is designed for open sets of media that
will change over time.

Our context is humanities computing (Thaller [12]), which signi�cantly
stretches the envelope of networking technology, multimedia, intelligent search
systems, and human-computer interface design. Software technology paradigms
now run the gamut from verb-object tools ("set the color of the selected
word to red") to document processing, intersubjective computing and ur-
ban design. (Alexander [1]) We take a perspective situated somewhere be-
tween intersubjective computing and urban design. Our method has been to
have designers/programmers work intimately with the faculty and student
researcher/authors who use the evolving systems.(Ehn [4]) In fact, Medi-
aWeaver was conceived in the beginning as a framework to accelerate our

1Note added in proof, we have integrated a suite of image search engines incorporating
new work based on wavelet methods.

2



own multimedia designers' work in creating rich complexes of media sup-
ported by relational data models. But it was natural to extend the role of
the designer to include authors who were experts in �elds outside computer
engineering.

2 The Problems

After about �ve years of making interactive multimedia applications, we
took stock of our work process to see where the bottlenecks were, and also
what were the greatest defects in the interactive titles produced for scholarly
applications.

� Media were scattered all over the network. It was becoming hard to
keep inventory using ad hoc databases.

� Researchers signi�cantly changed their conceptual models over the course
of a project, so that custom data structures had to be re-written.

� User interfaces had to be constantly re-designed in concert with graph-
ics artists, programmers and researchers, using unpredictably varied
media. New interface constructs such as help sprites and custom ges-
tures which did not �t pre-fabricated window-menu-button widgets had
to constantly invented.

� Finished titles were often locked into a videodisc or piece of software
(eg. Director or Supercard stack), and put out of reach of re-purposors.

� Finished titles had thin media content/ hard content boundaries { users
quickly hit the boundaries of what was recorded on a CD ROM or
videodisc.

� Conceptual models were often too simplistic to be taken seriously by
any but the most novice students. We wanted environments which
could support research level work as well as introductory classes. (In
general, software which was designed speci�cally for a given class or
lesson was often too rigid or shallow.)

3



� Hypertext/media graph topologies were either navigable but too sparse
to sustain a viewer's interest, or rich but too dense to be comprehended.
Hypertext links are fragile, di�cult to author or manage, and hard to
map.

� We could not easily support multi-author and multi-player discourse
networks.

The MediaWeaver was designed to address all of these problems. Its
various frameworks were designed to be used by faculty and student authors
and by designers of multimedia simulations. It was designed explicitly to
be usable by members of academic disciplines outside computer science and
engineering. And it had to leverage tiny application programming resources.

We started with two prototype projects in 1993-1994: a history of Renais-
sance (Elizabethan) theater, and a study of high technology in the Silicon
Valley. The �rst was chosen from a pool of faculty projects which required
some management of art images and associate music or text on the network,
The second presented the challenge of dealing with a signi�cant, changing
body of structured text in a complex, evolving research project. In addition,
we wanted to lay the foundation for general relational modeling of human
systems as such data became available in the course of the research. In both
cases, we could not assume a �xed interface or conceptual model. Indeed,
the only surety was change.

This genealogy strongly in
uenced the design principles which we will
outline in the following section.

Since then we have continued with the SiliconBase (Lenoir [9]), as the
Silicon Valley History project is called, and have added several other commu-
nities and mediabases, including, for example: a prototype for an archive of
electro-acoustic music; a Chicana/o artists database (Yarbro-Bejarano [15]);
a clearinghouse of international conservation information (Irvine [7]); a his-
tory of education since Greco-Roman times (Bloomer [2]); a structural engi-
neering database.2

2See http://www-asd.stanford.edu/Media1/ASD/website/ProjectsFrame.html.

4



3 Design Principles and Corollaries

3.1 Make it immediately useful.

Bread and butter reasons, but also participatory design principles suggested
that we should let composers start working right away with their own media,
conduct seminars and write articles using our system instead of waiting for
the Holy Grail. To enable signi�cant scholarly work, whatever we built had
to exchange data transparently with commercial applications and databases,
and inter-operate transparently with distributed services. Authors were en-
couraged to use whatever commercial editors they already had on their per-
sonal computers (Macintosh or Windows) 3 Our frameworks synthesize com-
mercial, public and custom software. Our authors work in a heterogeneous
network where UNIX and Macintosh clients see a common �lesystem, and can
apply user tools from Macintosh, UNIX (Sun, SGI, NeXTSTEP) to shared
mediabases.

