economy ~ ecology
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digital / discrete representation

information # meaning
telegraph # speech
code # language
data # information # knowledge
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A Mathematical Theory of Communication

By C. E. SHANNON

INTRODUCTION

HE recent development of various methods of modulation such as PCM and PPM which exchange

bandwidth for signal-to-noise ratio has intensified the interest in a general theory of communication. A
basis for such a theory is contained in the important papers of Nyquist’ and Hartley® on this subject. In the
present paper we will extend the theory o include a number of new factors, in particular the effect of noise
in the channcl, and the savings possible due to the statistical structure of the original message and due to the
nature of the final destination of the information.

The fundamental problem of communication is that of reproducing at one point either exactly or ap-
proximately a message selected at another point. Frequently the messages have meaning: that is they refer
to or are correlated according to some system with certain physical or conceptual entities. These semantic
aspects of communication are irrelevant to the engineering problem. The significant aspect is that the actual
message is one selected from a set of possible messages. The system must be designed to operate for each
possible selection, not just the one which will actually be chosen since this is unknown at the time of design.

If the number of messages in the set is finite then this number or any monotonic function of this number
can be regarded as a measure of the information produced when one message is chosen from the set, all
choices being cqually likely. As was pointed out by Hartley the most natural choice is the logarithmic
function. Although this definition must be generalized considerably when we consider the influence of the
statistics of the message and when we have a continuous range of messages, we will in all cases use an
essentially logarithmic measure.

Claude E. Shannon: Mathematical Theory of Communication, Bell System Technical Journal, Vol. 27, pp. 379-423, 623-656, July, October, 1948.

[HM NIX VHS
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Shannon communication model

INFORMATION
SOURCE TRANSMITTER RECEIVER DESTINATION
b P =
SIGNAL RECEIVED
SIGNAL
MESSAGE MESSAGE
NOISE
SOURCE

We may roughly classify communication systems 1nto three main categories: discrete,
discrete system we wlll mean one 1n which both the message and the signal are a sequence of discrete symbols.
A typilical case 1s telegraphy where the message 1s a sequence of letters and the signal a sequence of dots,

dashes and spaces. A continuous system 1s one 1n which the message and signal are both treated as continuous

functions, e.g., radio or television. A mixed system 1s one 1n which both discrete and continuous variables
appear, e€.g., PCM transmission of speech.

Claude E. Shannon: Mathematical Theory of Communication, Bell System Technical Journal, Vol. 27, pp. 379-423, 623-656, July, October, 1948.

continuous and mixed. By a
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telegraph model of communication
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radio field model
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0. CHOICE, UNCERTAINTY AND ENTROPY

We have represented a discrete information source as a Markoff process. Can we define a quantity which
will measure, in some sense, how much information is “produced™ by such a process, or better, at what rate
information is produced?

Suppose we have a set of possible events whose probabilities of occurrence are py.p2.....pPs. These
probabilities are known but that is all we know conceming which event will occur. Can we find a measure
of how much “choice” is involved in the selection of the event or of how uncertain we are of the outcome?

If there is such a measure, say H(py.p2..... P» ), it 1s reasonable to require of it the following properties:
1. H should be continuous in the p;.

2. If all the p; are equal, p; = !, then H should be a monotonic increasing function of n. With equally
likely events there is more choice, or uncertainty, when there are more possible events.,

3. If a choice be broken down into two successive choices, the original H should be the weighted sum
of the individual values of H.

1/2 /2 1/2
1/3 n
1/65 QUB H = —szj logp‘

=]
Decomposition of a choice from three possibilities.,

CHGL L) = H(L )+ TH(3 ).

[AM NIX VHS
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continuous signal

I18. SETS AND ENSEMBLES OF FUNCTIONS

We shall have to deal in the continuous case with sets of functions and ensembles of functions. A set of
functions, as the name implies, 1s merely a class or collection of functions, generally of one vanable, time.
It can be specified by giving an explicit representation of the various functions in the set, or implicitly by
giving a property which functions in the set possess and others do not. Some examples are:

1. The set of functions:
folt) =sin(t 4+ ).

Each particular value of # determines a particular function in the set.
2. The set of all functions of time containing no frequencies over W cycles per second.
3. The set of all functions limited in band to W and in amplitude to A.
4. The set of all English speech signals as functions of time.

Claude E. Shannon: Mathematical Theory of Communication, Bell System Technical Journal, Vol. 27, pp. 379-423, 623-656, July, October,

[AM NIX VHS
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Claude E. Sha

5. The set of English speech functions with the probability measure given by the frequency of occurrence
in ordinary use.