3.2 Factor, factor, factor.

The architecture re
ects a separation between (1) persistent storage in the
�lesystem (eg. ASCII or AIFF blob bytes) and in databases (eg. blob meta-
data in Sybase tables); (2) model (eg. hypermedia topological structure, bib-
liography); and (3) presentation/interaction (eg. WWW/Mosaic document,
Hypercard simulation, custom disposable apps). By decoupling models from
media, we can sidestep the question of data ownership and allow complex
research models to be constructed on existing corpora or proxy media4

Since MediaWeaver stores topological information in databases, it can
generate HTML documents dynamically rather than keep source media in
HTML �les { a simple version of dynamic documents. Factorization gives us
the option of interposing even more expressive and nuanced means of forming
constellations media or mediastreams on-the-
y.

3Typical tools include Microsoft Word, WordPerfect, Adobe Photoshop, Adobe Pre-
miere, Omnipage, DeskScan, Autocad and Mathematica.

4We have in mind notions such as using relational grammars to de�ne meta-layouts for
user-interfaces. Examples include WRI's Mathematica 2.3, and work by Weitzman and
Wittenburg [14]

5



3.3 Maintain user interface metaphor neutrality.

We wish to allow multiple views on shared media, which means that rather
than building a single interface application or layout protocol (a la HTML
forms), we provide an API supporting multiple, concurrent, and most im-
portantly, recon�gurable interfaces. The MediaWeaver does not assume that
views must look like word-processors. Word-processor-like document view-
ers like MS Word or Mosaic present essentially a unidimensional rebus, a
stream of generalized characters, some of which are ordinary letters, some of
which are raisins of media like an embedded graphic. In contrast, a simula-
tion generally can have quite a di�erent structure, such as a map, timeline,
multi-track score, vivarium, video-based telepresence, soundspace etc. Medi-
aWeaver user interface kits do not assume documents, windows, chunks, or
links. But the MediaWeaver does deliver documents as a special case. For ex-
ample, ordinary word-processor documents may be catalogued in indigenous
formats.

3.4 Broadcast rather than publish.

MediaWeaver is designed to deliver information over networks, rather than
in detached forms such as CD ROM. The CD ROM (and videodiscs etc.)
distribution model is in a sense a natural relic of the traditional publishing
model which requires a physical commodity in order to function. From the
point of view of a university library, most if not all of the same problems
encountered in acquiring preserving, cataloguing and circulating paper books
or journals recur in dealing with CD ROMs and videodiscs. Some of these
library issues are even thornier in the new formats.

Finegrained network distribution of software, even of single computing
objects, o�ers quite a di�erent paradigm which may be more akin to a broad-
cast model than to the publishing model. This also gives us the 
exibilty
we need to support live research projects in which the primary source media
as well as the secondary literature and even the conceptual models are in

ux. In any case, MediaWeaver's factorization allows us to build templates
to which we can download a subset of a project's model + data to client.
In this way, we can print a standalone version of simulations similar to T.
Gieryn's Cornell Biotechnology Lab or G. Crane's Perseus modules ([5]) by
downloading data and models from the network into local templates.

6



Even more interesting are the new modes of dissemination now made
possible by online mediabases. MediaWeaver provides a scheme in which
progressively more formal or public compositions can arise organically from

exible, personal or project-speci�c research collections. For example, col-
lections of source material can be acquired and edited according to research
agenda. This demand-driven model e�ciently allocates human and system
attention. New scholarly articles or pedagogical presentations can be made
in situ and catalogued back into the mediabase. For example, the Silicon-
Base seminar's reader is an entirely online hypermedia structure which can
be modi�ed at any moment by the instructors. Lectures can be composed,
presented in conferences, and revised online. Over time, well-critiqued arti-
cles can then be given more public status by relaxing their access locks. Such
research reports become an online professional journal with the addition of
a suitable editorial board and digital signatures. Design issues such as the
social conventions around periodicity and cost recovery mechanisms would
be interesting to investigate using such a framework.