An ensemble of functions [, (¢) is stationary if the same ensemble results when all functions are shifted
any fixed amount in time. The ensemble

So(t) = sin(t +0)
1s stationary if # is distributed uniformly from 0 to 2. If we shift each function by #; we obtain

folt+1y) = sin(t +14, +8)
= sin(t + )

with ¢ distributed uniformly from 0 to 2x. Each function has changed but the ensemble as a whole is
invariant under the translation. The other examples given above are also stationary.

An ensemble is ergodic if it is stationary, and there is no subset of the functions in the set with a
probability different from 0 and 1 which is stationary. The ensemble

sin(t +0)

1s ergodic. No subset of these functions of probability # 0.1 is transformed into itself under all time trans-
lations. On the other hand the ensemble
asin(r +#8)

with a distributed normally and # uniform is stationary but not ergodic. The subset of these functions with
a between 0 and 1 for example is stationary.

Of the examples given, 3 and 4 are ergodic, and 5 may perhaps be considered so. If an ensemble is
ergodic we may say roughly that each function in the set is typical of the ensemble. More precisely it is
known that with an ergodic ensemble an average of any statistic over the ensemble is equal (with probability
1) to an average over the time translations of a particular function of the set.’ Roughly speaking, cach
function can be expected, as time progresses, to go through, with the proper frequency, all the convolutions
of any of the functions in the set.

ly, October,

[HM NIX VHS
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digital / discrete representation

information # meaning
telegraph # speech
code # language
data # information # knowledge
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algorithmic computation
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Turing machine
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discrete finite state machine
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machine learning | pattern recognition

e Only parrots what it has been shown

e Classification # Meaning > signitying

® Sound : Perceptual encoding (OMAX)

"teature” —> signal, difference in degree, not kind?
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[Ethically] construed action constructs [ethical] agents

Don't tlatten [subjects] to computer model's caricature!
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technical ensemble, gestural articulation

Live performance : zero-learning oracle markov model to synthesize multiple voices,
NaV|d Navab (TM I_) + Matra‘ab, USIﬂg OMAX (lRCAM). 201 2 Gilbert Simondon, Technical ensemble. Mode of Existence of the Technical Object
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incompleteness theorem

In any axiomatic system including Z, one can construct propositions that are
neither provable nor refutable.

there is no natural number that codes a derivation of '0=1' from the axioms of F
(Kurt Ggdel)
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incompleteness & undecidability theorems

A Godelian Puzzle. Let us consider a computing machine that sentences printed by the machine are true. And so, for example, if

prints out various expressions composed of the following five symbols: ~ the machine ever prints P(X), then X really is printable (X will be
PN() printed by the machine sooner or later). Also, if PN(X) is printable,

so is X(X) (the norm of X' ). Now, suppose X is printable. Does
By an ezpression, we mean any finite non-empty string of these it follow that P(X) is printable? Not necessarily. If X is printable,
five symbols. An expression X is called printable if the machine can  then P(X) is certainly frue, but we are not given that the machine is
print it. We assume the machine programmed so that any expression  capable of printing all true sentences but only that the machine never
that the machine can print will be printed sooner or later. prints any false ones.
By the norm of an expression X, we shall mean the expression
X (X )—e.g. the norm of P~ is P~(P~). By a sentence, we mean any

expression of one of the following four forms ( X is any expression): Is it possible that the machine can print all true sentences? The
(1) P(X) answer 15 no

(2) PN(X) ~PN (~PN)

(3) ~ P(X) true <=> ~ P N is printabl

(4) ~ PN({X) rue <=> ~ is printable

Informally, P stands for “printable”; N stands for “the norm of”
and ~ stands for “not”. And so we define P(X) to be true if (and
only if) X is printable. We define PN(X) to be true if the norm
of X is printable. We call ~ P(X) true iff (if and only if) X is not
printable, and ~ PN(X) is defined to be true iff the norm of X is not
printable. [This last sentence we read as “Not printable the norm of Raymond Smullyan, Gedel's Incompletness Theorems
X7, or, in better English: “The norm of X is not printable”.]
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theorem: voting impossibility
(Ken Arrow 1952)
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theorem: voting impossibility

Def: A transitive preference P on a set of candidates S is a
weak linear ordering on the elements ot S (x <y, y < x, and
yet x # y). An individual preference order (IPO) is a
transitive preference associated with a voter.

Def: A constitution for N voters is a well-detined total
function C : PN = P: mapping every N-tuple of individual
preference orders to a resulting preference ordering

(RPO).
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theorem: voting impossibility

Def: A constitution respects independence of irrelevant
alternatives it the relationship between alternatives o and B in the

RPO is determined only by the relative rankings of & and B in the
IPOs.

Def: A constitution respects unanimity if the RPO ranks o > f3
whenever every |IPO ranks o > .

Def: A constitution is a dictatorship if there is an individual (the
dictator) such that the RPO puts alternative o above B whenever the
dictator puts alternative & above 3.
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theorem: voting impossibility

Theorem: (Kenneth Arrow, 1951) If there are at least three candidates, the only constitutions that
respects transitivity, independence of irrelevant alternatives, and unanimity are dictatorships.

Definition: A constitution is computable it there is an algorithm to decide for all profiles and all
candidates x and y whether society prefers x to y given an index of the coalition that prefers x to

y.
Theorem: (H. Reiju Mihara, 1994) The only computable constitution that satisties Unanimity, and
Independence of Irrelevant Alternatives, is dictatorship.

l.e.

It a constitution satisfying Unanimity, and Independence of Irrelevant Alternatives is implemented
in algorithm, then it is a dictatorship.

Geanakoplos, John. Three brief proofs of Arrow’s Impossibility Theorem. Cowles Foundation for Research in Economics. (June 2001), pp.1-5.
Mihara, H. Reiju. Arrow’s Theorem: precise statement and computability. http://www.aoc.nrao.edu/~jogle/TORG/arrow.txt. March 1994.
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Searle Chinese Box

A ! }

e v s swnl f you see this shape,
i
followed by thas shape,
" e v
followed by thus shape,
i

- - -

then produce this shape,
n?'\! 3\’ -

followexd by thes shape,
" r_ -J‘: ..
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I 11

"conversation” “program” (table lookup)

\\ 44

IF 1nput = “mother” | “mom
THEN PRINT “Do yvou talk often with
vour mother?”;

IF input = “father” | “dad” | “papa"
THEN PRINT “Are you close to your
father?”;

Eliza, Weizenbaum 1956, code
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https://github.com/jeffshrager/elizagen/blob/master/eliza/versions/doctor_bbn_lisp_1966/scrip.ascii

neural nets infrastructure??

machine learning / Tanen synthesis of pattern
pattern recognition: judgment or according to
analysis of sensor data ( brittle code learned categories
neural net ) “if-then” ( neural net )
where does
human

judgment go?

neural net
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pattern “recognition” ~ correlation

6, 8
| Y
X, . W’

“Neural” Network input layer

Feature space

Y

Classifiers

oulpul layer

hidden layer
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https://sites.google.com/site/dominicanbiol152252/_/rsrc/1472183121340/histology/bio152-labs/nervous-tissue/Neuronal%20Slide.jpg?height=266&width=400
https://sites.google.com/site/dominicanbiol152252/_/rsrc/1472183121340/histology/bio152-labs/nervous-tissue/Neuronal%20Slide.jpg?height=266&width=400
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machine
learning

“criminal
taces”

Xiaolin Wu and Xi Zhang,
“Automated Inference on
Criminality using Face
Images” 2016

svynthesis : prototyping so
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machine
learning

criminal (a) Three samples in criminal ID photo set S...
taces”

Xiaolin Wu and Xi Zhang,

“Automated Inference on \ |
Criminality using Face

Images” 2016

(b) Three samples in non-cnminal ID photo set S,,

SYNTHESIS o ASU
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theorem: "No Free Lunch” learning

Hume (1739-1740) pointed out that ‘even after the observation of the frequent or constant conjunction of
objects, we have no reason to draw any inference concerning any object beyond those of which we have had
experience’. More recently, and with increasing rigour, Mitchell (1980), Schaffer (1994) and Wolpert (1996)

showed that bias-free learning is futile.

Wolpert (1996) shows that in a noise-free scenario where the loss function is the misclassification rate, if one is
interested in off-training-set error, then there are no a priori distinctions between learning algorithms. More

formally, where
d = training set;
m = number of elements in training set;
f = "target’ input-output relationships;
h = hypothesis (the algorithm's guess for f made in response to d); and

C = off-training-set ‘loss’ associated with f and h (‘"generalization error’)
all algorithms are equivalent, on average, by any of the following measures of risk: E(Cld), E(CIm), E(Clf,d), or E(CIt,m).

How well you do is determined by how ‘aligned’ your learning algorithm P(hld) is with the actual posterior, P(fld).

NFL supervised machine learning (Wolpert 1996) ; NFL for search/optimization (Wolpert and Macready 1997).

WOLPERT, David H., 1996. The lack of a priori distinctions between learning algorithms. Neural Computation, 8(7), 1341-1390.