3.5 Maintain model neutrality.

To allow multiple conceptualizations requires that authors be able to build
rapidly several models over the same media. This derives from a practical
need to reconcile the very di�erent time-scales involved in designing pro-
visional research schema of annotations and associations vs. designing a
MARC-quality archival description of the same set of media. Again, by fac-
torization and abstraction MediaWeaver allows very di�erent communities
to work with media, represented when necessary by proxies, using their own
models. Consequently, instead of binding to one particular database, Me-
diaWeaver uses a data access framework which allows authors to connect
to any of several standard types of RDBM engines over the net, including
Sybase and Oracle. MediaWeaver provides an object-oriented abstraction
so that its clients need not deal with dialects of RDBMs. Clients can store
arbitrary objects like bitmaps or serialized Objective-C objects as meta-data
via MediaWeaver's object-oriented database access framework. In practice,
(large) media are kept as source media in ordinary distributed �lesystems,
and (small) meta-data { annotations, references, links, abstracts, etc. { are
kept in RDBMs.

7



3.6 Expect evolution.

Perhaps the key to making an scholarly workspace worth using is to ensure
that intellectual content survives across change in technology. This is partly
an institutional commitment as well as a technological issue. Aside from the
obvious requirement of a modularized architecture whose components may be
replaced without breaking service, the following principles guided our work:

3.7 Assume no single data representation.

We do not need to spend resources to converting media systematically to a
single format like HTML or SGML. This is perhaps the most important tech-
nical feature of MediaWeaver. By making no assumption about the internal
structure of a media entity (a blob), and not even requiring that a media en-
tity exists as bytes in a �lesystem, MediaWeaver allows authors to compose
with any computable or renderable medium whatsoever. This way, Medi-
aWeaver can accomodate currently unknown data types and interactions.
Moreover, this way MediaWeaver can deal with opaque or pre-recorded me-
dia (eg. TIFF, MPEG, AIFF, TeX, Renderman), performable scripts (eg.
NeXTSTEP score�les, Mathematica notebooks, Applescripts), executables
(eg. a UNIX tool, Hypercard stack, or Java application), and data streams
(eg. live video channel) with equal ease /di�culty.

How is this feasible? The working principle here is to {

3.8 Focus on space of transforms more than the base

space.

Converting all the authors source media into some standard structure (such
as SGML) is not cost e�ective nor strategic in our context because of the
diversity of the material (some conversions would lose too much informa-
tion), the large human cost (editorial, programmer, administrative), and the
constantly changing substance. Moreover, we are not convinced that a uni-
versal, permanent (on the scale of decades) document structure exists which
can support all the media that authors will use. Therefore, we have decided
that it is wiser to build a �lter service that can be invoked by MediaWeaver
servers as well as their clients.

8



3.9 Assume nothing about the internal structure of

a media entity.

A media entity may be a programmatically generated stream of data, a �le
of any renderable data type, an executable, or may even exist only as a
virtual object in a meta-data record. This allows authors to work with proxy
objects even when, for legal or technical reasons, primary media are not
available. Conversely, multiple versions of a logical media entity can be
tracked. The front end, not the MediaWeaver core, decides how to interpret
multiple versions of a blob. For example, a movie clip may exist in MPEG as
well as an Apple QuickTime proprietary format. The front end asks for the
locally renderable version, but authors deal only with a single logical entity.

4 Architecture

4.1 Media Model

In our model (Figure 1) a logical media entity has a unique tag, zero or
more source versions, and usually at least one metadata attribute or proxy.
Typically, the media entity is associated to some data in persistent storage,
but this is not required. By allowing entities that refer to no source media, we
can construct compound media structures. Links between media are stored
in a link database. Project designers de�ne their own metadata schema, and
may extend the schema as their conceptual models evolve.

Each application project gets its own link and metadata databases so
there may be multiple representations overlaying a given set of media. In
practice media entities refer to data �les (of all types), compiled applications,
and URL's.

9



source media

link σ=
<src,dest,qualifier>

γ=<α, ρ>

γ=<α, ρ>γ=<α, ρ>

links
database
σ1, σ2,σ3...

blobs
database
γ1, γ2, γ3...

blob γ=

<metadata α, selection ρ>

σ
σσσ

. . .

[r][r]

Figure 1. Media Model.

4.2 Framework

MediaWeaver Core Services

Front End Interface
Kits

Persistent Store

Figure 2. General Architecture { Four layers.