WOLPERT, David H., 2001. The supervised learning no-free-lunch theorems. In: Proceedings of the 6th Online World Conference on Soft Computing in Industrial Applications.
WOLPERT, David H., and William G. MACREADY, 1995. No free lunch theorems for search. Technical Report SFI-TR-95-02-010. Sante Fe, NM, USA: Santa Fe Institute.
WOLPERT, David H., and William G. MACREADY, 1997. No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67-82.
WOLPERT, David H., and William G. MACREADY, 2005. Coevolutionary free lunches. IEEE Transactions on Evolutionary Computation, 9(6), 721-735
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http://en.scientificcommons.org/43617056
http://citeseer.ist.psu.edu/wolpert95no.html
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=585893
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1545946

neural-net synthesis “creativity"

Alternative to test whether humans can distinguish

Deep Dream vs. human-authored poetry

Test whether machine can distinguish:

Deep Dream vs human using Photoshop filter
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poetry

here you live off to complain from the same men
down to make him, the rains the edge and a scratch

and over the window

and the moon

that we fear

but | said,

he was remains and probably to what his books,
to fell be break and but on the little

and the able to hell

in the bride to me.

| was to the thing for a fools to the street

with a street

and the windows of the thing in the streets and still

on the streets and the sea ass and the streets while |
was a flashing the buses in the darkness in the lights
and stood to see the same one is not so for a stone and
the sky

in a walls of the bare and she was a cigarette

and the counter shoe of the streets

One must have a mind of winter
To regard the frost and the boughs

Of the pine-trees crusted with snow;

And have been cold a long time
To behold the junipers shagged with ice,
The spruces rough in the distant glitter

Of the January sun; and not to think
Of any misery in the sound of the wind,

In the sound of a few leaves,

Which is the sound of the land

Full of the same wind

That is blowing in the same bare place
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Boston Robotics
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play & urban infrastructure

13 October 1955

Project for Rational Improvements to the City of Paris

All street-lamps should be equipped with
switches; lighting should be for public use.

L ettrist intervention / Situationists


http://synthesis.ame.asu.edu
http://artsmediaengineering.net
http://asu.edu/

e

v

&
-
| @

Schouwburgy ;«5
: 4


http://synthesis.ame.asu.edu
http://artsmediaengineering.net
http://asu.edu/

theorem:
markets are generically chaotic
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theorem: markets are generically chaotic

In a n > 2 commodity world without production, agents can exchange goods A person’s chioices at prices p are governed by personal preferences. As a natural
according to (positive) prices, If p; is the price per unit of the jth commodity, ordering doesn't exist on B", n > 2, impose one by assuming each person's prefer-
the cost of r; > 0 units is P;I;. So, letting vector P represent the prices of all ences are captured by a utility function uy : R} — R where ug(y) > up(x) iff the

commaodities, the cost of a commodity bundle x = (zy,...,x,) € R is computed ath agent prefers bundle y to x. To further simplify the mathematics, assume that
by the inner product (p, x). In an exchange economy, what the kth agent can afford individual preferences are strictly convex. This means that for any x. those com-

maodity bundles this person likes as uuuh or better than X, v wly) > uuxo} 18

is based on what he can sell ~ his initial endowment w; ~ which provides wealth
a strictly convex set.

(p. wi). Thus at prices p, agent k can afford a commodity bundle xx satisfying the
- budget constraint (p,Xg) < (p. wg), or any X; in the budget set
. 2
i (2.1) {Xi € R | (p,Xx — Wi) < 0} The kth agent’s excess demand, £.(p) = X (p) — Wy, is the difference between
E The boundary plane passing though wy with the price vector p as a normal is the ~ What is demanded, xi(p), and what is supplied, wi.. This elementary derivation im-
> budget plane. mediately leads to the classical properties of the aggregate excess demand function,
((p) Ek_l £x(p), called Walras' laws.
£(p) is single-valued and smooth (because of u;’s convexity and smoothness),
f(p) is homogeneous of degree zero (because each £i.(p) is defined by the tangency
of the utility function with the budget plane, and for any positive scalar g, both
p and up define the same budget plane), and
3. &(p) is orthogonal to p (because both wy and x; (p) are in the budget plane).

What else happens. As only elementary concepts are used, one might anticipate
only well-behaved properties to emerge. But, as already promised, this is not true.
To place this problem in a mathematically more convenient framework. notice that
Prop. 2 allows us to scale the prices to norm 1; so, treat prices as points on the price
simplex S”; ' — the intersection of the unit sphere S™—! with the positive orthant
R’ . On the price simplex, £(p) is a smooth, tangent vector field (Prop. 1. 3).

Donald G. Saari, Mathematical Complexity of Simple Economics (1978-1986)
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theorem: markets are generically chaotic

SYNTHESIS o ASU

Mathematically, this forees the vector field £(p) o point toward the interior of
the price simplex all along the boundary, so, from the Brouwer fixed point theo
rem (e.g., see [M]), £(p) has a zero; thus, price equilibria exist. This description
captures the essence of the important Arrow-Debren construction [AD, AH, De2]
establishing in quite general settings the existence of Adam Smith's equilibria.

Price equilibria exist, but do prices tend toward them? [n differential form, the
commonly told story about the price dynamic, where an increase in demand results
in an increase in prices, is

(2.3) p’ = &(p),

To re-express Sonnenschein’s question, ket Z(n) be the set of continuous tangent
vector flelds on ST, U the set of continsous (smoothness is dropped as the tan.
gency of a level sot and the budget plane suffices), strictly convex utility functions,
and R} the space for Initial endowments. With a agents, the construction of the
aggrogate excess demand function defines a mapping

(2.5) F .U x R]* = Z(n)

Using this notation, we can interpret Sonnenschein’s question as scoking o charac-
terization of the F image set in =(n).

Sonpenschein provided an answer, Mantel [M] improved it, and Debreu [Del]
proved the version of the SMD theorem which, in our notation, follows. In this
theoremm, 5':',‘ - {p € ST cnchhp; > ¢} 5 a trimmed price simplex bounding
prices away from zero, and =.(n) s the set of continuwous tangent vector fields on
53,

SMD Theorem. Forn > 2 and ¢ > 0, the price mapping
(2.6) Foi U x R - =.(n)

1w surjective iff a > n.

[n other words, with at Jeast as many agents as commodities, anything can hap-
pen! Whatever dynamie on S7 ' 1s contemplated, no matter how complex, or how
it may imitate a favored example from physics or the newest form of chaotic dy-
namics, the SMD theorem ensures there exist endowments and comtinuous, strictly
convex preferences for the a > n agents so that, at keast on the trimmed price
simplex, the aggrogate oxcess demand function is the chosen vector fiedd. It now
is trivial to dismiss the Smith story simply by choosing a vector field of the kind
illustrated in Fig. 2a with a lone, unstable equilibrium. Whike this economy ad-
mits an equilibrium, the prices move away from it.

L/VIIAINU \J. ddl| IVIAQLULIITITIAUILCLAD "Vl o o\l

It now is clear how to construct a dynamic with as complicated a dictionary as
desired. The main ingredient is for the map to be sufficiently expansive so that
the [ image over a specified region covers several other specified regions. As the

might suspect from Eq. 2.2 that expansiveness of individual demands must, in some
way, correspond to preferences where the level sets of u, are fairly flat with small

curvature. this is a common choice for utility functions. ‘

If the GNM doesn’t work, what does? Simon and I [SS] investigated this question
by seeking the minimal conditions that would allow a market mechanism to work.
Instead of a particular procedure, we assumed the general form

(3.1) p’' = M(¢(p). Dpé)
where M is piecewise smooth and where the dynamics stops iff £(p) = 0;

discouraging for n > 3 commodities. Namely, should prices adjust as suspected —
with some choice of M — then M needs most of the differential information required
by GNM to always ensure convergence to at least one of the price equilibria.

equilibria.) So, trying to preserve the Adam Smith story even in this general Eq. 3.1
framework carries the heavy cost of needing an unrealistic amount of information.
s time derivatives, time lag j

chaotic behavior of Eq. 3.2 inherited from the SMD Theorem, for any choice of
M, s, and j, there exists an open set of aggregate excess demand functions (in
any reasonable topology on function space) and an open set of initial conditions
where convergence never occurs.

ics (1978-1986)

[HM NIX VHS
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While Willlams and I found (in a more general setting) that this is true. we
also found that the space of economies is o-compact with this topology where the
obstacles preventing compactness are singularities. So, for any ¢ > 0, il one is
willing to exclude a set of economies of (an appropriate) measure less than ¢ (which
climinates a region around singularities), the remaining set of economies (i.e., the
remaining choices of initial endowments and preferences) are covered by a finite
number of price adjustment procedures. A successful mechanism exists for each
economy, but we don’t know which one. To relate this assertion to actual practice,
notice that the purpose of “market regulations”™ is t~ ~hange the price dynamic.
So these results imply that while an unregulated free market might not work as
widely advertised, if correct regulations are imposed, the market now might behave
as desired. This conclusion probably would not be to Smith’s liking. but it finally
is a positive assertion and we might not be able to do much better.

All of these topics involve the tacit assumption that, in some way, the excess
demand function for different sets of economies are related. But, are they? Must
a well behaved economy of ten goods remain well behaved il one good is taken
off the market, or could it become highly chaotic? To explore the reality of this

Theorem ([S5]). Let ¢ > 0 be given. For n > 2 commeodities, the mapping
2" =(n+l)

[T =)

7=

(4.2) Fe:|Ux RL|® =

is surjective iff a > n.