MediaWeaver has four framework layers (Figure 2) which communicate over
network protocols:

� a set of user interface kits (Macintosh, WorldWideWeb, NeXTSTEP/OpenStep),

� a set of mediation classes that abstract over categories of services,

� a set of services (eg. annotation and linking, fulltext search, image
search, format conversion), and

� persistent storage (eg. AFS, AppleShare, Sybase, Oracle).

10



Persistent Store

source media
in distributed file systems: NFS, AFS, Appleshare, etc.

metadata
in commercial RDBM’s -- Sybase, Oracle, etc.

Network services

distributed object service

Conversion and
abstraction services --
pbmplus, sox, rtf2html, etc.

Search engines --
FFW fulltext,
Photobook, QBIC
(image), etc.

Database search --
Sybase, Oracle, etc.

MediaWeaver Core

Conversion
managerLinker

Search manager
Media object
manager

Indexer

distributed object service

Front End Interface Kits

TCP-IP based API

CGI library

WWW browsers

network file access

Java applications

.

Figure 3. Architecture in detail.

The MediaWeaver's core mediating layer is written as a set of Objective-
C classes: Butler, MOM (Multimedia Object Manager), Searcher, Indexer,
Linker, Transformer.

� Butler { authenticator/accesser which maps users to equivalence classes
of authorship ranging from full creation/destruction of database schema
to passive browsing, connects to requested databases and manages
MOM, Searcher and Linker objects.5

� MOM { multimedia object manager which is the Objective-C repre-
sentation of multimedia entities' metadata, cacheing descriptors of any
type: text, numeric, or any serializable data such as a TIFF, Macintosh
PICT or a NeXTSTEP Sound object.

� Searcher { parent query class parses search requests to generate queries
against patterns which may themselves be objects. Searcher parcels
out a compound search across multiple search engines. Searcher sub-
classes own SearchEngine objects which connect to particular relational
database or content-based search engines to support alternatives such
as proximity searches based on special metrics.

5In a distributed object system, the Butler plays the role of a proxy for theMediaWeaver
core.

11



� Indexer { can defer or background the creation of indexes that must be
performed by particular search engines in order to optimize retrieval.

� Linker { the parent class provides a few convenience functions to trace
links based on source, destination, or a string quali�er. Since links are
�rst-class entities in the MediaWeaver, applications may apply MOM
and Searcher objects directly to a set of links. This provides great

exibility and extensibility to alternative link management strategies.6

� Transformer { convertor and abstractor class uniformizes the conver-
sion of �le-based data, including images (pbm, xconv, etc.), text (rtf,
HTML, TeX etc.), sound (sox) and video. Using such services, Trans-
former classes create proxies: compact abbreviations or summaries {
image thumbnails, sound snippets, text captions, etc. { of media ob-
jects. Child classes handle particular media types.

4.3 Storage, transport of source media and meta-data

Source media are archived as ordinary Macintosh and unix typed �les on
distributed (AFS) and local �le systems. Media streams (eg. live video
channels, with local hardware support) are handled as any other blob under
this uniform scheme. We anticipate that databased �le-systems will eliminate
many of the circumlocutions currently required by this �le-based storage, but
for data portability, we decided against using a uniform proprietary storage
mechanism.7

The same concern led us to store metadata (annotations, hyperlink maps)
in standard RDBM's tables.8 Although we recognize that this is unaccept-
able substitute for dynamically adjoining foreign database servers, we see no
alternative until certain protocols like Z39.50 or CORBA are standardized
and widely supported by data storage and translation facilities.

6This is comparable, but at a �ner grain, to Hyper-G's [8] link server which also de-
couples the hypermedia structure from the source media.

7For example, we studied NeXTSTEP's Objective-C serialization, Taligent's persis-
tent object store, and Versant and Illustra OODB's, all of which o�ered advantages over
traditional data storage.

8We used Sybase and Oracle server for robustness and portability.

12



Metadata Selection

Multimedia
Object

Manager

id list

source media

Figure 4. Clients unpack metadata to populate di�erent personal workspaces.9

4.4 Interface Kits

Authors can catalog and annotate media in one front end on a particular
environment, and have the results immediately accessible via a variety of
browsers.