In other words, the “excess demand”™ tree description is full and chaotic: anything
and everything can happen. This permits us to design all sorts of disturbing scenar-
tos such as where with four goods the aggregate excess demand function carefully

adheres to Smith’s story with a single globally attracting price equilibrium. Then,
withholding commodity ¢; from the market creates a chaotic three-commodity vec-

tor field with an attractor of, say, fractal dimension 1 + %, 7 =1,....,4.

alistically global restrictions on the agents’ preferences

theorem: markets
are chaotic

. K sets of endowments & preferences with K = 2 and only the [ull set of three
commodities, the three agents preterences could define a well behaved aggregate
excess demand function that would delight Adam Smith should they use one set
of initial endowments, but, using different endowments with the same preferences, -
any imaginable (two-dimensional) form of chaos can break out! >
=

In other words, the SMD Theorem describes what happens with the single set
of all commodities and a single assignment of initial endowments:; the above result
extends this disturbing conclusion to all sets of commodities and it shows that the
conclusion can vary significantly with changes in endowments. In particular, this
more general conclusion not only causes worry about the invisible hand story, but
it forces us to question those tacit assumptions - assumptions basic to several tools
from economics — about how the aggregate excess demand function for one commod-
ity set relates to that of others. One might argue (and this is a common reaction

during a colloquium lecture - particularly in a department of economics) that there

may exist conditions imposing strong relationships. Yes, but it is obvious from the
theorem that such constraints cannot be based upon the aggregate excess demand
function (as is a common practice): instead they appear to require imposing unre-

restrictions similar
to those shown m |CM] to be needed to justity the consumer surplus approach.

Donald G. Saari, Mathematical Complexity of Simple Economics (1978-1986)
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theorem: large* databases
contain spurious correlations

data-mining will not save us

* threshold depends on correlation
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theorem: data-mining and spurious correlation

Pitfalls of exaggerating the value ot prediction based on correlated observables have been discussed

in the literature for many years. For example, the conclusion of Ferber's 1956 analysis [14] is:
Clearly the coefficient of correlation is not a reliable measure for [the practical problem ot selecting functions
(hypotheses) for predictive purposes], nor does there appear to be at the present time any alternative single
statistic adequate in this respect relating to the period of observation. Unsettling as it may seem, there does not
appear to be any statistical substitute for a priori consideration of the adequacy of the basic hypothesis
underlying a particular function.

Even more importantly, it is well-known that correlation does not imply causation. In the analysis of

the lllinois survey referred above, one notes [1]:
However, a correlation does not tell us about the underlying cause of a relationship. We do not know from the lllinois
data whether drinking was correlated with lower grades because (1) alcohol makes people stupid, or (2) the students
who tend to drink tend to be poorer students to begin with, or (3) people who are hung-over from a drinking binge
tend to skip class, or (4) students in academic trouble drink in order to drown their sorrows, or some other reason.
There can be hundreds of possible explanations for a correlation: the number is limited only by your imagination and
ingenuity in thinking up possible reasons tor a relationship between two variables.

Cristian S. Calude, Giuseppe Longo, ‘“The Deluge of Spurious Correlations in Big Data ,”’ Foundations of Science, pp. 1-18, March, 2016
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Spurious
correlations
in large
databases

Let DD be a relational database. In full generality, we may consider that a correlation of
vartables in D is a set B of size b whose sets of n elements form the correlation [(the set of n-ary
relations on [3, or n values that are considered to be correlated, or monochromatic using the
language of colours). In other words, when a correlation function  defined according to some
given criteria (proximity or, conversely, apartness of some observable values or whatever)
selects a set of n-sets, whose elements form a set of cardinality 4, then thev become correlated.
Thus, the process of selection may be viewed as a colouring of the chosen set of b elements
with the same colour — out of ¢ possible ones. We msist that the criterion of selection — the
corvelation function - has no relevance here, it is arbitrary: it only matters thal, for some
reason which may be spurious, all n-sets of a set with b elements have the same colour, that
is, turn out to be correlated. Then Ramsey theorem shows that, given any correlation function
and any b, n and ¢, there alwavs exists a large enough number 5 such that any set A of size
greater than 4 contains a set B of size b whose subsets of n elements are all correlated — that
is, monochromatic, In other words: Do we want a size b set of values that are correlated by
sets of n elements out of ¢ possibilities, for whatever b, n and ¢ you choose”? Ramsey theorem
zives us a large enough number ~ such that in any set with more elements than 4 if we choose
in any way a partition of n-sets into ¢ classes. we are guaranteed to find a correlation of size b
and arity n. We do not know a priort what will be the colour of the monochromatic set, in the
same way as the data miner does not know in advance which correlation will pop out from the
data. However, in every particular instance we can algorithmically find all the monochromatic
clements and their colourings.

The analysis above, as well as the one in the following section, are independent of any pos-
sible (or not) law-like origin (determination) of the processes modelled in the database, as it
is only based on cardinality (number of elements in the database). This analysis complements
the one in Section 5. Moreover, the arguments also reinforce each other, as the search for regu-
larities require. by the previous results on the low probabilities of recurrences in deterministic
systems, very large databases,

910Z 'Yyose\ ‘gL-| dd ‘eouaiog jo suonepuno4 ,’ ereq Big ul suone|aiio)) snoundg jo abnjaq ay],, ‘obuo addasnig) ‘epnjed ' uensuD
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facts # data # lite | experience

data-mining won't save us
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No Free Lunch theorems

NFL supervised machine learning (Wolpert 1996) ; NFL for search/optimization (Wolpert and Macready 1997).

WOLPERT, David H., 1996. The lack of a priori distinctions between learning algorithms. Neural Computation, 8(7), 1341-1390.
e WOLPERT, David H., 2001. The supervised learning no-free-lunch theorems. In: Proceedings of the 6th Online World Conference on Soft Computing in Industrial Applications.
J WOLPERT, David H., and William G. MACREADY, 1995. No free lunch theorems for search. Technical Report SFI-TR-95-02-010. Sante Fe, NM, USA: Santa Fe Institute.
o WOLPERT, David H., and William G. MACREADY, 1997. No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67-82.
. WOLPERT, David H., and William G. MACREADY, 2005. Coevolutionary free lunches. IEEE Transactions on Evolutionary Computation, 9(6), 721-735
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http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1545946

What you see is what you expect.

wysiwye
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No Free Lunch theorems

Hume (1739-1740) pointed out that ‘even after the observation of the frequent or constant conjunction of

objects, we have no reason to draw any inference concerning any object beyond those of which we have
had experience’. More recently, and with increasing rigour, Mitchell (1980), Schaffer (1994) and Wolpert (1996)

showed that bias-free learning is futile.

Wolpert (1996) shows that in a noise-free scenario where the loss function is the misclassitfication rate, i
in off-training-set error, then there are no a priori distinctions between learning algorithms. More

- one is

INterestec

formally, where
d = training set;
m = number of elements in training set;
f = "target’ input-output relationships;
h = hypothesis (the algorithm's guess for t made in response to d); and

C = off-training-set ‘loss’ associated with f and h (‘generalization error’)
all algorithms are equivalent, on average, by any of the following measures of risk: E(Cld), E(CIm), E(Clf,d), or E(CIf,m)

" your learning algorithm P(hld) is with the actual posterior, P(fld).

How well you do is determined by how ‘alignec

NFL supervised machine learning (Wolpert 1996) ; NFL for search/optimization (Wolpert and Macready 1997).

WOLPERT, David H., 1996. The lack of a priori distinctions between learning algorithms. Neural Computation, 8(7), 1341-1390. ¢ WOLPERT, David H., 2001. The supervised learning no-free-lunch
theorems. In: Proceedings of the 6th Online World Conference on Soft Computing in Industrial Applications. ®© WOLPERT, David H., and William G. MACREADY, 1995. No free lunch theorems for search.
Technical Report SFI-TR-95-02-010. Sante Fe, NM, USA: Santa Fe Institute. ® WOLPERT, David H., and William G. MACREADY, 1997. No free lunch theorems for optimization. IEEE Transactions on
Evolutionary Computation, 1(1), 67-82. « WOLPERT, David H., and William G. MACREADY, 2005. Coevolutionary free lunches. IEEE Transactions on Evolutionary Computation, 9(6), 721-735
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value-producing social activity

Social?
Value?

Activity => strueture | eategory << process,
experience
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economics

Value-producing social activity based on
* [ransactions
e Discrete entities, actions
* A priori entities
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economics

Value-producing social activity based on
* [ransactions
® Discrete entities, actions
* A priori entities
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nuance | play

 Multiple, superposed, polyvalent

 Nuance: arbitrarily fine variation can have boundless
eftect

* Rare events can have significant effect (mutation!)
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significance | meaning

e Significance | meaning is relational
* Meaning of signal is its response
e Distinctions between signal | substrate is conventional

e Construction of observable renders all other aspects of
experience invisiple

e Peter Brook: Theater is the art of making the invisible
visible
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nudging, navigating