4.4.1 World Wide Web

Our most common front ends are written atop a CGI library that passes
requests from the WWW client on to the MediaWeaver server. Results may
be assembled into HTML dynamically. The most salient aspect of this is the
the sharp decoupling of the connection, query and retrieval logic embodied
in the CGI library from the HTML formatting. Rather than building brittle
networks of HTML documents, a typical WWW "front end" consists of a few
pre-written HTML pages that give context, with forms that send commands
to the MediaWeaver via CGI's. The HTML layout templates are stored
in text �les that are created by designers who know some HTML but are
not programmers. This factorization has allowed us to deliver MediaWeaver
media and services via di�erent WWW browsers' encodings as soon as they
appear, and takes maximal advantage of our authors' di�ering writing skills.

9Cf. Figure 7.

13



4.4.2 Custom Front Ends

Figure 5. Dynamically constructed views of one media entity { Pantaloon { from

the Renaissance Project. In the NeXTSTEP application (left), Linked

"daughter" images appear as sound and image abstracts on the left, and research

assistant's commentary appear below. In the Macintosh application (right), the

item of interest occupies the large focus �eld, with linked media around border.

The particular interfaces shown in Figure 5 contain several experimental
navigational methods: tracing links represented by non-text media objects,
pro�le search (query by example), term search in selected meta-data �elds,
and full content text search. This particularly simple interface emphasizes
direct manipulation. A browser can pull a media object into the center of
attention, make links, search, and add voice or text annotations. Designers
can quickly re-arrange the interfaces without interrupting networked services.

For Macintosh clients, we have built a set of such local data-caching
classes and interface classes in HyperTalk, and a set of XCMD's which use
the MediaWeaver's API, all packaged into template Hypercard stacks.10 Un-
der NeXTSTEP we have extended the data access framework's user interface
classes in the Interface Builder.(DatabaseKit, EOF [6]) From these compo-
nents it is quite easy to (re)fashion viewer/composer applications customized

10Obviously, a more robust application developer workbench would be desirable, but
that will depend on the evolution of authoring environments from innovative industrial
partners.

14



to the needs of our faculty and student authors. We have produced more
than a dozen viewer applications tailored to various tasks, such as catalogu-
ing, navigating and weaving compound media, allowing various intensities of
reading or authoring. (see videotapes [10], [3])

MediaWeaver front ends support some alternative UI paradigms such as
drag service with on-the-
y conversions across the entire network workspace,
graphical gathering and winnowing searches, and geographic map operations.
They communicate with sister applications via system-dependent data-object
exchange services (eg. NeXTSTEP Pasteboard objects or AppleScript). For
example selections can be sent to applications such as MacAtlas and Math-
ematica with graphical or formatted text results returned to originating
views.11

11The NeXTSTEP user interface kit includes a polymorphic MediaView which can dis-
play multiple types of media, a CompositeView which performs some layout and tiling
of daughter MediaViews, TableViews optimized for matrices of scalar types, as well as a
FetchGroup which bu�ers queries to the MOM and caches returned data.

15



Figure 6 (below). The same CGI formatters are used to dynamically generate

these two di�erent WWW interfaces from end-author layout templates. (Here,

viewed in OmniWeb.) In the Chicana Art interface, the themes are themselves

are catalogued as virtual media entities, and are presented via proxy icons in a

"menu" as the result of a query. Resulting pages can be constructed with embedded

MediaWeaver commands which are parametrized by arguments extracted from the

metadata.

16



Figure 7. Timeline, map and multimedia bulletin board. { three independent

network interfaces (Macintosh Hypercard) to a single model maintained by the

MediaWeaver. In this case, the model consists of agents �, attributes � and

17



time-periods (t1; t2) during which � has property �. In the last workspace, the

author can link media from a live source or prepared �le to an agent in the

abstract model.

5 Future Work

Now that we have a su�ciently rich substrate of services, and a modest but
diverse set of scholarly user communities and corpora, we would like to turn
our e�orts to make the user environments more seamless. In the near future,
we would like connect MediaWeaver front ends with commercial siblings such
as GIS apps, and SMPs or numerical engines. We are evaluating multi-
architecture, metaphor neutral user interface frameworks which can talk to
the MediaWeaver. Apple's OpenDoc and ScriptX application frameworks are
possibilities, as is JAVA12 and various automatic document layout systems.13

We will be extending the project in several application areas, including
relational models of human systems, and geographically-sited information
systems.14 Project disciplines include art, anthropology, history, literature
and theater.