Participatory steering
prototyping complex biosocial systems

modes of articulation
graph # radio | gas

ontogenesis, play # game
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‘
Forest3 / Cosmos, Chris Ziegler, Chris Zlatek, Connor Rawls, | Shelansky, D Nichols, iStage Synthesis@ASU, 2015-2019
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Forest3, Chris Ziegler, Shelansky, D, Connor Rawls, iStage Synthesis@ASU, 2015-2019
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Lanterns ta&)gratus, rhythmic entrainment of ensembles, Garrett L Johnson, Synthesis, Britta J Peterson, 2017
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candle time # computer time

time-conditioning

ol

Einsteins Dream, activity-accumulator as measure, TMl=2012
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thermal economies

Garrett L Johnson, Media Arts and Sciences PhD,
Synthesis, AME ASU


http://synthesis.ame.asu.edu
http://artsmediaengineering.net
http://asu.edu/

non-anthropocentric design


http://synthesis.ame.asu.edu
http://artsmediaengineering.net
http://asu.edu/

plant communication
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Jens Rohloft, Atle M. Bones, “Volatile profiling of Arabidopsis thaliana —

Putative olfactory compounds in plant communication”,
Phytochemistry 66 (2005) 1941-1955.

Abstract Arabidopsis thaliana from the Brassicaceae family has arisen as the model organism in plant biology
research. The plants genome has been characterized and worldwide studies are conducted at the genetic,
protein and metabolic level to unravell the function of genes involved in growth, reproduction, biosynthesis,
and plant communication. As part of the multidisciplinary project BIOEMIT at NTNU, metabolomic studies of
Arabidopsis T-DNA knock-out mutants and ecotypes have been carried out. Volatile protiles of autolyzed,
intact plants and single plant organs were obtained by solid-phase microextraction coupled with gas
chromatography— mass spectrometry. The studies were aimed at the diversity ot defense-related compounds
from the glucosinolate—-myrosinase system — the isothiocyanates and nitriles. Metabolites from methionine,
leucine and phenylalanine-derived glucosinolates were most abundant (4-methylthiobutyl, 4-methylpentyl, 2-
phenylethyl). In addition, 24 monoterpenes, 26 sesquiterpenes and 12 aromatic structures, predominantly
observed in inflorescenses, are described. Excluding the vast group of straight chain aliphatic structures, a
total of 102 volatile compounds were detected, of which 59 are reported in Arabidopsis thaliana for the first
time, thus emphasizing the sensitivity and applicability of solid-phase microextraction for volatile profiling of
plant secondary metabo ites. 2005 EIseV|er Ltd. AII nghts reserved

https://www.researchgate.net/profile/Atle Bones/publication/7679209 Volatile profiling of Arabidop thaliana - Putative olfactory compounds commun on/links/5a78262c0f7e¢9b41dbd26a8b/Volatile-profiling-of- Arabidopsis-thaliana-Putative-olfactory-compounds-in-plant-communication.pdf
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Hirokazu Ueda, 1 Yukio Kikuta, 2 and Kazuhiko Matsuda 1, "Plant communication

mediated by individual or blended VOCs?” Plant Signal Behav. 2012 Feb 1; 7(2):
222-226.

Introduction

Plants are exposed to various stress factors such as disease, injury, herbivory, extreme heat/cold, etc. Hence, they must adjust their physiological
state either in response to, or in preparation for, such threats to their well-being and survival.1-5 To achieve this adjustment, plants have
developed a communication system to transmit information based on volatile organic compounds (VOCs).

Plants emit VOCs under other circumstances besides the threat of danger. Notably, flowers use VOCs to attract pollinators and ensure
reproduction.6,7 Induced VOCs provide more than just a scent. In a damaged plant, VOCs are also used as nonvolatile signals to transmit SOS
messages within the plant itself. The airborne signals are diffused to reach undamaged plants nearby, giving them the chance to strengthen their
own defense system. The receivers are not limited to conspecies. Natural enemies can also catch the SOS signals and locate the place of battle.

By changing the volatile components and their blend ratios, plants can create specific messages for communication. Earlier studies mainly
investigated the effects of individual VOCs on plant defense systems because a single compound is easier to test than a blend of compounds.
However, there is increasing evidence that VOCs work as blends in plant-plant communication. Thus, we look at the current status of VOCs in

studies on within-plant and plant-plant communications to address the question, “Plant communication: mediated by individual or blended
VOCs?”

Plant-Plant Communication

The trigger for development in this field was the discovery that undamaged poplar and sugar maple trees accumulated phenolics and tannins
when situated close to damaged trees.14 However, in this original report, no active principle was identitied. Methyl jasmonate (MeJA) emitted by
sagebrush (Artemisia tridentata) was the first compound shown to render intact plants resistant to herbivores by increasing the proteinase
inhibitor production.15 Later on, other VOCs emitted by damaged plants were found to influence the receiver plants, regardless of whether or
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