At the lowest level, we are studying implementations of CORBA dis-
tributed object protocol to see how best to migrate our rudimentary dis-
tributed object service. And we are preparing for a project to feed rich
media alongside video service.

6 Acknowledgments

Deborah Zimmerman wrote the Hypercard front ends for the Macintosh.
Rick Wong wrote the TCP-IP libraries and implemented the API. Siew Sim
wrote the TCP-IP based Object Server. Ying Liang has been responsible
for maintaining the third generation core classes as well as the CGI's. Kan
Yu-Tung contributed to the CGI interfaces (WWW front ends). And James
Ze Wang contributed the image search engines.

12See http://java.sun.com/
13See Weitzman, MacNeil and others at MIT [14].
14See the Alexandria Project [11].

18



We thank TimLenoir, Henry Lowood, Judy Dolan, Bill Eddelman, Yvonne
Yarbro-Bejarano, Nickie Irvine, Darryl Weiner, Paul Edwards, Renate Fruchter,
Michael Winnick and the student assistants for participating in the design
process, and we are indebted to Charles Kerns for his constant interest.
We thank also Bill Verplank, Terry Winograd, Rosanna Carotti and Milon
Mackey for their criticism, and Brodie Lockard, Michael Levin and Barbara
Maliska for their support.

19



References

[1] Christopher Alexander, Sara Ishikawa, and Murray Silverstein. A Pat-
tern Language. Oxford University Press, 1977.

[2] Martin Bloomer. Classics { a history of liberal education
from the greeks to the renaissance, 1995{1996. http://www-
leland.stanford.edu/class/ch114/.

[3] Academic Software Development. Video: MMDD on next and
macintosh, Spring 1994. informal notes.

[4] Pelle Ehn. Towards a philosophical foundation for skill-based participa-
tory design. In P. Adler and T. Winograd, editors, Usability: Turning
Technologies into Tools, pages 116{132, 1991.

[5] ed. Gregory R. Crane. Perseus project: An evolving digital library
on ancient greece and rome. Technical report, Tufts University, 1997.
http://www.perseus.tufts.edu/.

[6] NeXT Inc. NeXTSTEP. Addison Wesley, 1992.

[7] Dominique
Irvine. Latin america environmental information map project, 1995{
1996. http://lummi.stanford.edu/class/anthro161a/imp/IMP.html.

[8] Frank Kappe, Keith Andrews, Joerg Faschingbauer, Mansuet Gaisbauer,
Michael Pichler, and Juergen Schip
inger. Hyper-g: A new tool for dis-
trobuted hypermedia. Technical report, Institute for Information Pro-
cessing and Computer Supported New Media (IICM), Graz University
of Technology, Graz Austria, 1994.

[9] Tim Lenoir and Sha Xin Wei. Networked scholarly workspaces
for history of high technology, talk at MIT, March 1995.
http://lummi.stanford.edu/Media2/pix/www/MIT/slides.

[10] Academic Software Development Silicon Valley History. Siliconbase
project video, Spring 1994. produced by Chris Madison, SITN.

[11] Terry Smith, Jim Frew, and Qi Zheng et al. Alexandria digital library,
1995. http://alexandria.sdc.ucsb.edu/.

20



[12] Manfred Thaller. What is 'source oriented data processing'; what is a
'historical computer science'? In Historical Informatics: an Essential
Tool for Historians?, 1994.

[13] James Ze Wang, Gio Wiederhold, Oscar Firschein, and Sha Xin Wei.
Wavelet-based image indexing techniques with partial sketch retrieval
capability. Advances In Digital Libraries, May 1997. http://www-
db.stanford.edu/ wangz/project/imsearch/ADL97/.

[14] Louis Weitzman and Kent Wittenburg. Automatic presentation of mul-
timedia documents using relational grammars. In Proceedings of ACM
Multimedia 1994, 1994.

[15] Yvonne Yarbro-Bejarano. Chicana art project. Speaking of Com-
puters, April 1995. See also Rockefeller grant, or http://www-
asd.Stanford.EDU/Media1/ASD/website/blurbs/ChicanaArt.html.

21


